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Appendix A

Answers to the Exercises

Chapter 1

1.1. Because X ⊆ Y , any variable in A[X ] is also a variable in A[Y ]. Inductively, if ai ∈ A[X ],
then ai ∈ A[Y ], and therefore o( a1, . . . , an ) ∈ A[Y ].

1.2. Extending the solution to the preceding exercise, we need only account for abstractors. Sup-
pose that x⃗ . a ∈ A[X ], and we are to show that x⃗ . a ∈ A[Y ]. Pick any π : x⃗ ↔ x⃗′ such
that x⃗′ /∈ Y . Noting that x⃗′ /∈ X , because X ⊆ Y , we have that π̂(a) ∈ A[X , x⃗′], and hence
inductively in A[Y , x⃗′] as well, which suffices for the result.

1.3. (Omitted.)

1.4. A standard solution is to represent back edges by de Bruijn indices: a bound variable oc-
currence is represented by bv[ i ], where i is a positive natural number designating the ith
enclosing abstractor. An abstractor for abg’s has the form .g, where the “dot” indicates the
introduction of an (unnamed) bound variable. Letting G[X ]n stand for the abg’s with n en-
closing abstractors, we may say that .g is in G[X ]n+1 if g ∈ G[X ]n, and that bv[ i ] ∈ G[X ]n if
1 ≤ i ≤ n.

Chapter 2

2.1. One possible definition of the judgment max(m ; n ; p) is given by the following rules:

max(m ; zero ; m)
(A.1a)

max(zero ; succ( n ) ; succ( n ))
(A.1b)
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max(m ; n ; p)
max(succ(m ) ; succ( n ) ; succ( p ))

(A.1c)

One may show by rule induction that to every two natural number inputs there corresponds
a natural number output. A second nested pair of rule inductions shows that if max(m ; n ; p)
and max(m ; n ; q), then p is q. This proof establishes that the three-place relation defines a
total function of its first two arguments.

2.2. Assume that t tree and n nat. As in Solution 2.1 it is easiest to prove first that hgt(t ; n) relates
every tree to at least one height. Then one may prove by rule induction that if hgt(t ; m) and
hgt(t ; n), then m is n.

2.3. The judgments t tree and f forest may be simultaneously defined by the following rules:

f forest

node( f ) tree
(A.2a)

nil forest
(A.2b)

t tree f forest

cons( t ; f ) forest
(A.2c)

The empty tree may be thought of as node( nil ), the node with no children.

2.4. The judgments hgtT(t ; n), stating that the variadic tree t has height n, and hgtF( f ; n), stating
that the variadic forest f has height n, may be simultaneously inductively defined by the
following rules:

hgtF( f ; n)
hgtT(node( f ) ; succ( n ))

(A.3a)

hgtF(nil ; zero)
(A.3b)

hgtT(t ; m) hgtF( f ; n) max(m ; n ; p)
hgtF(cons( t ; f ) ; p)

(A.3c)

The required modes may be proved as outlined in the preceding exercises, albeit by a simul-
taneous rule induction for each case.

2.5. The judgment n bin stating that n is a natural number in binary may be defined by the
following rules:

zero bin
(A.4a)

n bin
twice( n ) bin

(A.4b)

n bin
twiceplus1( n ) bin

(A.4c)
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Clearly zero represents the number 0, and there are two forms of “successor”, corresponding
to doubling, and to doubling and adding one. The (unique) representation of the number
5 = 2× (2× 1) + 1 is therefore

twiceplus1( twice( twiceplus1( zero ) ) ).

2.6. The sum of two numbers in binary, represented in binary, is given by the judgment sum(m ;
n ; p) defined in terms of an auxiliary judgment succ(m ; n), as follows:

sum(zero ; zero ; zero)
(A.5a)

sum(m ; n ; p)
sum(twice(m ) ; twice( n ) ; twice( p ))

(A.5b)

sum(m ; n ; p)
sum(twice(m ) ; twiceplus1( n ) ; twiceplus1( p ))

(A.5c)

sum(m ; n ; p)
sum(twiceplus1(m ) ; twice( n ) ; twiceplus1( p ))

(A.5d)

sum(m ; n ; p) succ(p ; q)
sum(twiceplus1(m ) ; twiceplus1( n ) ; twiceplus1( q ))

(A.5e)

The auxiliary computation of the successor is defined as follows:

succ(zero ; twiceplus1( zero ))
(A.6a)

succ(twice( n ) ; twiceplus1( n ))
(A.6b)

succ(n ; p)
succ(twiceplus1( n ) ; twice( p ))

(A.6c)

For correctness we must check that if n bin then there exists p bin such that succ(n ; p), where
p is the representation of the successor of n in binary, and that if m bin and n bin then there
exists p bin such that sum(m ; n ; p) and p is the representation of the sum of m and n in
binary. These may both be proved by induction on the foregoing rules, making use of such
elementary facts as

(2×m + 1) + (2× n + 1) = 2× (m + n) + 2 = 2× (m + n + 1).

The sample solution above uses the successor to compute one more than the sum of m and
n, which is obtained recursively. This suggests the alternative solution in which one defines
simultaneously both the sum of m and n and one more than the sum of m and n. Each calls
the other because

(2×m + 1) + (2× n) + 1 = 2× (m + n) + 2 = 2× (m + n + 1).
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Chapter 3

3.1. As usual, give an inductive definition of the two-place judgment len(a ; n), where a comb and
n nat, and show that it relates every combinator a to a unique number n by induction on the
given rules C defining a comb.

3.2. Pick a renaming x′ of x, and extend rules C with the axiom x′ comb. Proceed by rule induction
on this extended rule set, replacing x′ comb by a1 comb at the base case, and otherwise
proceeding inductively.

3.3. The required derivation is suggested by the following equivalences:

s k k x ≡ ( k x ) ( k x )
≡ x

The first is justified by the S axiom, the second by the K axiom.

3.4. The formulation of the question suggests to fix x and define a judgment absx a is a′ and show
that it defines a function:

absx x is s k k
(A.7a)

absx k is k k
(A.7b)

absx s is k s
(A.7c)

absx a1 is a′1 absx a2 is a′2
absx a1 a2 is s a′1 a′2

(A.7d)

It is easy to check that the required equivalence holds, noting that the axioms governing k

and s have been chosen precisely to make the proof go through without complication.

3.5. Simply redefine bracket abstraction so that [ x ] a ≜ ap( k ; a ) when x /∈ a. This formulation
generalizes the original case, where a = y ̸= x, to avoid altering any combinator in which
x does not occur. Then prove that {a/y}[ x ] b = [ x ] {a/y}b under the stated conditions by
induction on the derivation of x y | x comb y comb ⊢ b comb.

3.6. The following rules define the generalized form of the judgment:

(1 ≤ i ≤ n)
x1, . . . , xk | x1 closed, . . . , xk closed ⊢ xi closed

(A.8a)

x1, . . . , xk | x1 closed, . . . , xk closed ⊢ a1 closed x1, . . . , xk | x1 closed, . . . , xk closed ⊢ a2 closed

x1, . . . , xk | x1 closed, . . . , xk closed ⊢ ap( a1 ; a2 ) closed
(A.8b)
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x1, . . . , xk, x | x1 closed, . . . , xk closed, x closed ⊢ a closed

x1, . . . , xk | x1 closed, . . . , xk closed ⊢ λ( x . a ) closed
(A.8c)

The “trick” is that the local variables x1, . . . , xk of the generality judgment are disjoint from
the ambient variables X that are also available. There being no hypotheses governing the
ambient variables, X , it is impossible to derive x closed for any x ∈ X . But when descending
into the scope of an abstractor, it is temporarily postulated that the bound variable x is closed
so that its occurrences within the scope of the abstractor are properly regarded as closed.

This exercise drives home the principle that variables are pronouns, and are not nouns. The
assumption x closed does not say of a “thing in itself” x that is closed; were variables “things”
such a hypothesis would be senseless. But variables are not things, they refer to things. So
a hypothesis x closed expresses a constraint on to what the pronoun x refers—that is, it
constrains what can be substituted for it. It makes perfect sense to hypothesize that only
closed abts may be substituted for a given variable.

Chapter 4

4.1. Many variations are possible. Here is an illustrative fragment of a solution that incorporates
some of the suggestions given in Exercise 4.2.

Γ x ↑ τ ⊢ x ↑ τ
(A.9a)

Γ ⊢ e ↑ τ

Γ ⊢ e ↓ τ
(A.9b)

Γ ⊢ e ↓ τ

Γ ⊢ cast[ τ ]( e ) ↑ τ
(A.9c)

Γ ⊢ num[ n ] ↓ num
(A.9d)

Γ ⊢ e1 ↓ num Γ ⊢ e2 ↓ num
Γ ⊢ plus( e1 ; e2 ) ↑ num

(A.9e)

Γ ⊢ str[ s ] ↓ str
(A.9f)

Γ ⊢ e1 ↑ τ1 Γ, x ↑ τ1 ⊢ e2 ↓ τ2

Γ ⊢ let( e1 ; x . e2 ) ↓ τ2
(A.9g)

The separation of synthetic from analytic typing resolves the difficulty with the type of the
defined term in a definition expression.

4.2. The main difficulty is to ensure that you do not preclude programs that ought to be allowed,
or that can only be expressed very awkwardly. Within these constraints there are many
possible variations on Solution 4.1.
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Chapter 5

5.1. Proceed by rule induction on Rules (5.10).

5.2. Proceed by rule induction on the first premise.

5.3. The definitions of multi-step and k-step transition are chosen so as to make this proof a
routine induction as indicated. Because it is obvious that if s 7−→k s′ and s′ 7−→k′ s′′, then

s 7−→k+k′ s′′, Solution 5.1 may be obtained as a corollary of this solution.

5.4. Proceed by rule induction on rules (5.10). The suggested strengthening ensures that rule (5.10f)
can be proved without complication. The assumptions on ei and e′i are preserved when pass-
ing to the premises of rule (5.10f), and these assumptions are needed when considering re-
flexivity for a variable xi. The rest of the proof is routine.

Chapter 6

6.1. The remaining cases follow along the same lines as those given in the proof of Theorem 6.2.

6.2. The remaining cases follow along the same lines as those given in the proof of Theorem 6.4.

6.3. The suggested case analysis ensures that errors are propagated properly by each construct.
The proof as a whole ensures that there are no well-typed “stuck” expressions other than
values and checked errors.

Chapter 7

7.1. Proceed by a simultaneous rule induction on rules (7.1).

7.2. Proceed along the same lines as those steps already given.

7.3. The second part proceeds by a rule induction on rules (5.1), appealing to the lemma in the
inductive step.

7.4. The difficulty is that the progress theorem would allow an unchecked, as well as a checked,
error in its statement. Moreover, Theorem 7.5 is no longer valid in the presence of a checked
error, so safety is no longer a corollary of progress. The most obvious alternative is to intro-
duce two forms of error checks, one for unchecked errors (solely to express safety), and one
for checked errors (to allow for run-time errors arising from well-typed expressions). Such a
formulation becomes rather baroque.
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7.5. Besides the given rule for variables, the rule for definitions should be given as follows:

∆ ⊢ e1 ⇓ v1 ∆, x1 ⇓ v1 ⊢ e2 ⇓ v2

∆ ⊢ let( e1 ; x . e2 ) ⇓ v2

The remaining rules are self-evident.

