Mechanizing Language Definitions

Robert Harper
Carnegie Mellon University
September, 2005
Acknowledgements

Thanks to

- Michael Ashley-Rollman
- Susmit Sarkar
- Karl Crary
- Frank Pfenning

Thanks to the ICFP PC for the invitation!
Language Definitions

What does it mean for a programming language to exist?

The “standard” answer is exemplified by C.

- Informal description (a la K&R, say).
- A “reference” implementation (gcc, say).
- Social processes such as standardization committees.
Language Definitions

The PL research community has developed better definitional methods.

Classically, various grammatical formalisms, denotational and axiomatic semantics.

Most successfully, type systems and operational semantics.

Nearly all theoretical studies use these methods! (e.g., every other ICFP paper)
Language Definitions

What good is a language definition?

- Precise specification for programmers.
- Ensures compatibility among compilers.
- Admits rigorous analysis of properties.

The Definition of Standard ML has proved very successful in these respects!
Language Definitions

- But a language definition is also a burden!
- Someone has to maintain it.
- Not easy to make changes.
- Definitions can be mistaken too!
- Internally incoherent.
- Difficult or impossible to implement.
Language Definitions

- A definition alone is not enough! Must maintain a body of meta-theory as well.
- Type safety: coherence of static and dynamic semantics.
- Decidability of type checking, determinacy of execution,
- Developing and maintaining the meta-theory is onerous.
Mechanized Definitions

- Can we alleviate some of the burden through mechanization?
- Formalize the definition in a logical framework.
- Automatically or semi-automatically verify key meta-theoretic properties.
- Can we do this at scale?
Formalizing Languages

- This talk is about using Twelf to
 - Formalize language definitions.
 - Reason about their meta-theory.
- Several other groups are using Coq, Isabelle, and other provers for similar purposes!
- Too early to judge what’s “best” (IMO).
What I’ve Learned

Twelf is a very convenient and effective tool for mechanized meta-theory.

Natural, pattern-matching style of presentation.

Easy to state and verify simple, but informative, invariants.

A “type system” for language definitions: simple sanity checks are powerful!
What I’ve Learned

- One cannot (and should not) expect a “waterfall” process.

- Definitional technique is influenced by the demands of mechanization.

- Mechanization process uncovers mistakes, ambiguities, infelicities in the language.

- LF tends to enforce good hygiene (rather than require contortions).
What I’ve Learned

- LF/Twelf is not the last word!
 - The methodology is robust and likely to remain useful.
 - There is a clear path to improvement (e.g., linearity, structural congruences).
 - It will never be everything to everyone.
LF Methodology

- Establish a compositional bijection between
 - objects of each syntactic category of object language
 - canonical forms of associated types of the LF lambda calculus

 “Compositional” means “commutes with substitution”, giving meaning to variables.
LF Methodology

For a PL the syntactic categories include

- abstract syntax, usually including binding and scoping conventions
- typing derivations
- evaluation derivations

The latter two cases give rise to the slogan “judgements as types”.
Example: STLC

% abstract syntax

\(\text{tp} : \text{type.} \)

\(\text{b} : \text{tp.} \)

\(\text{arrow} : \text{tp} \rightarrow \text{tp} \rightarrow \text{tp.} \)

\(\text{tm} : \text{type.} \)

\(\text{lam} : \text{tp} \rightarrow (\text{tm} \rightarrow \text{tm}) \rightarrow \text{tm.} \)

\(\text{app} : \text{tm} \rightarrow \text{tm} \rightarrow \text{tm.} \)
Example: STLC

% typing (excerpt)

of : tm -> tp -> type.

of_lam :
 ({x : tm}{dx : of x T} of (F x) U) ->
 of (lam T F) (arr T U).

of_app :
 of E1 (arr T U) -> of E2 T ->
 of (app E1 E2) U.
Example: STLC

% evaluation (excerpt)

step : tm -> tm -> type.

beta :
 step (app (lam T F) E) (F E).

fun :
 step E1 E1' -> step (app E1 E2) (app E1' E2).
Adequacy Theorem

Crucial!

