
Cost Semantics and Verification

Robert Harper
Carnegie Mellon University

Guy E. Blelloch 60th Celebration
October 15, 2022

Coming to CMU

Guy and I have been colleagues since November, 1988.

We had, and have, a lot in common, both personally . . .

• Life in the UK.

• Cycling.

• Politics.

. . . and professionally,

• Emphasis on the interplay between theory and practice in programming.

• Devotion to teaching and curriculum at all levels.

His influence on my thinking is enormous, and ever-growing. I will talk briefly about
one example.

A Multi-Faceted Collaboration

Over the years we have

• Co-laborated on projects: eg, PSciCo.

• Co-advised students: Cheng, Acar, Spoonhower.

• Co-authored papers: eg, Cache-Efficient Functional Algorithms,

• Co-taught a course: Parallel Data Structures and Algorithms.

And I am a relatively minor player in Guy’s extensive record of collaboration with
people here and elsewhere!

Cost Semantics

Guy’s work on cost semantics is particularly influential on me, and more broadly.

• Functional model of parallelism (starting with his scan-vector model).

• Parallelism is defined in terms of work and span aka cost graphs.

• Separation of abstraction from its realization: Brent-type theorems.

This all resonated with my interests and with methods in PL theory.

• Functional programs are far simpler and clearer.

• Types are very effective, because of Reynolds’s theory of parametricity.

• Verification is much simpler, essentially equational.

• Adequacy theorems a la Plotkin relate mathematical to operational meaning.

Types for Behavior

Dependent types allow precise specifications of program behavior:

s : seq → (s ′ : seq× perm(s,s’)× sorted(s ′))

The type of functions on seq’s that return a sorted permutation of their inputs.

Equations can be used to verify (relative) correctness:

isort
.
= msort ∈ s : seq → (s ′ : seq× perm(s,s’)× sorted(s ′))

Insertion sort and merge sort are extensionally equal.

isort(s)
.
= msort(s) ∈ (s ′ : seq× perm(s,s’)× sorted(s ′))

Types for Cost
[JWW Niu, Sterling, Grodin]

Can dependent type theory be extended to account for cost?

• Equations offer no intrinsic notion of cost (eg, steps).

• Account for sequential and parallel cost, other measures.

Costed specifications?

• isort ∈ s : seq
|s|2−−→ (s ′ : seq× perm(s,s’)× sorted(s ′))

• msort ∈ s : seq
|s| lg |s|−−−−→ (s ′ : seq× perm(s,s’)× sorted(s ′))

What does this mean? How can equal functions have different properties?

Types for Cost

Fundamental type theory to the rescue: Synthetic Tait Computability.

• Developed by Sterling in his remarkable 2021 Ph.D.

• Synthetic formulation: “everything is a computability relation.”

• Phases separate syntax from semantics.

Abstract notion of cost:

• Instrument code: step(n)(e) (eg, count each comparison)

• Define f ∈ A
n−→ B to mean

x : A → (y : B × f (x)
.
= step(n)(y)).

• (Must be validated separately.)

Equational reasoning is of the essence, including treating functional programs as
functions.

Types for Cost

Use phases to distinguish extensional from intensional aspects:

• In the extensional phase step(n)(e)
.
= e.

• Consequently,
ext true ⊢ isort

.
= msort ∈ seq → seq.

• Standard type-theoretic methods available extensionally.

Absent restriction to extensional phase, cost matters:

• isort ∈ s : seq
|s|2−−→ seq.

• msort ∈ s : seq
|s| lg |s|−−−−→ seq.

• . . . and they are of course not equal!

• . . . despite function extensionality remaining valid.

What I’m Suppressing

To admit static analysis of cost, must enforce by-value evaluation.

• ∂CBPV type theory fundamental [Pedrot/Tabareaux].

• Distinguish values from computations.

To admit efficient algorithms, require arbitrary decompositions (eg, split a sequence).

• Must remain within total framework (no loops).

• Distinguish definitional formulation from cost decomposition.

Ongoing and Future Work

Empirical validation: mechanize Guy’s undergraduate parallel algorithms course.

• Deterministic algorithms pose few additional challenges.

• Extend to probabilistic case? (Seems workable.)

• Tool of choice: Agda prover. (But others are conceivable.)

Validate cost accounting relative to execution model.

• Step count should reflect reality of execution!

• Generalize Plotkin’s adequacy to account for cost and behavior.

• Notable similarity to Brent-type theorems in Guy’s work.

See forthcoming Ph.D. of Yue Niu!

Happy Birthday, Guy!

Thanks for all of your influence and inspiration.