The left-to-right direction of the correctness proof is proved by induction on the rules defin-
ing the environmental evaluation dynamics. The right-to-left direction must be proved by
induction on the structure of e, rather than on the derivation of {v1, . . . , vn/x1, . . . , xn}e ⇓ v
so that it is clear when a variable is to be evaluated.

Chapter 8

8.1. Introduce a new judgment form, f ⇓ x . e, and allow judgments of this form as hypotheses
of evaluation. The evaluation rule for (call-by-name) application takes the form

∆ ⊢ {e′/x}e ⇓ e′′

∆, f ⇓ x . e ⊢ apply[ f ]( e′ ) ⇓ e′′
(A.10)

More provocatively, the atomic judgment f ⇓ x . e can be understood instead as the generic
judgment

x | apply[ f ]( x ) ⇓ e.

Admitting such a judgment as an assumption extends the framework given in Chapter 3 to
admit higher-order judgment forms. Doing so requires some additional machinery that we
do not develop further in this book.

8.2. The difficulty is how to specify the evaluation of a λ-abstraction, which may contain free
variables governed by the hypotheses:

∆ ⊢ λ[ τ ]( x . e ) ⇓ ???

The value of the λ cannot be itself, as would be the case in a substitution-based evaluation
dynamics; to do so would be to lose the connection between the binding of a variable and its
subsequent usage, amounting to a form of dynamic scope.

One natural solution is to replace each free variable in the λ-abstraction by its binding in ∆
at the time that the λ is evaluated:

x1 ⇓ v1, . . . , xn ⇓ vn ⊢ λ[ τ ]( x . e ) ⇓ λ[ τ ]( x . {v⃗/x⃗}e )
.

(We assume, without loss of generality, that x is not already governed by an assumption in
∆, so that no confusion of distinct variables may occur.) But doing so defeats the purpose of
the environmental dynamics; we may use the substitutional evaluation dynamics instead.
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A variation on this approach is to regard {v⃗/x⃗}e as a form of expression, called an explicit
substitution, or closure. At application we must perform a “context switch” from the ambient
hypotheses to the hypotheses encoded in the closure:

∆ ⊢ e1 ⇓ {v⃗/x⃗}e x1 ⇓ v1, . . . , xn ⇓ vn ⊢ e ⇓ v
∆ ⊢ ap( e1 ; e2 ) ⇓ v

.

Both approaches suffer from an abuse of the framework of inductive definitions in Chapter 3.
Check, for example, that the formulation using closures does not admit weakening, a basic
requirement for a well-defined a hypothetical judgment.

Chapter 9

9.1. Proceed by rule induction on the statics of T.

9.2. Decompose the safety theorem into a preservation and progress lemma, which are proved
along standard lines, appealing to Lemma 9.2 in the progress proof.

9.3. The proof breaks down more or less immediately. For example, even if e1( e2 ) : nat, the
expression e1 is of function type, and the theorem as stated provides no inductive hypoth-
esis for it. But the termination of the application clearly depends on the termination of the
function being applied!

9.4. The proof breaks down at application, for even if e1 : τ2 → τ is terminating and e2 : τ2
is terminating, it does not follow directly that the application e1( e2 ) is terminating. For
example, e1 might evaluate to a function that, when applied, fails to terminate. The inductive
hypothesis provides no information with which to rule out this possibility.

9.5. The stronger inductive hypothesis is sufficient to handle applications: if e1 : τ2 → τ is hered-
itarily terminating, and e2 : τ2 is hereditarily terminating, then so is e1( e2 ), by definition. But
how are we to show that λ ( x : τ1 ) e2 is hereditarily terminating at type τ1 → τ2? We must
show that if e1 is hereditarily terminating at type τ1, then the application ( λ ( x : τ1 ) e2 )( e1 )
is hereditarily terminating at type τ2. The restriction to closed terms prevents us from ap-
plying the inductive hypothesis to e2, because, in general, it has a free variable x occurring
within it. There is as yet no way to proceed.

9.6. Proceed by induction on the structure of τ. If τ = nat, then the result is immediate by defini-
tion of hereditary termination at nat. If τ = τ1 → τ2, let e1 be hereditarily terminating at type
τ1, and observe that e′( e1 ) 7−→ e( e1 ). But the latter expression is hereditarily terminating,
and so, by induction, is the former.

Returning to Solution 9.5, it suffices to show that {e1/x}e2 is hereditarily terminating at type
τ2. This term is closed if λ ( x : τ1 ) e2 is closed, but we still do not have justification to con-
clude that the latter expression is hereditarily terminating, because the inductive hypothesis
does not apply to open terms.
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9.7. The final strengthening given in the exercise is now sufficient to show that every well-typed
open term is open hereditarily terminating in the stated sense. The original result follows by
considering a closed term of type nat, which is thereby shown to be hereditary terminating,
and hence terminating.

Chapter 10

10.1. Let σ = ⟨τi⟩i∈I be a database schema. A database on this schema may be considered to
be a value of type nat × ( nat→ σ ) whose elements consist of pairs ⟨n, s⟩ such that the
sequence s is defined on all natural numbers less than n, and is undefined otherwise. Using
this representation, the project function sending the database ⟨n, s⟩ onto I′ ⊆ I is given by the
pair ⟨n, s′⟩, where s′ is the sequence

λ ( k : nat ) ⟨i′ ↪→ s( k ) · i′ | i′ ∈ I′⟩

that selects the columns specified by I′ from each row of the given database. The standard
select and join operations on databases are similarly defined.

10.2. Negative in terms of positive:

⟨e1, e2⟩ ≜ ( λ ( : unit ) e1 )⊗ ( λ ( : unit ) e2 )

e · l ≜ split e as x1 ⊗ in x1( ⟨⟩ )
e · r ≜ split e as ⊗ x2 in x2( ⟨⟩ )

Positive in terms of negative:

e1 ⊗ e2 ≜ let x1 be e1 in let x2 be e2 in x1 ⊗ x2

split e0 as x1 ⊗ x2 in e ≜ let x1 be e0 · l in let x2 be e0 · r in e

10.3. The introduction form would remain the same; the elimination form would be a degenerate
form of decomposition:

Γ ⊢ e0 : ⟨⟩ Γ ⊢ e : τ

Γ ⊢ check( e0 ; e ) : τ

The principal argument e0 should always be evaluated. By the canonical forms lemma, it
must be ⟨⟩, and hence we may continue by evaluating e.

There would be little point in formulating a positive unit type apart from the desire to
achieve uniformity among all finite positive products.



498

Chapter 11

11.1. Follow the example of the Booleans given in Section 11.3.2, which are just a finite enumera-
tion type with two elements.

11.2. The option type cannot be simulated in the manner described. Here is a reasonable attempt
that corresponds to Hoare’s intended practice:

null ≜ ⟨false, null⟩
just( e ) ≜ ⟨true, e⟩

ifnull e {null ↪→ e1 | just( x ) ↪→ e2} ≜ if e · l then {e · r/x}e2 else e1

The solution makes use of null as the “null” inhabitant of type τ. But doing so conflicts
with the existence of empty types, such as void, that do not have a value. Worse, regardless
of the setting of the flag, the second component of the pair is always accessible and may be
used in a computation. It is a matter of convention not to do this, but experience shows that,
whether by mistake or by malice, it is often used inappropriately. By contrast the option type
requires no special “null” value, and precludes the abuses just mentioned.

11.3. It would be considerably more flexible to generalize schemas from product types to, at least,
products of sums of atomic types. Null values are naturally represented using options, and
heterogeneous values are just homogeneous values of a sum type. More generally, one might
wish to consider admitting, for example, nested databases, in which an attribute of a tuple
might be a database itself.

11.4. The combinational logic problems are all straightforward programming exercises involving
case analyses on bits. Try to optimize your solutions by producing the shortest program you
can think of to exhibit the required behavior. The nested case analyses are called binary deci-
sion diagrams, or bdd’s for short. Finding optimal bdd’s that exhibit a specified input/output
behavior is a well-known problem in hardware logic design.

11.5. At the present stage of development there is no enough machinery available to define signals
formally. Signals are typically self-referential in that their inputs is defined in terms of their
own outputs at an earlier stage. The passage of time is fundamental to defining signals. For
example, the signal whose value at time t is the negation of its value at time t is clearly ill-
defined and does not exist. But one can clearly define a signal whose value at time t > 0
is the negation of its value at time t − 1. Generally, a signal definition is causal if its value
at later times only depends on its value at earlier times. Thus, the passage of time required
to compute the output of a combinational circuit is critically important for specifying well-
defined signals.

eRS ≜ λ ( ⟨r, s⟩ : signal× signal ) λ ( t : nat ) e′RS

e′RS ≜ rec t {z ↪→ ⟨true, false⟩ | s( t′ ) with ⟨r′, s′⟩ ↪→ ⟨eNOR( ⟨r, s′⟩ ), eNOR( ⟨r′, s⟩ )⟩}
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Chapter 12

12.1. Informally, to prove ¬¬( ϕ ∨ ¬ϕ ) true, assume ¬( ϕ ∨ ¬ϕ ) true and derive a contradiction.
To do so, we prove ϕ ∨ ¬ϕ. (Why is this plausible, given that LEM cannot be expected to
hold for a general ϕ?) To prove a disjunction, it suffices to prove one of its disjuncts; in this
case, prove ¬ϕ true. To do so, assume ϕ true and derive a contradiction. You now have
two assumptions, ¬( ϕ ∨ ¬ϕ ) true, and ϕ true. From the latter it follows that ϕ ∨ ¬ϕ true,
which contradicts the former. By discharging the second assumption derive ¬ϕ true. But
then ϕ ∨ ¬ϕ true, again contradicting the first assumption. Discharging the first assumption,
derive ¬¬( ϕ ∨ ¬ϕ ). Formally, the proof term λ ( x ) x( r · λ ( y ) x( l · y ) ) has the required
type.

12.2. Informally, suppose that LEM holds universally, let ϕ be an arbitrary proposition, and as-
sume ¬¬ϕ true with the intent to derive ϕ true. By LEM instantiated with ϕ we have
ϕ ∨ ¬ϕ true. In the former case we have ϕ true by assumption; in the latter we have a
contradiction of the assumption ϕ true, and hence by false elimination we have ϕ true as
well. Formally, the proof term λ ( y ) caseLEMϕ {l · y1 ↪→ y1 | r · y2 ↪→ case y( y2 ) { }} has
the required type.

12.3. The required properties all follow more or less directly from the definition of entailment
in constructive logic. First, check that A1 true, . . . , An true ⊢ A true iff A1 ∧ . . . An true ⊢
A true. Second, check the required properties of conjunction and truth, and of disjunction
and falsehood, respectively. Third, check that ϕ ⊃ ψ is such that ϕ∧ϕ ⊃ ψ ≤ ψ. Suppose that
ϕ ∧ ρ ≤ ψ; we are to show that ρ ≤ ϕ ⊃ ψ. It is convenient to appeal to the Yoneda Lemma
(Exercise 25.2). It is enough to show that if γ ≤ ρ, then γ ≤ ϕ ⊃ ψ. Given γ ≤ ρ, it follows
from the assumption that ϕ ∧ γ ≤ ψ. But then γ ≤ ϕ ⊃ ψ, by implication introduction.

