
Formal (?) Education in PL at CMU

Robert Harper
Carnegie Mellon University

Formal Education Workshop
Newton Institute
July 20, 2022



Background

Core curriculum

• Mathematical Foundations for CS [No λ, no ≤, no µ!]

• Computer Systems and Architecture [Not relevant]

• Functional Programming [In SML]

• Imperative Programming [In C0, ie Pascal with {}]
• Parallel Algorithms [In Parallel SML]

Foundations electives

• Principles of PL [This talk]

• Constructive Logic [Relevant]

• Formal methods for SE [Tangential]



Principles of PL

Structure

• Text: PFPL + Supplements.

• HW’s: 6 assignments x 2 weeks. Theory + Implementation.

• Recitation: 1 hour per week.

Objectives

• Broad foundation: functional, imperative, parallel, concurrency, abstraction,
modularity.

• Persistent concepts, not ephemeral trends.

Has a reputation of being demanding, but rewarding.



Formal Foundations

Abstract Binding Trees (ABT’s)

• Hierarchy, binding + scope: eg, let(e1; x .e2), dcl(e1; a.m2).

• Substitution, α-equivalence / freshness.

• Variables are placeholders, symbols indices, eg get[a], set[a](e).

Statics (Typing Derivations)

• Basic judgments: eg, e : τ .

• Hypothetical/general/parametric judgments: · · · x : τ · · · ⊢···a∼τ ··· set[a](x)÷ τ .

• Structural properties of entailment.

Dynamics (Transition Systems)

• Transition systems: s state, s 7→ s ′, s intial, s final.

• Plotkin’s SOS: e 7→ e ′ inductively defined by rules.



Typical Assignments

First, establish the tools and methods:

• Structural induction mod α.

• “The Wizard of TILT”: locally nameless form, hash-consing, pattern matching.

• Inductive definitions, proof by rule induction.

• Preservation + Progress.

Second, explore language concepts:

• FPC: functional programming with recursive types.

• PyCF: a “dynamic language” [afer you-know-what].

• MA: Modernized Algol [after Reynolds].

• CA: Concurrent Algol [after CML].

Each assignment requires both proof and implementation!



Some Issues

Steep on-ramp.

• No prior exposure to rigorous proof. [Math foundations emphasizes cleverness.]

• Not clear where I am heading: must have faith!

• Aha moment at week 3, typically.

Abstract

• Concepts are considered largely in isolation.

• Assignments develop “real world” connections, but to a limited extent.

Preparation

• Relies on core curriculum, eg all students know ML and C.

• “Mathematical maturity”: mindset, not skills.

Nevertheless, often cited as a “most important class” ten years out.



Whither Mechanization?

The entire course is done within a second-order logical framework.

• Syntactic: binding and scope of variables and symbols.

• Deductive: structural entailment and generality, parameterized by symbols/indices.

Easily mechanizable in Twelf, with some tricks.

• Binding, scope, entailment, generality, [indexing].

• Totality checker: ∀∃ theorems, including type safety.

But that by far does not include all of the mathematics required in assignments!

• Failures of safety.

• Logics of programs, eg equations.

Nor does it encompass implementation!



Whither Mechanization?

Should Twelf (or any other prover) be used for assignments? NO!

• Requires even deeper preparation and groundwork.

• Privileges methods over content.

• Video game effect: get to level 7, regardless. [cf Constructive Logic course]

• Down-and-dirty: must understand details of theory and its relation to practice.

Should there be a course on mechanized metatheory? YES!

• Twelf is the tool of choice! [cf Mechanization of SML]

• Unfortunately we at CMU are too short-handed at the moment.

Should there be a course on verified compilation? YES!

• Crary’s Higher-Order Typed Compilation class offered occasionally.

• I should write Principled Implementation of PL’s as companion to Practical
Foundations book.



Questions?

Thank you for the invitation!