<table>
<thead>
<tr>
<th>Cat’y</th>
<th>Rep’n</th>
<th>Contexts/World</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ type</td>
<td>$T : tp$</td>
<td></td>
</tr>
<tr>
<td>e term</td>
<td>$E : tm$</td>
<td>$x : tm$</td>
</tr>
<tr>
<td>$e : \tau$</td>
<td>$D : of E T$</td>
<td>$x : tm$, $dx : of x U$</td>
</tr>
</tbody>
</table>
Meta-Reasoning

- Adequacy ensures that we can reason about the object language by analyzing canonical forms of appropriate LF type.
- Canonical forms are long $\beta\eta$ normal forms.
- Simultaneous and iterated structural induction over canonical forms.
- Applies to informal and formal reasoning!
Meta-Reasoning in Twelf

Twelf supports checking of proofs of Π_2 ($\forall\exists$) propositions over canonical forms in a specified class of contexts (world).

Enough for preservation, progress, ...

These are totality assertions for a relation between inputs ($\forall/+$) and outputs ($\exists/-$)!

Polarity notation is a relic ...
Relational Meta-Theory

Preservation Theorem as a relation:

\[\text{pres} : \text{of } E \ T \rightarrow \text{step } E \ E' \rightarrow \text{of } E' \ T \rightarrow \text{type.} \]

Axiomatize this relation:

\[\text{pres}_\beta : \text{pres} (\text{of_app} (\text{of_lam } D \ D')) \beta (D _ \ D'). \]

etc.

plug arg typing into function body typing
Relational Meta-Theory

- Ask Twelf to verify the totality of the relation representing the theorem.
- Specify the worlds to consider.
- Specify input/output mode of the relation.
- Specify induction principle to use.
- Checks that all cases are covered, and induction is used appropriately.
Relational Meta-Theory

- For preservation this consists of declaring:

  ```
  %mode pres +D1 +D2 -D3.
  %worlds () (pres _ _ _).
  %total D (pres _ D _).
  ```

- Twelf performs a mode check, world check, and a coverage and termination check.

- Coverage similar to ML exhaustiveness.
Relational MetaTheory

- For simple examples like this we can easily prove progress and preservation.
 - Formulate the inductive steps using pattern matching.
 - Check coverage and totality.
- Substitution, weakening, contraction are all provided “free” by the framework.
Life’s Not Always Easy

- It’s not always so straightforward!
- Some features present challenges.
- Often the challenges uncover implicit structure or expose design problems.
- Sometimes you just suffer.
- But you can get surprisingly far with a bit of experience and ingenuity.
Adding A Store

Suppose we wish to add reference cells to the language a la ML.

The typing judgement has the form

$$\Gamma \vdash \Lambda e : \tau$$

Here Λ is a location typing assigning types to memory locations.
Adding A Store

The “obvious” encoding is to add a location typing to the typing judgement:

\[\text{of} : \text{lt} \rightarrow \text{tm} \rightarrow \text{tp} \rightarrow \text{type}. \]

Typing rules change accordingly:

\[
\text{of_lam :} \\
(\{ x : \text{tm} \}\{ dx : \text{of} L \times T \} \\text{of} L \ (F \ x) \ U) \rightarrow \text{of} L \ (\text{lam} T \ F) \ (\text{arrow} T \ U).
\]
Adding A Store

Adequacy for \(\vdash \lambda e : T \)

canonical forms of type of \(L e T \)

in worlds \(\vdash xi : tm, dxi : of L \times T \) ...

But we cannot prove type preservation (for the usual operational semantics)!
Adding A Store

Typing should be preserved by allocation!

Must consider a coherent family of type systems, not just one at a time:

\[
\Gamma \vdash \Lambda e : \tau \quad \Lambda \subseteq \Lambda'
\]

\[
\Gamma \vdash_{\Lambda'} e : \tau
\]
Adding A Store

But if we simply add this rule ...

\[
\text{weaken : } \quad \text{of } L \ E \ T \rightarrow \text{ext } L \ L' \rightarrow \text{of } L' \ E \ T \rightarrow \text{type.}
\]

... the encoding is no longer adequate!