Consider the equivalence ϕ∧ (ψ1 ∨ψ2 ) ≡ ( ϕ∧ψ1 )∨ ( ϕ∧ψ2 ). Let λ stand for the left-hand
side, and ρ stand for the right-hand side. Because λ is a meet, it suffices to show ρ ≤ ϕ and
ρ ≤ ψ1 ∨ ψ2. The former is immediate, the latter almost immediate, and so ρ ≤ λ. To show
that λ ≤ ρ, use the exponential property to reduce the problem to showing ϕ ≤ ρψ1∨ψ2 ,
which is to say that ϕ ≤ ρψ1 and ϕ ≤ ρψ2 . But for these we need only show ϕ ∧ ψ1 ≤ ρ and
ϕ ∧ ψ2, both of which are immediate. The “dual duality” is proved dually, and is left as an
exercise.

It makes sense that the exponential is used in the preceding argument, because not all lattices
are distributive.

12.4. It is elementary to check that the truth tables define a Boolean algebra with the exponential
ϕ ⊃ ψ given by ¬ϕ ∨ ϕ. The first de Morgan duality law may be proved for any Heyting
algebra, but the second requires LEM (or one of its many equivalents).

Chapter 13
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13.1. It is helpful to derive the negation and implication elimination forms from constructive logic
as follows. For negation, if p′ : ¬ϕ true and p : ϕ true, then p′( p ) : ⊥, where p′( p ) ≜
ccr( u . ( not( p ) # p′ ) ). For implication, a similar derivation shows that if ϕ ⊃ ψ true and
ϕ true, then ψ true.

(a) λ ( x ) ccr( u . ( exfalso # x( not( u ) ) ) ) : (¬¬ϕ ) ⊃ ϕ.

(b) λ ( x ) λ ( x1 ) ccr( u2 . ( exfalso # x( not( u2 ) )( x1 ) ) ) : (¬ϕ2 ⊃ ¬ϕ1 ) ⊃ ( ϕ1 ⊃ ϕ2 ).

(c) λ ( x ) ⟨not( ccp( x1 . ( exfalso # x( l · x1 ) ) ) ), not( ccp( x2 . ( exfalso # x( r · x2 ) ) ) )⟩ is
a proof of ¬( ϕ1 ∨ ϕ2 ) ⊃ (¬ϕ1 ∧ ¬ϕ2 ).

Compare these proof terms to Solution 30.2, which amount to the same thing, under the
identification of the proof not( k ), where k ÷ ϕ, with the continuation cont( k ), where k ÷ τ.
The ability to create a machine state directly avoids the ruses used in Solution 30.2 to throw
a continuation for use elsewhere in the computation.

13.2. Section 13.5 sketches the main ideas of the proof. It is left to you to compare the “compiled”
and “hand-written” proof of the doubly negated LEM; it depends on the details of your
particular formulation of the translation.

Chapter 14

14.1. Closure under substitution may be shown by structural induction on τ′.

14.2. Proceed by induction on the structure of τ. Observe that, for example, if τ = τ1 × τ2, then e
will be transformed into ⟨e · l, e · r⟩. But by the canonical forms property for closed values of
product type, e will itself be a pair ⟨e1, e2⟩, where e1 and e2 are closed values of type τ1 and
τ2, respectively. Thus ⟨e · l, e · r⟩ evaluates (under an eager dynamics) to ⟨e1, e2⟩, which is e
itself. The complication with function types τ = τ1 → τ2 is that the transformation will yield
λ ( x : τ1 ) e( x ), which is a value that is not identical with e, but only interchangeable with it
in the sense of Chapter 47.

14.3. Let the database schema σ be a finite product type ⟨τi⟩i∈I , where first and last are elements
of I, and for which τfirst and τlast are both str. Let σ′ be the finite product type ⟨τ′i ⟩i∈I
that agrees with σ on each each attribute, except that τ′first and τ′last are both chosen to
be the type variable t, indicating the positions of the intended transformation. We have, by
construction, that {str/t}σ′ is σ, the database schema.

Let d be a database on the schema σ, which, according to Solution 10.1, is a value of type

nat× ( nat→ σ ).

To perform the required transformation, it suffices to use the generic extension of t . σ′ ap-
plied to the capitalization function c and the database d:

map[ t . nat× ( nat→ σ′ ) ]( x . c( x ) )( d ).
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Keeping in mind Exercise 14.2, we may see at a glance that the size of the database remains
fixed, that the only columns that are transformed are those specified by the occurrences of t
in σ′, and that the resulting database replaces the value v of each row at these columns with
c( v ), as required.

14.4. The judgments t . τ non-neg and t . τ neg are defined simultaneously on the structure of τ.
The key clauses of the definitions are as follows:

t . t non-neg
(A.11a)

t . τ1 neg t . τ2 non-neg

t . τ1 → τ2 non-neg
(A.11b)

t . τ1 non-neg t . τ2 neg

t . τ1 → τ2 neg
(A.11c)

Observe that the argument variable of the type operator cannot be judged to occur nega-
tively, and the definitions for function types swaps polarities in the domain, and preserves
them in the range. The remaining cases are defined similarly, preserving the polarity in all
positions.

It is easy to give a derivation of t . ( t→ bool )→ bool non-neg according to the above rules.

14.5. The dynamics of the two forms of generic extension are given by the following key rules:

map−−[ t . t ]( x . e′ )( e ) 7−→ {e/x}e′ (A.12a)

map−−[ t . τ1 → τ2 ]( x . e′ )( e ) 7−→ λ ( x1 : {ρ′/t}τ1 ) map
−−[ t . τ2 ]( x . e′ )( e( map−[ t . τ1 ]( x . e′ )( x1 ) ) )

(A.12b)

map−[ t . τ1 → τ2 ]( x . e′ )( e ) 7−→ λ ( x1 : {ρ/t}τ1 ) map
−[ t . τ2 ]( x . e′ )( e( map−−[ t . τ1 ]( x . e′ )( x1 ) ) )

(A.12c)
The non-negative generic extension of the non-negative operator t . ( t→ bool )→ bool on
x . e′ sends a function f of type ( ρ→ bool )→ bool to the function

λ ( g : ρ′ → bool ) f ( λ ( x : ρ ) g( e′ ) )

of type ( ρ′ → bool )→ bool.

Chapter 15
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15.1. Define i using inductive recursion on the natural numbers in terms of the auxiliary expres-
sions z̃ : conat and s̃ : conat→ conat as follows:

λ ( x : nat ) rec x {z ↪→ z̃ | s( x ) with y ↪→ s̃( y )}.

The expression z̃ of type conat is the “coinductive zero”, gen[ . ]( x . ( l · x ) ; ⟨⟩ ), and s̃ is the
“coinductive successor”,

λ ( y : conat ) gen[ . ]( x . ( r · x ) ; y ).

A few simple calculations show that the required properties hold. The function i may also
be defined by coinductive generation as follows:

λ ( n : nat ) gen[ . ]( x . ifz x {z ↪→ l · ⟨⟩ | s( x′ ) ↪→ r · x′} ; n ).

Again, a few simple calculations shows that it exhibits the required behavior.

15.2. Define iter e {z ↪→ e0 | s( x ) ↪→ e1} to be the expression

recnat( e . y ; case y {l · ↪→ e0 | r · x ↪→ e1} ).

Then check that the dynamics of the iterator given in Chapter 9 is derivable from this defini-
tion.

15.3. Define genstream x is e in ⟨hd ↪→ e1,tl ↪→ e2⟩ to be the expression

genstream( e . x ; ⟨e1, e2⟩ ).

Then check that the dynamics, as given in Section 15.1 is derivable from this definition.

15.4. The required transformation is given by the function

λ ( q : seq ) genstream x is z in ⟨hd ↪→ q( x ),tl ↪→ s( x )⟩.

The nth tail of the stream associated to q is the stream

genstream x is n in ⟨hd ↪→ q( x ),tl ↪→ n + 1⟩.

It’s head is therefore q( n ), as required. The two transformation are, informally, mutually
inverse, showing that stream and seq are isomorphic types.

15.5. Define the lists as follows:

natlist ≜ µ( t . unit+ ( nat× t ) )

nil ≜ fold( l · ⟨⟩ )
cons( e1 ; e2 ) ≜ fold( r · ⟨e1, e2⟩ )

reclist e {nil ↪→ e0 | cons( x ; y ) ↪→ e1} ≜ rec[ . ]( z . case z {l · ↪→ e0 | r · u ↪→{u · l, u · r/x, y}e1} ; e )

Then check that the requisite statics and dynamics are derivable under these definitions.
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15.6. The key rule of the dynamics is the inversion principle given by the rule

view( genitree x is e in e′ ) 7−→ map[ t . ( t× t ) opt ]( y . genitree x is z in e′ )( {e/x}e′ )
(A.13)

The generic extension operation makes it convenient to apply the recursive calls, as neces-
sary, to the result of the state transformation.

The type itree may be coinductively defined to be the type ν( t . ( t× t ) opt ). The deriva-
tion of the introduction and elimination forms from this definition follows directly from this
characterization.

15.7. Define signal to be the coinductive type ν( t . ( bool× bool )× t ), the type of infinite streams
of pairs booleans. The definition of an RS latch as transducer of such streams as follows:

eRS ≜ λ ( ⟨r, s⟩ : signal ) gen[ . ]( ⟨r′, s′⟩ . e′RS ; ⟨true, false⟩ )
e′RS ≜ ⟨eNOR( ⟨r, s′⟩ ), eNOR( ⟨r′, s⟩ )⟩

In this formulation the passage of time is strictly a mater of the propagation of the signals
through the gates involved.

Chapter 16

16.1. The requested definitions and types are

s ≜ Λ( s )Λ( t )Λ( u ) λ ( x : s→ t→ u ) λ ( y : s→ t ) λ ( z : s ) ( x( z ) )( y( z ) )
: ∀( s . ∀( t . ∀( u . ( s→ t→ u )→ ( s→ t )→ s→ u ) ) )

k ≜ Λ( s )Λ( t ) λ ( x : s ) λ ( y : t ) x
: ∀( s . ∀( t . s→ t→ s ) ).

16.2. Define bool to be the type ∀( t . t→ t→ t ). Then define the introduction and elimination
forms as follows:

true ≜ Λ( t ) λ ( x : t ) λ ( y : t ) x

false ≜ Λ( t ) λ ( x : t ) λ ( y : t ) y

if e then e0 else e1 ≜ e[ ρ ]( e0 )( e1 ),

where ρ is the result type of the conditional. Check that the statics and dynamics of these
operations are derivable according to these definitions.

16.3. The type natlist may be defined in F as follows:

∀( t . t→ ( nat→ t→ t )→ t ).
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The introduction and elimination forms may then be defined as follows:

nil ≜ Λ( t ) λ ( n : t ) λ ( c : nat→ t→ t ) n

cons( e0 ; e1 ) ≜ Λ( t ) λ ( n : t ) λ ( c : nat→ t→ t ) c( e0 )( e1[ t ]( n )( c ) )

reclist e {nil ↪→ e0 | cons( x ; y ) ↪→ e1} ≜ e[ ρ ]( e0 )( ( λ ( x : ρ ) λ ( y : nat→ ρ→ ρ ) e1 ) ).

Check that the statics and dynamics are derivable according to these definitions.

16.4. The inductive type µ( t . τ ), where t . τ pos, may be defined in F by the equation

µ( t . τ ) ≜ ∀( t . ( τ → t )→ t ).

The introduction and elimination forms are defined as follows:

fold( e ) ≜ Λ( t ) λ ( f : τ → t ) f ( map[ t . τ ]( y . y[ t ]( f ) )( e ) )

rec[ . ]( x . e′ ; e ) ≜ e[ ρ ]( λ ( x : τ ) e′ ),

wherein ρ is the result type of the recursor. One may check that the statics and dynamics
are derivable from these definitions. It is very instructive to check that this definition es-
sentially coincides with the definition of the natural numbers given in Chapter 16 under the
identification of nat with µ( t . unit+ t ), and the definition of sum types within F.

16.5. Fix τ and l0 : τ list. Define Pl0 to hold of z : τ iff z is among the elements of l0. By
parametricity the function f must preserve P , which means that if its input has elements
among those of l0, then so must its output. But l0 has just such elements, so f [ τ ]( l0 ) must
have elements among those of l0 as well. Thus, among other things, f could be the constantly
nil function, or the list reversal function, or the function that drops every other element of
its input. But it cannot, for example, transform the elements of its input in any way.

Chapter 17

17.1. Define the type stream as the following existential type:

stream ≜ ∃( t.( t→ ( nat× t ) )× t ).

The introduction and elimination forms for streams are defined as follows:

genstream x is e in ⟨hd ↪→ e0,tl ↪→ e1⟩ ≜
pack τ with ⟨λ ( x : τ ) ⟨e0, e1⟩, e⟩ as stream

hd( e ) ≜ open e as t with ⟨ f : t→ ( nat× t ), x : t⟩ in f ( x ) · l
tl( e ) ≜ open e as t with ⟨ f : t→ ( nat× t ), x : t⟩ in . . ., where

. . . ≜ genstream x is f ( x ) · r in ⟨hd ↪→ f ( x ) · l,tl ↪→ f ( x ) · r⟩.
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17.2. The coinductive type ν( t . τ ), where t . τ pos, may be defined in FE by the type

∃( t.( t→ τ )× t ).

The associated introduction and elimination forms may be defined as follows:

gen[ . ]( x . e′ ; e ) ≜ pack σ with ⟨λ ( x : t ) e′, e⟩ as ν( t . τ )

unfold( e ) ≜ open e as t with ⟨g : t→ τ, x : t⟩ in . . ., where

. . . ≜ map[ t . τ ]( y . gen[ . ]( z . n( z ) ; y ) )( n( x ) ).

One may check that Solution 17.1 is a special case of this representation under the identifi-
cation of stream with the coinductive type ν( t . nat× t ). It is fascinating, if a bit unnerving,
to expand the definition of the existential type, and its associated operations, to obtain a
representation of coinductive types in F.

17.3. Recalling the definition of ∃( t.τ ) in FE as the type ∀( u . ∀( t . τ → u )→ u ) in F, the abstract
type of queues becomes the polymorphic type

∀( u . ∀( t . τqueue → u )→ u ),

where τqueue is the type

⟨emp ↪→ t , ins ↪→ nat× t→ t , rem ↪→ t→ ( nat× t ) opt⟩.

For any choice ρ of result type, the client of the abstraction is therefore of polymorphic type
∀( t . τqueue → ρ ), where ρ is fixed. Now spell out the relational interpretation of this quan-
tified type with the binary relation R given in Section 17.4, and check that it coincides with
the conditions given there. Assigning the identity relation to ρ yields the desired result that
the two implementations of queues are observably indistinguishable in FE.

Chapter 18

18.1. The code carries over largely intact, but for the need for type abstraction around each oper-
ation. Definitional equality is required to simplify the instances of the representation con-
structors, as described in the chapter.

18.2. The equational dynamics of F carries over to Fω without change. One may or may not
include definitional equality of constructor arguments; no other rules depend on these being
in canonical form. Similarly, with a transition dynamics there is no need to simplify c in
the instantiation e[ c ], because to do so would not influence the evaluation of expressions of
observable type.
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Chapter 19

19.1. We first define eeo of type

τeo ≜ ⟨even ↪→ ( nat⇀ nat ) , odd ↪→ ( nat⇀ nat )⟩

from which we obtain the desired functions by projection, eeo · even and eeo · odd, respec-
tively.

The expression eeo is defined by general recursion to be

fix this : τeo is ⟨even ↪→ eev, odd ↪→ eod⟩,

where eev is the expression

λ ( x : nat ) ifz x {z ↪→ s( z ) | s( y ) ↪→ this · odd( y )},

and eod is the expression

λ ( x : nat ) ifz x {z ↪→ z | s( y ) ↪→ this · even( y )}.

19.2. Using the general fixed point operator, define a search function that repeatedly tests ϕ(m, n)
on successive values of m, starting with zero, until either ϕ(m, n) evaluates to zero. The
resulting computation diverges if no such m exists.

19.3. Suppose that ehalts were a definition of ϕhalts in PCF. Define ediag to be the function

λ ( n : nat ) ifz ehalts( n ) {z ↪→ ediverge | s( ) ↪→ z},

where ediverge diverges always. Let d be ⌜ediag⌝, the Gödel-number of ediag. By the assumption
either ehalts( d ) evaluates to zero or to one. If the former, then by the definition of ediag we
have that ediag( d ) converges, which means that ehalts( d ) evaluates to one, which means that
ediag( d ) diverges, a contradiction. If the latter, then ediag( d ) diverges, which by the definition
of ediag means that ehalts( d ) evaluates to zero, which means that ediag( d ) converges, also a
contradiction. Therefore ϕhalts is not definable in PCF.

19.4. The difficulty is that ϕ might be undefined for certain values of m prior to the first one for
which ϕ(m, n) is zero. The search process described in Solution 19.2 would diverge prior
to finding the first zero of ϕ, violating the specification. One can show that this form of
minimization, if definable, could be used to solve the halting problem, in contradiction to
Solution 19.3. To see this consider the function ϕstep(m)(⌜e⌝), which converges iff e( ⌜e⌝ )
converges in fewer than m steps, and diverges otherwise.

19.5. The “parallel or” function is not definable in PCF, yet is, intuitively, computable. The prob-
lem is that the dynamics of PCF is sequential in the sense that it evaluates the arguments
of a two-argument function in a definite order, first committing to one, then to the other.
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Sequentiality precludes defining the function described in the exercise. One solution is to
enrich PCF with a form of parallelism, called dove-tailing, that interleaves the evaluation of
two expressions, returning the result of the first to converge (or, say, the leftmost one if both
converge simultaneously).

19.6. First, define a notion of Gödel-numbering that respects α-equivalence, for example by using
de Bruijn indices as described in Solution 1.4. Second, provide operations that allow one to
build (the Gödel numbers of) expressions from (the Gödel numbers of) their components,
and to decompose (the Gödel numbers of) expressions into (the Gödel numbers of) their
components. Third, define the universal function in terms of these primitives, using gen-
eral recursion to define the interpretation of general recursion, and functions to define the
interpretation of functions, and so forth. Such a function is called a metacircular interpreter be-
cause it defines the interpretation of the constructs of a language in terms of those constructs
themselves!

Chapter 20

20.1. The following definitions suffice:

k ≜ fold( λ ( x : D ) fold( λ ( y : D ) x ) )

s ≜ fold( λ ( x : D ) fold( λ ( y : D ) fold( λ ( z : D ) ( x · z ) · ( y · z ) ) ) )
x · y ≜ ( unfold( x ) )( y ).

Surprisingly, this structure is sufficient to represent every partial computable function on the
natural numbers as an element of D!

20.2. Let ρ be the result type of the recursor and the state type of the generator in the chart below:

fold[ t . τ′ ]( e ) ≜ fold( e )

rec[ t . τ′ ]( x . e′ ; e ) ≜ ( fix r isλ ( u : τ ) erec )( e ), where

erec ≜ {map[ t . τ′ ]( x . r( x ) )( unfold( u ) )/x}e′

unfold[ t . τ′ ]( e ) ≜ unfold( e )

gen[ t . τ′ ]( x . e′ ; e ) ≜ ( fix g isλ ( u : ρ ) egen )( e ), where

egen ≜ fold( map[ t . τ′ ]( x . g( x ) )( {u/x}e′ ) )

The dual symmetry of the definitions is striking. Check that the statics of the recursor and
generator are derivable under these definitions.

However, the dynamics of these operations is ill-behaved. Under an eager interpretation the
generator may not converge, depending on the choice of e′, and under a lazy interpretation
the recursor may not converge, again depending on the choice of e′. These outcomes are a
reflection of the fact that in the eager case the recursive type is inductive, not coinductive,
whereas in the lazy case the recursive type is coinductive, not inductive.
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20.3. Under a lazy dynamics we may define the type signal of signals to be the recursive type ν( t .
bool× t ), whereas under an eager dynamics one may use instead ν( t . unit⇀ bool× t ).
For simplicity, assume a lazy dynamics. A NOR gate may be defined as the function of type
( signal× signal )⇀ signal given by

λ ( ab ) gen[ t . bool× t ]( ⟨a, b⟩ . ⟨enor( ⟨hd( a ), hd( b )⟩ ), ⟨tl( a ), tl( b )⟩⟩ ; ab ),

wherein we have used the definition of the generator from Exercise 20.2. The internal state
of the gate consists of the two input signals a and b. Whenever an output is required, the
heads of a and b are nor’d together, and the new state consists of the tails of a and b, one bit
from each having been consumed.

Using the NOR gate just defined, one may then use general recursion to define an RS latch by
“cross-feeding” the outputs of each of the NOR gates back into one of the inputs of the other.
The remaining inputs are then the r and s signals that reset and set the latch, respectively.

20.4. Define the internal state type ρ of the stream to be the type

⟨X ↪→ bool , Q ↪→ bool⟩.

Define an RS latch with internal state of this type as follows:

ersl ≜ gen[ t . τ′rsl ]( ⟨X ↪→ x, Q ↪→ q⟩ . e′rsl ; ⟨X ↪→ false, Q ↪→ false⟩ ),

where
e′rsl ≜ ⟨X ↪→ x, Q ↪→ q, N ↪→ ⟨X ↪→ enor( ⟨s, q⟩ ), Q ↪→ enor( ⟨x, r⟩ )⟩⟩.

The state is arbitrarily initialized with both X and Q being false, and these are the initial
outputs of the latch. Then, the next state of the latch is computed using enor applied to the
fixed r and s values and to the current x and q values.

When the generator is expanded according to Solution 20.2, and the result simplified for
clarity, we obtain the following formulation of ersl:

fix g isλ ( ⟨X ↪→ x, Q ↪→ q⟩ ) fold( e′′rsl ),

where e′′rsl is given by

⟨X ↪→ x, Q ↪→ q, N ↪→ g( ⟨X ↪→ enor( ⟨s, q⟩ ), Q ↪→ enor( ⟨x, r⟩ )⟩ )⟩.

Notice that the state is maintained by the recursive self-reference, much as in Section 20.4.

Chapter 21



509

21.1. The encoding of finite products is given by the following equations:

⟨⟩ ≜ λ ( x ) x

⟨u1, u2⟩ ≜ λ ( u ) u( u1 )( u2 )

u · l ≜ u( ( λ ( x ) λ ( y ) x ) )

u · r ≜ u( ( λ ( x ) λ ( y ) y ) )

21.2. Using only primitive recursion as provided by the Church numerals:

λ ( x ) x( 1 )( λ ( y ) ( times( x )( y ) ) ),

where times is the Church encoding of multiplication. Using the fixed point combinator we
may define factorial as follows:

Y( λ ( f ) λ ( x ) x( 1 )( f ( pred( x ) ) ) ).

The required equations may be proved by induction on n.