Lose compositionality criterion.
Adding A Store

- Why compositionality fails:
 - Suppose \(x : \text{tm}, dx : \text{of } L \times T \).
 - Suppose \(_: \text{of } L' (E' x) T' \) in this context.
 - Suppose \(_: \text{of } L' E T \).
 - Cannot conclude \(_: \text{of } L (E' E) T' \).
 - Even if the typings arose via weakening!
Adding A Store, Revisited

- The “trick” is to remove the location typing from assumptions!
 - Side-steps the mismatch just observed.
 - But is substitution still valid?

- Illustrates a recurring technique of isolating variables for special treatment, without abandoning HOAS!
Retain location typing on main judgement:
 of : lt -> tm -> tp -> type.

Add a typing judgement for assumptions:
 assm : tm -> tp -> type.

Consider worlds of the form
 x : tm, dx : assm x T
Adding A Store, Revisited

Add an explicit "hypothesis" rule:

\(\text{of_var : assm E T } \rightarrow \text{of L E T.} \)

Revise typing rules accordingly:

\(\text{of_lam : } \)
\((\{ x : \text{tm} \} \{ dx : \text{assm x T} \} \text{of L (F x) U}) \)
\(\rightarrow \text{of L (lam T F) (arrow T U).} \)
Meta-Theory For Stores

However, we now must check that substitution preserves typing.

\[
\text{subst_pres:} \quad \{x : \text{tm}\}{dx : \text{assm x T}} \text{ of } L (F x) U \rightarrow \\
\text{of } L E T \rightarrow \text{of } L (F E) U.
\]

%mode subst_pres +D1 +D2 -D3.

The proof is easily verified using Twelf.
Reasoning About Variables

Quite often one wishes to prove a metatheorem about the behavior of variables.

- eg, substitution preserves typing
- eg, narrowing a variable to a subtype

Since the context is represented only implicitly in LF, these can be a bit tricky.

- eg, POPLmark challenge for F<:
Reasoning About Variables

For example, why does this type...

\[
\{x : \text{tm}\}\{dx : \text{assm} \times T\} \text{ of } (F \ x) \ U \rightarrow \\
\text{of } E \ T \rightarrow \text{of } (F \ E) \ U \rightarrow \text{type}.
\]

... codify this substitution principle?

if \(G, x : T, G' \vdash F : U\) and \(G \vdash E : T\),
then \(G, G' \vdash [E/x]F : U\)
Reasoning About Variables

The key is permutation, which permits us to regard $G, x : T, G'$ as $G, G', x : T$ in STLC.

If permutation is available, it is easy to prove properties of variables.

Any given variable may be thought of as occurring “last”.

But what if we don’t have permutation?
Reasoning About Variables

From the POPLmark challenge:

Stated relationally,
narrow :
($\{X:tp\} \{dX : \text{assm} X Q\} \text{ sub } A B$) ->
sub P Q ->
($\{X:tp\} \{dX : \text{assm} X P\} \text{ sub } A B$) ->
type.
Reasoning About Variables

But this statement cannot be proved!

Descending into a binder introduces an additional assumption, say $Y <: X$.

Cannot permute $Y <: X$ before $X <: Q$!

So we must consider a general G', which cannot be done uniformly in LF.

The context G' is not a “single thing”.
Reasoning About Variables

Adequacy for F is for worlds of the form

$X : tp$, $dX : \text{assm } X T$

For example,

$t\text{lam}_of :$

$\{X : tp\} \{dX : \text{assm } X T\}$

$of (F X) (U X))$ \rightarrow

$of (t\text{lam } T F) (\text{all } T U)$.
Reasoning About Variables

We cannot, in general, permute such pairs past one another due to dependencies.

But, a limited form of permutation is OK:

\[
\{ X : tp \} \{ Y : tp \}
\{ dY : \text{asm} \ Y \ X \} \{ dX : \text{asm} \ X \ P \}
\]

The strategy is to permit “mixed” permutations so that an \text{asm} can be last!
Reasoning About Variables

Revised relational statement of narrowing permits X to be separated from dX:

\[
\{X: \text{tm}\} (\{dX : \text{assm} X Q\} \text{ sub } A B) \rightarrow \\
\text{sub } P Q \rightarrow \\
(\{dX : \text{assm} X P\} \text{ sub } A B) \rightarrow \\
\text{type.}
\]

But now $\text{assm } X Q$ no longer ensures that X is a variable!
Reasoning About Variables

- We “tag” each variable and “link” it to an assumption:
 \[\text{var} : \text{tm} \rightarrow \text{type}. \]
 \[\text{assm_var} : \text{assm} \ X \ T \rightarrow \text{var} \ X \rightarrow \text{type}. \]
 \%mode \text{assm_var} +D1 -D2.