21.3. As the specification implies,

true ≜ λ ( x ) λ ( y ) x

false ≜ λ ( x ) λ ( y ) y

if u then u1 else u2 ≜ u( u1 )( u2 )

21.4. Define sums along similar lines as follows:

l · u ≜ λ ( l ) λ ( r ) l( u )

r · u ≜ λ ( l ) λ ( r ) r( u )

case u {l · x1 ↪→ u1 | r · x2 ↪→ u2} ≜ u( λ ( x1 ) u1 )( λ ( x2 ) u2 )

The booleans are a special case in which u1 and u2 are always λ ( x ) x.

21.5. Define lists by their elimination form as follows:

nil ≜ λ ( n ) λ ( c ) n

cons( u1 ; u2 ) ≜ λ ( n ) λ ( c ) c( u1 )( u2 )

reclist u {nil ↪→ u0 | cons( x1 ; x2 ) ↪→ u1} ≜ u( u0 )( λ ( x1 ) λ ( x2 ) u1 ).

21.6. Dually to lists, define streams by their introduction form:

genstream u is x in ⟨hd ↪→ u1,tl ↪→ u2⟩ ≜ ( λ ( x ) ⟨u1, u2⟩ )( u )

hd( u ) ≜ u · l
tl( u ) ≜ ( λ ( x ) ⟨u1, u2⟩ )( u · r ).

The encoding relies on binary products as defined in Solution 21.1.
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21.7. The translation is given as follows:

x∗ ≜ x

(u1( u2 ))
∗ ≜ ap( u∗1 ; u∗2 )

(λ ( x ) u)∗ ≜ [ x ] u∗

Compositionality of the translation follows directly from Solution 3.5.

Then proceed by induction on rules (21.2). The only difficult case is rule (21.2f), stating that

( λ ( x ) u1 )( u2 ) ≡ {u2/x}u1.

This equation is handled as follows:

(( λ ( x ) u )( u2 ))
∗ = ( λ ( x ) u )∗( u∗2 )
= ( [ x ] u∗ )( u∗2 )
≡ {u∗2/x}u∗

= ({u2/x}u)∗.

The second-to-last equation is Exercise 3.4.

Chapter 22

22.1. Here is one possible definition of plus in DPCF:

λ ( a ) fix p isλ ( b ) ifz b {zero ↪→ a | succ( x ) ↪→ succ( p( x ) )}.

Examine the transition sequence plus( 5 )( 7 ) carefully, and observe these points:

(a) Each recursive call to plus requires a run-time check to ensure that it is, in fact, a func-
tion, even though it cannot fail to be so because of the definition of plus.

(b) Each iteration requires examination and removal of the numeric tag from the argument
b to determine whether or not it is zero.

(c) Each iteration but the last involves computation of the successor, which requires check-
ing, removing, and re-attaching the numeric tag from its argument.

None of this takes place in the dynamics of PCF for the analogous definition of addition.

22.2. Follow the pattern for the natural numbers given in Section 22.1, but with nil and cons

forming separate classes of values. It is not clear whether cons should impose any class
restrictions on its arguments; conventionally, it does not. The behavior of append suffers
from similar deficiencies to those outlined in Solution 22.1, for largely the same reasons.
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22.3. Follow the same pattern as the treatment of the class of numbers in DPCF, with nil and
cons playing the roles of zero and successor, respectively. In this case cons should require
its second argument to be of the class list, which introduces additional overhead to the
dynamics of append. Appending a list to a non-list will result in run-time failure at the last
step, after the first list has been traversed.

22.4. Consideration of multiple arguments and multiple results amounts to an admission that
more than one type is necessary in a practical language. Many issues arise, with no fully
satisfactory solutions.

(a) There is no way to express the restriction to a particular number of arguments in a dy-
namic language, which has only one type. At bottom the arguments must be considered
to be a tuple whose components are accessed by projections that may fail at run-time
if the call site provides too few arguments. What happens with too many arguments is
highly dependent on the implementation of tuples and projections.

(b) Multi-argument functions are often “optimized” by means that amount to a very spe-
cial case of pattern matching. Match failure can still occur at run-time, rather than be
caught at compile time. The core issue is not efficiency, but rather expressiveness—
precise expression of invariants admits efficient implementation, but no amount of im-
plementation tricks can make up for lack of expressive power.

(c) The arguments must be processed as a list of unbounded size. Access to the arguments
requires a recursive traversal of this list. Many languages provide ad hoc forms of pat-
tern matching to, say, allow one to name the first k ≥ 0 elements of this list. Argument
mismatch fails at run-time.

(d) Keyword argument passing is simply a mode of use of pattern matching for labeled
product types. Here again in a dynamic setting any mismatches would result in run-
time, rather than compile-time, failures.

(e) Multiple results are problematic. In a dynamic setting it is a matter of indifference
whether the number of results is fixed or varying because the only choice is to return a
value whose structure is determined dynamically. The caller must know the structure of
the result, and arrange to access its parts by an unstated convention. Sometimes special
syntax is introduced to cover common cases such as finite tuples of results, but without
static typing it remains error-prone and difficult to remember the prevalent convention.

Chapter 23

23.1. Add two new classes, nil and cons, and extend the statics HPCF as follows:

Γ ⊢ e : unit
Γ ⊢ new[ nil ]( e ) : dyn (A.14a)

Γ ⊢ e : dyn× dyn

Γ ⊢ new[ cons ]( e ) : dyn
(A.14b)
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Γ ⊢ e : dyn
Γ ⊢ cast[ nil ]( e ) : unit

(A.14c)

Γ ⊢ e : dyn
Γ ⊢ cast[ cons ]( e ) : dyn× dyn

(A.14d)

Γ ⊢ e : dyn
Γ ⊢ inst[ nil ]( e ) : bool

(A.14e)

Γ ⊢ e : dyn
Γ ⊢ inst[ cons ]( e ) : bool

(A.14f)

The dynamics may be extended by following the pattern in Chapter 23.

Using these extensions we may make the following definitions of the null and pairing prim-
itives of DPCF:

nil† ≜ nil ! ⟨⟩
cons( d1 ; d2 )

† ≜ cons ! ⟨d†
1, d†

2⟩
car( d )† ≜ ( d† @ cons ) · l
cdr( d )† ≜ ( d† @ cons ) · r
nil?( d )† ≜ if nil ? d† then cons( nil ; nil )†

else nil†

cons?( d )† ≜ if cons ? d† then cons( nil ; nil )†
else nil†

cond( d ; d0 ; d1 ) ≜ if nil ? d then d1 else d0

The choice of value cons( nil ; nil )† is arbitrary; it can be anything other than nil†.

23.2. Define dyn in FPC to be the recursive type

rec t is [num ↪→ nat , fun ↪→ t ⇀ t , nil ↪→ unit , cons ↪→ t× t].

The null and pairing primitives given in Section 22.2 may then be defined directly in FPC.
For example, cond( d ; d0 ; d1 ) may be defined as

case unfold( d ) {nil · ↪→ d0 | cons · ↪→ d1 | num · ↪→ d1 | fun · ↪→ d1}.

It is apparent from this definition that cond( d ; d0 ; d1 ) throws away useful information in
dispatching to either d0 or d1 without passing any other information to either branch.

23.3. The translation of the append function of DPCF into HPCF is as follows:

fix a : dyn is fun ! λ ( x : dyn ) fun ! λ ( y : dyn ) ea,x,y,

where
a : dyn, x : dyn, y : dyn ⊢ ea,x,y : dyn
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is the expression

if nil ? x then cons ! ⟨( x @ cons ) · l, e′a,x,y⟩ else y,

and where
a : dyn, x : dyn, y : dyn ⊢ e′a,x,y : dyn

is the expression
( a @ fun )( ( x @ cons ) · r ).

This code may be optimized by a process similar to that outlined in Section 23.3.

Chapter 24

24.1. Neither, it is invariant. Formally, the variance rules for function types imply that in the first
component τ is covariant, yet in the second component τ is contravariant. It cannot be both,
so it is neither. If the composite type were deemed covariant in τ, then one could construct
a counterexample to type safety by exploiting the second component, and, conversely, if the
composite were deemed contravariant in τ, then one could construct a counterexample to
safety by exploiting the first component.

24.2. Attempting to show that ρ2 <: ρ1 requires showing that

t2 <: t1 ⊢ ⟨eq ↪→ ( t2 ⇀ bool ) , f ↪→ bool⟩ <: ⟨eq ↪→ ( t1 ⇀ bool )⟩.

But this requires showing that t2 ⇀ bool <: t1 ⇀ bool, which requires showing that t1 <: t2,
which is the opposite of what we have assumed. Then perhaps the suggested subtyping
relation is false. Suppose that ρ2 <: ρ1, for the sake of a contradiction. So if e : ρ2, then e : ρ1
by subsumption, and hence that unfold( e ) · eq : ρ1 ⇀ bool. Now choose e : ρ2 to be

fold( ⟨eq ↪→ ( λ ( x : ρ2 ) x · f ), f ↪→ true⟩ ).

Consider the application
( unfold( e ) · eq )( e1 ) : bool,

where
e1 ≜ fold( ⟨eq ↪→ λ ( : ρ1 ) true⟩ ).

The expression e1 is chosen to not contain an f field; the choice of eq field is immaterial and
can be any function of type ρ1 ⇀ bool. Evaluation of the application “gets stuck” attempting
to access the f component of e1, a violation of type safety. Thus the assumed subtyping
ρ2 <: ρ1 cannot be valid.

The relevance of this example is that it is sometimes thought that if one extends a tuple with
a new field, then the type of the extension is always a subtype of the type being extended.
But this fails when the tuples are of recursive type, and hence can be self-referential. Extant
programming languages nevertheless postulate the incorrect subtyping relationship, and are
consequently not type safe.
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24.3. One may give an inductive definition of the judgment χ : τ <: τ′ specifying that χ witnesses
that τ is a subtype of τ′. The following incomplete set of rules illustrate the main ideas:

λ ( x : τ ) x : τ <: τ
(A.15a)

χ1 : τ1 <: τ2 χ2 : τ2 <: τ3

λ ( x1 : τ1 ) χ2( χ1( x1 ) ) : τ1 <: τ3
(A.15b)

J ⊆ I
λ ( x : ⟨τi⟩i∈I ) ⟨j ↪→ x · j | j ∈ J⟩ : ⟨τi⟩i∈I <: ⟨τj⟩j∈J

(A.15c)

Reflexivity is witnessed by the identity function, transitivity by function composition, and
width subtyping by creating a narrower tuple on passage to a supertype of a tuple type.
To complete the definition fill in the rules that express the variance principles for product,
sum, and function types, and check that the coercion is indeed an expression of function type
mapping the subtype to the supertype.

The full coercion interpretation of product subtyping is coherent, but the proof requires an
extension of the methods developed in Chapter 47 and will not be given here.

Chapter 25

25.1. Suppose that ϕ1 ≤ ϕ′1 and ϕ2 ≤ ϕ′2. We are to show that ϕ1 ∧ ϕ2 ≤ ϕ′1 ∧ ϕ′2. By rule (25.2f) it
suffices to show that ϕ1 ∧ ϕ2 ≤ ϕ′1 and that ϕ1 ∧ ϕ2 ≤ ϕ′2. By rules (25.2d) and (25.2e) we have
ϕ1 ∧ ϕ2 ≤ ϕ1 and ϕ1 ∧ ϕ2 ≤ ϕ2, respectively. But then by the assumptions and transitivity
(rule (25.2b)), the result follows.

25.2. The forward direction is an immediate consequence of transitivity of entailment (rule (25.2b)).
Suppose that ϕ′′ ≤ ϕ implies ϕ′′ ≤ ϕ′ for every ϕ′′. In particular we may take ϕ′′ to be ϕ,
because by reflexivity of entailment (rule (25.2a)) we have ϕ ≤ ϕ. But then ϕ ≤ ϕ′, as desired.
An alternative to Solution 25.1 making use of the Yoneda Lemma is as follows. Assuming
ϕ1 ≤ ϕ′1 and ϕ2 ≤ ϕ′2, let us further assume that ϕ ≤ ϕ1 ∧ ϕ2. Then ϕ ≤ ϕ1 and ϕ ≤ ϕ2 by
transitivity, and hence ϕ ≤ ϕ′1 and ϕ ≤ ϕ′2 by the assumptions, so ϕ ≤ ϕ′1 ∧ ϕ′2, from which
the result follows by the Yoneda Lemma.

25.3. The refinement fold( ϕ ) is defined to refine a recursive type by the rule

ϕ ⊑ {rec t is τ/t}τ
fold( ϕ ) ⊑ rec t is τ

(A.16)

Satisfaction of this refinement may be defined by the rules

Φ ⊢ e ∈{rec tisτ/t}τ ϕ

Φ ⊢ fold( e ) ∈rec tisτ fold( ϕ )
(A.17a)
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Φ ⊢ e ∈{rec tisτ/t}τ fold( ϕ )

Φ ⊢ unfold( e ) ∈rec tisτ ϕ
(A.17b)

25.4. Summand refinements may be used to improve the expressiveness of type refinements by
extending the satisfaction rules for refinements.

(a) Summand refinements are stronger than general sum refinements, are contradictory
with one another, and are covariant:

l · ϕ1 ≤ ϕ1 + ϕ2
(A.18a)

r · ϕ2 ≤ ϕ1 + ϕ2
(A.18b)

l · ϕ1 ∧ r · ϕ2 ≤ ϕ
(A.18c)

ϕ1 ≤ ϕ′1
l · ϕ1 ≤ l · ϕ′1

(A.18d)

ϕ2 ≤ ϕ′2
r · ϕ2 ≤ l · ϕ′2

(A.18e)

(b) The introduction forms may be given summand refinements:

Φ ⊢ e1 ∈τ1 ϕ1

Φ ⊢ l · e1 ∈τ1+τ2 l · ϕ1
(A.19a)

Φ ⊢ e2 ∈τ2 ϕ2

Φ ⊢ r · e2 ∈τ1+τ2 r · ϕ2
(A.19b)

(c) Unreachable branches of case may be ignored:

Φ ⊢ e ∈τ1+τ2 l · ϕ1 Φ, x1 ∈τ1 ϕ1 ⊢ e1 ∈τ ϕ

Φ ⊢ case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} ∈τ ϕ
(A.20a)

Φ ⊢ e ∈τ1+τ2 r · ϕ2 Φ, x2 ∈τ2 ϕ2 ⊢ e2 ∈τ ϕ

Φ ⊢ case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} ∈τ ϕ
(A.20b)

(d) The learned information may be propagated by adding the hypothesis e ∈τ1+τ2 l · ϕ1
while refinement checking e1, and correspondingly adding e ∈τ1+τ2 r · ϕ2 while refine-
ment checking e2. In the event of a further case analysis on e within either branch, one
of the preceding two rules would apply.
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The relevance to Boolean blindness stems from the identification of bool with unit+ unit,
and the application of the foregoing rules. Propagating e ∈bool true and e ∈bool false

into the then and else branches is weaker than one might expect because doing so records
information about the expression e itself, but not about any expression equivalent to e.

25.5. Recall from Chapter 23 the definition

dyn ≜ rec t is [num ↪→ nat , fun ↪→ t ⇀ t]

of the type dyn as a recursive type. With this in mind we may make the following definitions
of the refinements of type dyn:

num ! ϕ ≜ fold( num · ϕ )

fun ! ϕ ≜ fold( fun · ϕ ),

using a labeled form of summand refinements.

25.6. The verification consists of exhibiting a derivation composed of the rules of refinement sat-
isfaction given in Chapter 25. The description of the behavior of the addition function is
absurdly complicated, but accurately reflects the behavior of even so simple a function as
addition when formulated using dynamic typing. The surface syntax of DPCF, in particu-
lar, is highly deceptive because it obscures the needless complexity of the underlying code
that is exposed by type refinements (and by the optimization process carried out in detail in
Chapter 23).

25.7. To establish that the dynamic addition function satisfies the stated refinement necessitates
showing that the interior general recursion satisfies the refinement ϕ ≜ fun !num !⊤⇀ num !⊤.
To show this, assume that p ∈dyn ϕ and show that its body also satisfies ϕ. The assumption
that p ∈dyn ϕ amounts to a loop invariant that guarantees that the cast of p to the function
class cannot fail (by the safety theorem for type refinements), and hence can be safely elim-
inated, exactly as described in Section 23.3. Similarly, the assumptions that x ∈dyn num !⊤
and y ∈dyn num !⊤ suffice to underwrite the other optimizations described in that section.

Chapter 26

26.1. Disregarding self-reference, the type of the dispatch matrix allows for some entries to be
absent by redefining its type as follows:

τdm ≜ ⟨⟨τc ⇀ ρd opt⟩d∈D⟩c∈C.

Thus an entry in the dispatch matrix may either be absent, represented by null, or be present,
represented by by just( ec

d ), where ec
d is the behavior of method d on instances of class c, as

before.
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For the class-based implementation the object type ρ must be redefined to reflect the possi-
bility of a “not understood” error:

ρ ≜ ⟨ρd opt⟩d∈D.

Message send is defined as before by projection, e⇐ d ≜ e · d, but now has the type ρd opt

to reflect the possibility that the method d is undefined for the object e. The class vector is
defined to be the tuple ecv = ⟨c ↪→ c ↪→ ec | c ∈ C⟩, where

ec ≜ λ ( u : τc ) ⟨d ↪→ d ↪→ ifnull edm · c · d {null ↪→ null | just( f ) ↪→ just( f ( u ) )} | d ∈ D⟩.

As before, the class vector has type

τcv ≜ ⟨τc ⇀ ρ⟩c∈C,

albeit for the modified definition of τobj given above. Instantiation cannot fail, but sending
a message to the instantiated object may signal a “not understood” error by returning null,
rather than just( e ) for some value e : ρd.

For the method-based implementation, the object type τ remains as before, but the type of
the method vector is altered to

τmv ≜ ⟨τobj ⇀ ρd opt⟩d∈D,

reflecting the possibility that a message send may fail. The implementation of the method
vector is given by the tuple ⟨d ↪→ d ↪→ ed | d ∈ D⟩, where

ed ≜ λ ( this : τ ) case this {c · u ↪→ ifnull edm · c · d {null ↪→ null | just( f ) ↪→ just( f ( u ) )} | c ∈ C}.

Here again accessing the dispatch matrix checks whether the required entry is present or not,
with the result type reflecting the outcome accordingly.

To account for self-reference we must now allow for the possibility that the behavior assigned
by the dispatch matrix for a particular class and method may, when present and called, incur
a “not understood” error by sending a message to an instance for which it is not defined. The
type of the dispatch matrix changes to the following more complex type:

τdm ≜ ⟨⟨( ∀( tobj . τcv ⇀ τmv ⇀ τc ⇀ ρd opt ) ) opt⟩d∈D⟩c∈C.

The outermost option in each entry represents, as before, the presence or absence of a behav-
ior for class c and method d. The option at the end reflects the possibility that the behavior
may incur a “not understood” error when applied, as is now possible by creating instances
and sending them messages using the given class- and method vectors.

The types τcv and τmv are given in terms of the abstract type, t, of objects as follows:

τcv ≜ ⟨τc ⇀ tobj⟩c∈C

τmv ≜ ⟨tobj ⇀ ρd opt⟩d∈D,
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the latter reflecting the possibility of a “not understood” error upon message send. Within
the entries of the dispatch matrix, class instantiation is mediated by the given class vector,
without the possibility of error, and message send by the given method vector, with the
possibility of error. The implementations of the class- and method vectors for specific choices
of object type are given along the lines sketched above.

26.2. (a) The refinement inst[ c ] of τobj is the (generalized) summand refinement c ↪→⊤τc cor-
responding to c ∈ C, imposing no condition on its instance data. The refinement
admits[ d ] is defined to be the (generalized) sum refinement [⊤τc ]c∈Cd , which holds
of any value of type τobj, provided that it is an instance of a class that admits method d.
It is immediate that inst[ c ] ≤ admits[ d ] when c ∈ Cd, and hence when d ∈ Dc.

(b) The class- and method-vector refinements are chosen as follows:

ϕcv ≜ ⟨⊤τc ⇀ inst[ c ]⟩c∈C

ϕmv ≜ ⟨admits[ d ]⇀ just(⊤ρd )⟩d∈D

Check that ϕcv ⊑ τcv and ϕmv ⊑ τmv in the sense of Solution 26.1 with τobj chosen to
be [τc]c∈C. It is immediate that ecv ∈τcv ϕcv and not much harder to check that emv ∈τmv

ϕmv, bearing in mind the assumption that edm ∈τdm ϕdm, which ensures that the dispatch
yields a non-error result.

(c) Because new[ c ]( e ) ∈τobj inst[ c ] and inst[ c ] ≤ admits[ d ] whenever d ∈ Dc, it follows
that new[ c ]( e ) ∈τobj admits[ d ] whenever d ∈ Dc. Consequently, new[ c ]( e )⇐ d ∈ρd

just(⊤ρd ) whenever d ∈ Dc, which is to say that a “not understood” error does not
arise for well-refined message send operations.

26.3. The problem is to define the entries enumev and enumod with the specified behavior. These have
similar overall form, with different method bodies:

enumev ≜ Λ( tobj ) λ ( cv : τcv ) λ (mv : τmv ) λ ( u : τnum ) eev

enumod ≜ Λ( tobj ) λ ( cv : τcv ) λ (mv : τmv ) λ ( u : τnum ) eod

Their respective method bodies are defined as follows:

eev ≜ ifz u {z ↪→ true | s( u′ ) ↪→mv · od( cv · c( u′ ) )}
od ≜ ifz u {z ↪→ false | s( u′ ) ↪→mv · ev( cv · c( u′ ) )}.

Message send is effected by projection from mv with the argument being a new instance of c
obtained by projection from cv.

26.4. Suppose that the abstract object type t is permitted to occur in the instance type τc of some
class, or in the result type ρd of some method. The alterations required depend on whether
we are considering the method-based or the class-based organization.

In the method-based organization the concrete object type τ becomes the recursive sum type

τ ≜ rec t is [τc]c∈C.
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Correspondingly, the definition of the method vector emv of type self( {τ/t}τmv ) becomes

selfmv is ⟨d ↪→ d ↪→ λ ( this : τ ) case unfold( this ) {c · u ↪→ edm · c · d[ τ ]( e′′cv )( e′mv )( u ) | c ∈ C} | d ∈ D⟩,

wherein e′cv is revised to become

e′cv ≜ ⟨c ↪→ c ↪→ λ ( u : {τ/t}τc ) fold( c · u ) | c ∈ C⟩ : {τ/t}τcv

and e′mv remains as in the simple self-referential case. Object creation is redefined similarly,
with instance type {τ/t}τc possibly involving the object type,

new[ c ]( e ) ≜ fold( c · e ) : τ.

Message send remains as before, but with a result type that may include the object type:

e⇐ d ≜ unroll( emv ) · d( e ) : {τ/t}ρd.