- Consider context blocks of these forms:
 \[\text{X} : \text{tp}, \ \text{vX} : \text{var} \ X \]
 \[\text{dX} : \text{assm} \ X \ T, \ \text{dvX} : \text{assm_var} \ dX \ vX \]
Solving POPLmark

This was the hardest problem in the POPLmark challenge!

The rest was handled easily using standard methods with no serious complications.

This solution is a simplification of another that was much harder.

We solved the challenge in about a week!
Scaling Up

- We use Twelf daily at CMU for mechanizing meta-theory.
- Checking proofs in research papers on languages and logics.
- Building a certification infrastructure for ConCert.
- But does it scale to "real" languages?
A full-scale language such as SML presents many complications.

- Scope resolution.
- Type inference.
- Pattern compilation.

(Not to mention multi-parameter constructor classes with functional dependencies!)
Scaling Up To SML

The formalization in The Definition presents some further obstacles:

- Doesn't support a direct statement of type safety (need “wrong”).
- Implicit evaluation rules.
- Complications involving signature matching.
- Ad hoc semantic objects (cf Russo).
These complexities have significantly impeded mechanization.

To my knowledge, there is no complete proof of soundness of Standard ML!

The demands of formalization suggest refactoring The Definition.

Useful for other reasons (e.g., in TILT).
A Type-Theoretic Definition of SML

- Formalize the elaboration of SML into HSIL.
- Type inference, equality compilation, pattern compilation, coercive matching.
- Takes care of the “conveniences” of ML.
- Formalize HSIL as a conventional type system with SOS rules for evaluation.
- Easily representable in LF.
A Type-Theoretic Definition of SML

- Elaboration judgements (schematic):

 \(E \vdash \text{exp} \Rightarrow e : \tau \)

- Elaboration context includes typing context.

- IL terms and types serve as static semantic objects.
A Type-Theoretic Definition of SML

- Internal language is derived from HL94 calculus.
- Extensions to support SML constructs such as references, exceptions.
- Operational semantics employs explicit stack and store.
- Manage ref’s, exceptions, name gen.
Mechanizing the Meta-Theory of SML

The meta-theory then breaks into two major components:

- Type safety for HSIL.
- Elaborated programs are well-typed.

The hypothesis is that this should make the job more tractable.
Scaling Up To SML

We are in the process of verifying the meta-theory of this formulation using Twelf.

- Progress, regularity for the HSIL done.
- Preservation for the HSIL in progress.
- Elaboration remains “to do”.
Scaling Up To SML

- We’ve overcome a few obstacles.
 - explicit store and label management
 - handling variables as sketched earlier
- And uncovered a few bugs in HSIL.
 - Missing rules, missing premises.
 - An unsound typing rule.
Scaling Up To SML

- One sticking point is type equality!
- Defined type constructors.
- Type sharing specifications.
- Progress theorem requires inversion.

eg, if $A \rightarrow B = A' \rightarrow B'$, then $A=A'$ and $B=B'$.

- Non-trivial for a “declarative” formulation.
Scaling Up To SML

- Our solution is to use an “algorithmic” formulation of equality.
- What an implementation would do.
- Inversion principles are immediate.
- But we leave open whether the algorithmic formulation is equivalent to the declarative.
- May require techniques beyond Twelf.
Conclusions

Lots of meta-theory for language definitions can be readily mechanized today.

We do this routinely for small-scale languages and logics.

It's not yet clear whether we can scale up to languages such as SML.

No “show stoppers” so far, but we've had to make some compromises.
Conclusions

- A language definition must be formulated with the demands of mechanization in mind.
- Often good hygiene anyway.
- What we need now are more experiments!
- Different languages.
- Different frameworks and tools.
Questions?

Twelf info:
www.cs.cmu.edu/~twelf

POPLMark Challenge:
www.cis.upenn.edu/proj/plclub/mmm