In the class-based organization the concrete object type ρ becomes the recursive product type

ρ ≜ rec t is ⟨ρd⟩d∈D.

Correspondingly, the class vector ecv of type self( {ρ/t}τcv ), becomes

self cv is ⟨c ↪→ c ↪→ λ ( u : {ρ/t}τc ) fold( ⟨d ↪→ d ↪→ edm · c · d[ ρ ]( e′′cv )( e′′mv )( u ) | d ∈ D⟩ ) | c ∈ C⟩,

wherein e′′mv is revised to become

e′′mv ≜ ⟨d ↪→ d ↪→ λ ( this : ρ ) unfold( this ) · d | d ∈ D⟩ : {ρ/t}τmv

and e′′cv remains as in the chapter. Message send is redefined similarly:

e⇐ d ≜ unfold( e ) · d : {ρ/t}ρd.

Object creation remains as before, but taking an argument of type {ρ/t}τc:

new[ c ]( e ) ≜ unroll( ecv ) · c( e ) : ρ,

Chapter 27

27.1. We wish to extend C with a new class c∗, and to define the dispatch matrix entry ec∗
d by

inheritance to be ec
d. The chief difficulty is that the entries are parameterized by the abstract

class- and method vectors. Adding a new class c∗ extends C, so that the type of the extended
class vector is (up to a reordering isomorphism) the product

τ∗cv ≜ ( ⟨τc ⇀ tobj⟩c∈C )× ( τc∗ ⇀ tobj ).
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By product subtyping we may regard τ∗cv <: τcv so that ec
d is applicable when supplied with

the extended class vector. In any case we demand that τc∗ <: τc, as before, to ensure that the
inherited method may be applied to the instance data of the new class c∗.

The analysis of method extension with inheritance is dual to that of class extension, with
covariance on the result type and method vector.

27.2. No, even though the ev method is invoked on an instance of nat∗, the inherited definition
of ev will send an od message to an instance of num, and the recursion will continue on num

instances thereafter. If the revised version of od differed in behavior, this fact would not be
reflected in the behavior of ev on instances of num∗.

27.3. Work in the context of Solution 26.4, which permits instance data and results to be objects.

(a) Choose τnum to be tobj, the abstract type of objects. The intention is that this object be of
a class that supports the ev and od methods; this can be enforced using refinements in
the manner of Solution 26.2. The method bodies for ev and od are defined as follows:1

enumev ≜ . . . mv · ev( u )

enumod ≜ . . . mv · ev( u ).

(b) Choose τzero to be unit, there being no useful instance data. Define ev and od as fol-
lows:

ezeroev ≜ . . . true

ezerood ≜ . . . false.

Choose τsucc to be tobj, with the intention that it be an object of class num, an invariant
that may be enforced with refinements in the manner of Solution 26.2. The ev and od

methods are implemented as follows:

ezeroev ≜ . . . mv · od( u )

ezerood ≜ . . . mv · ev( u ).

The instance data of the succ class is the predecessor, which is assumed to implement
the ev and od methods.

(c) Now introduce a subclass succ∗ of succ that overrides the od method. Observe that the
dynamics of dynamic dispatch ensures that sending ev or od to any instance of succ∗
will invoke the overridden od method.

Chapter 28

1The prefixing abstractions over tobj, cv, mv, and u are elided for clarity.
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28.1. The preservation proof consists of three parts:

(a) Rule (28.4a): We have s = k ▷ ifz[ e0 ; x . e1 ]( e ) and s′ = k ; ifz[ e0 ; x . e1 ](− ) ▷ e.
By inversion of Rules (28.9a) and (28.9a) we have k ÷ τ and ifz[ e0 ; x . e1 ]( e ) : τ.
Therefore by Rules (28.8b), (28.7b), we have s′ ok, as required.

(b) Rule (28.4b): We have s = k ; ifz[ e0 ; x . e1 ](− ) ◁ z and s′ = k ▷ e. By inversion of
Rules (28.9b), (28.7b) and (28.8b), we have k ÷ τ, ifz[ e0 ; x . e1 ](− ) : nat⇝ τ, e : nat,
and e0 : τ. But then we have s′ ok by Rule (28.9a).

(c) Rule (28.4c): We have s = k ; ifz[ e0 ; x . e1 ](− ) ◁ s( e ) and s′ = k ▷ {e/x}e1. By inver-
sion of Rules (28.9b), (28.7b) and (28.8b), we have k ÷ τ, ifz[ e0 ; x . e1 ](− ) : nat⇝ τ,
s( e ) : nat, and hence by inversion and substitution for PCF, we have {e/x}e1 : τ. But
then the result follows from Rule (28.9a).

The progress proof proceeds as follows. Suppose that s ok. Either s = k ▷ e or e = k ◁ e. In
either case by inversion of Rules (28.9) we have k ÷ τ and e : τ for some type τ. In addition
e val in the case that e = k ◁ e. By analyzing the statics and canonical forms for PCF, we may
verify in each case that the state is either final or may make progress.

28.2. First, we need an additional form of frame representing argument evaluation:

e1 val

ap( e1 ;− ) frame
(A.21)

Second, we must replace rule (28.5c) by these rules:

k ; ap(− ; e2 ) ◁ e1 7−→ k ; ap( e1 ;− ) ▷ e2
(A.22a)

k ; ap( λ[ τ ]( x . e ) ;− ) ◁ e2 7−→ k ▷ {e2/x}e (A.22b)

Corresponding modifications are required of the proofs of safety and correctness, following
along similar lines to those given in Chapter 28.

28.3. Each step of the dynamics involves either extending the stack by one frame, and descending
into a sub-expression, or analyzing the outermost form of a value and the topmost frame of a
stack to determine how to proceed. These may all be performed in constant time with a suit-
able representation of stacks as linked data structures and expressions as trees. Determining
whether an expression may take time proportional to the size of that value, so determin-
ing whether the machine is finished requires time proportional to the size of the resulting
value (that is, to “read” the result). If answers are limited to natural numbers, this takes time
proportional to the value of the number, because we are using unary representations. The
run-time can be improved to logarithmic by using binary representations. Substitution takes
time proportional to the size of the expression into which we are substituting, a significant
cost.
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28.4. The number of transitions taken by the PCF machine to compute the value v of an expres-
sion e is proportional to the size of the derivation of e 7−→∗ v, taking into account the sub-
derivations that check whether an expression is a value. For example, the machine always
fully explores a numeral to compute its value, whereas the the value judgment makes this
traversal without involving any transitions.

Chapter 29

29.1. The preservation proof is by induction on the machine dynamics, and the progress proof is
by induction on the well-formation of states. The proof of preservation relies on there being
one universal type exn of exception values; otherwise an exception value may be passed
to an exception handler expecting a different type. The proof of progress must take into
account the transitions that propagate an exception through the frames of the control stack
until either a handler is reached, or the stack is exhausted. But in that case the state is final,
according to Rules (29.6).

29.2. The following rules illustrate the main ideas:

e 7−→ e′

raise( e ) 7−→ raise( e′ )
(A.23a)

e val
ap( raise( e ) ; e2 ) 7−→ raise( e ) (A.23b)

e val
ap( e1 ; raise( e ) ) 7−→ raise( e ) (A.23c)

e1 val

try( e1 ; x . e2 ) 7−→ e1
(A.23d)

e val
try( raise( e ) ; x . e2 ) 7−→ {e/x}e2

(A.23e)

29.3. The following rules are representative of an evaluation dynamics for XPCF:

v val

v ⇓ v
(A.24a)

e ⇓ v
raise( e ) ⇑ v

(A.24b)

e1 ⇓ v1 e2 ⇑ v2

ap( e1 ; e2 ) ⇑ v2
(A.24c)
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e1 ⇑ v1

ap( e1 ; e2 ) ⇑ v1
(A.24d)

e1 ⇓ λ ( x : τ ) e e2 ⇓ v2 {v2/x}e ⇓ v
ap( e1 ; e2 ) ⇓ v

(A.24e)

e1 ⇓ λ ( x : τ ) e e2 ⇓ v2 {v2/x}e ⇑ v
ap( e1 ; e2 ) ⇑ v

(A.24f)

e1 ⇓ v1

try( e1 ; x . e2 ) ⇓ v1
(A.24g)

e1 ⇑ v1 {v1/x}e2 ⇓ v2

try( e1 ; x . e2 ) ⇓ v2
(A.24h)

e1 ⇑ v1 {v1/x}e2 ⇑ v2

try( e1 ; x . e2 ) ⇑ v2
(A.24i)

The remaining rules follow a similar pattern.

Chapter 30

30.1. A closed value of type τ cont has the form cont( k ), where k is a control stack such that
k ÷ τ. This observation is enough to ensure progress. Preservation is assured because if
k ▷ letcc x in e ok, then k ÷ τ and x : τ cont ⊢ e : τ for some type τ. Consequently,
{cont( k )/x}e : τ by substitution, which is enough for preservation.

30.2. (a) λ ( x : τ cont cont ) letcc k in throw k to x.

(b) letcc ret in r · ( letcc r in throw l · ( letcc l in throw l to r ) to ret ).

(c) λ ( x : τ2 cont→ τ1 cont ) λ ( x1 : τ1 ) letcc k2 in throw x1 to x( k2 ).

(d) λ ( k : ( τ1 + τ2 ) cont ) ⟨e1, e2⟩, where

e1 ≜ letcc r1 in throw l · ( letcc k1 in throw k1 to r1 ) to k, and

e2 ≜ letcc r2 in throw r · ( letcc k2 in throw k2 to r2 ) to k.

30.3. Define stream ≜ rec t is ( nat× t ) cont cont, so that fold and unfold provide the required
isomorphism. The elimination operations, hd( e ) and tl( e ), on streams are defined by pro-
jection from the client expression

letcc c in throw c to unfold( e ).

The client evaluates to a pair consisting of the first number and the rest of the given stream
by passing a return continuation to the stream generator, which provides it with the head
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and tail of the stream. The introduction generator genstream x is e in ⟨hd ↪→ e1,tl ↪→ e2⟩ is
defined as the following producer expression:

( fix g isλ ( x : τ ) letcc ret in throw ⟨e1, g( e2 )⟩ to ( letcc p in throw fold( p ) to ret ) )( e ),

where τ is the state type of the stream. The innermost parenthesized sub-expression creates a
new stream (essentially a continuation), and returns it as the result of the generating function
g which takes as argument the current state of the generator. When a client continuation is
thrown to that stream, the next number, paired with the remaining numbers, is thrown to it.

Chapter 31

31.1. Simply add a primitive equality test eq : ρ sym× ρ sym⇀ bool, and observe that it is appli-
cable only if the two symbol references have the same associated type.

31.2. It is not difficult to program a linear search in SPCF using Solution 31.1 to test equality.

31.3. A natural ordering of symbols in a deterministic language such as SPCF would be their or-
der of allocation represented by their order of declaration in the signature. The difficulty
is that the ordering is not invariant under renaming, because α-equivalence need not re-
spect ordering. One solution involves mutable state, which will be discussed in Chapter 35:
maintain a global counter and associate a unique number with each symbol that is used to
determine a linear ordering among them.

31.4. The main idea is to define take ′a to be the primitive symbol reference, and to extend it to
all s-expressions by defining ′nil ≜ nil and ′cons( e1 ; e2 ) ≜ cons( ′e1 ; ′e2 ). So, in par-
ticular, ′( e0, . . . , en−1 ) ≜ ( ′e0, . . . , ′en−1 ). For example, ′( a, b, c, d ) is the list ( ′a, ′b, ′c, ′d ).
Notice that ′nil is nil, the injection into the recursive sum, and is not a symbol! If numbers
are included among s-expressions, then ′n would be defined to be n, and not a symbol that
happens to have a numeric representation. These, and other related cases, have led to contro-
versy among various Lisp dialects and implementations, in part because of the absence of a
rigorous mathematical foundation, leaving only opinion and authority as the determinative
criteria.

Chapter 32

32.1. Enrich the FPCF machine with transitions corresponding to allocating a symbol, putting a
binding for a symbol, and getting a binding for a symbol as follows:

k ▷ newsym a ~ ρ in e 7−→ k ; newsym a ~ ρ in− ▷ e (A.25a)
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k ; newsym a ~ ρ in− ◁ e 7−→ k ◁ e (A.25b)

k ; newsym a ~ ρ in− ◀ 7−→ k ◀ (A.25c)

k ▷ put e1 for a in e2 7−→ k ; put− for a in e2 ▷ e1
(A.25d)

k ; put− for a in e2 ◁ e1 7−→ k ; put e1 for a in− ▷ e2
(A.25e)

k ; put e1 for a in− ◁ e2 7−→ k ◁ e2
(A.25f)

k ; put e1 for a in− ◀ 7−→ k ◀ (A.25g)

k ▷ get a 7−→ k ≥ k ? a (A.25h)

k ≥ k′ ; put e for a in− ? a 7−→ k ◁ e (A.25i)

k ≥ k′ ; newsym a ~ ρ in− ? a 7−→ k ◀ (A.25j)

( f ̸= put e1 for a in−, f ̸= newsym a ~ ρ in−)
k ≥ k′ ; f ? a 7−→ k ≥ k′ ? a (A.25k)

Rules (A.25a) to (A.25c) mark the allocation of a new symbol by pushing a frame on the stack,
and propagate normal and failure return through it. Rules (A.25d) to (A.25g) implement the
stack dynamics of put. In particular, rule (A.25f) reveals the underlying problem discussed
in Section 32.4: the value e may depend on the symbol a whose binding is being dropped
on the transition. Rule (A.25h) initiates the lookup of a binding for a in the stack. The linear
search of the stack for the most recent binding of a symbol a is implemented by Rules (A.25i)
to (A.25k).

32.2. The following rules implement shallow binding:

µ ∥ k ▷ newsym a ~ ρ in e 7−→ µ⊗ a ↪→ ϵ ∥ k ; newsym a ~ ρ in− ▷ e (A.26a)
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µ⊗ a ↪→ ϵ ∥ k ; newsym a ~ ρ in− ◁ e 7−→ µ ∥ k ◁ e (A.26b)

µ⊗ a ↪→ ϵ ∥ k ; newsym a ~ ρ in− ◀ 7−→ µ ∥ k ◀ (A.26c)

µ ∥ k ▷ put e1 for a in e2 7−→ µ ∥ k ; put− for a in e2 ▷ e1
(A.26d)

µ⊗ a ↪→ s ∥ k ; put− for a in e2 ◁ e1 7−→ µ⊗ a ↪→ s ; e1 ∥ k ; put a for ρ in−− ▷ e2
(A.26e)

µ⊗ a ↪→ s ; e1 ∥ k ; put− for a in− ◁ e2 7−→ µ ∥ k ◁ e2
(A.26f)

µ⊗ a ↪→ s ; e1 ∥ k ; put− for a in− ◀ 7−→ µ ∥ k ◀ (A.26g)

µ⊗ a ↪→ s ; e ∥ k ▷ get a 7−→ µ⊗ a ↪→ s ; e ∥ k ◁ e (A.26h)

µ⊗ a ↪→ ϵ ∥ k ▷ get a 7−→ µ⊗ a ↪→ ϵ ∥ k ◀ (A.26i)

Obtaining the current binding of a symbol is now immediate (rules (A.26h) and (A.26i)), at
the expense of maintaining synchrony between the binding stacks and the control stack.

32.3. Preliminarily, it is important to think carefully about the interaction between the dynamics of
fluids and of continuations. The correct behavior of fluids is defined by the deep dynamics
given by Solution 32.1. The bindings of the fluids are determined by the put frames present
on the target control stack. So, for example, if one seizes a continuation k, then puts a bind-
ing for a as an extension to k, then throws back to k, the binding for a is implicitly restored
to its state prior to the put. The putatively more efficient shallow dynamics given in Solu-
tion 32.2 requires a fairly complicated protocol to ensure that when a seized continuation is
reactivated, the binding stacks of the active fluids are restored to their proper state.

The implementation of exception handling in terms of fluids and continuations is given as
follows:

try e1 ow x ↪→ e2 ≜ letcc ret in let x be ( letcc k in put k for hdlr in throw e1 to ret ) in e2

raise( e ) ≜ throw e to ( get hdlr )

The type associated to the fluid-bound symbol hdlr is exn cont. The implementation of
handle restores the proper handler on both normal and exceptional return consistently with
the deep dynamics of fluid binding.
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Chapter 33

33.1. The implementation of named exception handling is given as follows:

dclexc a of τ in e ≜ newsym a ~ τ in e

raiseexc a · e ≜ raise( a · e )
tryexc e ow a1 · x1 ↪→ e1 | . . . | an · xn ↪→ en | x ↪→ e′ ≜

try e ow x ↪→ match x as a1 · x1 ↪→ e1 ow ↪→ match x as an · xn ↪→ en ow ↪→ e′

Observe that what are called exceptions in a named exception mechanism are just dynami-
cally allocated classes.

33.2. The suggested implementation of dynamic classification treats a classified value as a func-
tion of type unit → unit that, when activated, assigns the underlying value to its class,
which is, as suggested, represented by a free assignable. Allocating a new class amounts to
allocating a new free assignable and returning a reference to it. Creating a classified value
with a specified class creates an encapsulated assignment to the class, and checking whether
a classified value is of a given class is achieved by checking whether the classified value
modifies the given class.

For notational convenience decompose the given existential type τ as ∃ clsfd :: Ty . τ1, where
τ1 is ∃ cls :: Ty→ Ty . τ2 and τ2 is ⟨newcls ↪→ τnewcls , inref ↪→ τinref, isinref ↪→ τisinref⟩
(whose constituent types are defined in the exercise). An implementation of dynamic classi-
fication according to the above strategy is a package e of type τ given by

pack unit→ unit with e1 as ∃ clsfd :: Ty . τ1,

where e1 is a package of type τ1 given by

packλ ( t :: Ty ) ( t opt ref ) with e2 as ∃ cls :: Ty→ Ty . τ2.

and e2 is a tuple of type τ2 given by

⟨newcls ↪→ enewcls, inref ↪→ einref, isinref ↪→ eisinref⟩.

Finally, the operations are implemented as follows:

enewcls ≜ Λ( t :: Ty ) ref null

einref ≜ Λ( Ty :: t ) λ ( ⟨c, x⟩ ) λ ( ⟨⟩ ) let be c ∗= just( x ) in ⟨⟩
eisinref ≜ Λ( t :: Ty )Λ( u :: Ty ) λ ( ⟨c, d, f , x⟩ ) let be c ∗= null in let be d( ⟨⟩ ) in e′isoinref
e′isinref ≜ ifnull ( ∗ c ) {null ↪→ x | just( y ) ↪→ f ( y )}.

There is no need to reset the contents of the class after the test, because any future use of a
classified value with that class will reset it.
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Chapter 34

34.1. To add array assignables to RMA proceed as follows:

• Introduce a command to declare an array A, dcl A[e1] := e2 in m, where e1 : nat, e2 :
nat⇀ τ, and m ∼·· ρ. The function e2 provides the initial values for the elements of the
array.

• Introduce a family of commands |A| indexed by array assignables A that returns the
number of elements of A.

• Introduce families of commands A[i] and A[i] := e that, respectively, retrieve the ith
element of A and update the ith element of A with a new value given by e. It is, of
course, a fatal error to exceed the size bound of an array assignable.

• The memory µ maps scalar assignables to scalar values, and it maps array assignables
to a size n and a length-n sequence s of scalar values.

34.2. By the miracle of α-conversion each recursive call allocates a fresh version of a, which is
implicitly renamed to, say, a′, before being entered into the signature as a new assignable.
The body of the procedure is correspondingly renamed so that a becomes a′ wherever it
occurs, so that there can be no confusion among the multiple active instances of the “same”
assignable declaration.

34.3. The procedure declaration with own assignables

proc p( x : τ ) : ρ is {own a := e in m} in m′

is short-hand for the composite command

dcl a := e in proc p( x : τ ) : ρ is m in m′,

where
proc p( x : τ ) : ρ is m in m′

is itself short-hand for

bnd p← cmd( ret( fix p isλ ( x : τ ) cmd(m ) ) ) ; m′.

Thus, within the scope of p, the assignable a, which is private to the body of p, maintains
its state across calls. Were the own declaration replaced by an ordinary declaration, each call
would create a fresh instance of a, with no retention of state across calls.

34.4. Besides the tedium of threading the memory through each step of expression evaluation,
you need only add one rule to account for assignables as values:

µ⊗ a ↪→ e ∥ a 7−−−→
Σ,a~τ

µ⊗ a ↪→ e ∥ ret( e ) (A.27)
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Final states are defined by the rule
e val

µ ∥ e final
(A.28)

You may then prove memory invariance by induction on the revised rules, noting that no
rule, include this one, alters the memory across a transition.

The class of passive commands may be isolated by a judgment m passive whose definition
need not be given here. The statics for a passive block is given by the following rule:

Γ ⊢Σ m ∼·· τ

Γ ⊢Σ do {m} : τ
. (A.29)

The dynamics of a passive block is as follows:

µ ∥ m 7−→
Σ

µ′ ∥ m′

µ ∥ do {m} 7−→
Σ

µ′ ∥ m
. (A.30)

µ ∥ e final
µ ∥ do {ret e} 7−→

Σ
µ ∥ e

. (A.31)

It should be clear that passive commands enjoy memory invariance, so this property extends
to expressions that involve passive blocks.

34.5. First, introduce a class declaration command that takes an argument that is used to initialize
the shared private state. Second, introduce a command to instantiate a class by providing
the instance data as argument, and obtaining a tuple of procedures sharing private state in
the manner of Solution 34.3. The tuple of procedures is an object whose components may be
called as ordinary procedures as described in the Chapter.

34.6. To use a consolidated stack k, include frames of the form dcl a := e in− in which e represents
the current contents of a, taking account of any modifications that may have been made to
it since its declaration. To set a to another value you must update the appropriate frame in
k to obtain a new stack k′ with which to proceed. To get the contents of a you must traverse
the stack looking for its declaration and its associated contents. The update and traversal
can be optimized using imperative programming methods, at the expense of rendering the
control stack to be an ephemeral data structure, creating complications for seizing stacks as
continuations.

It is advantageous to separate the control stack from the memory, because it provides direct
access to the current contents of an assignable, much as does the shallow binding dynamics
of fluids. The control stack frame corresponding to an assignable declaration has the form
dcl a :=− in−, which has a hole for the binding as well as the body, so that it records the
declaration of a, but not its contents. The contents of the active assignables is maintained in
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a separate memory, much as in the structural dynamics. The critical rules for managing the
correlation between the declaration and the memory are as follows:

e 7−→Σ e′ e′ valΣ

k ∥ µ ▷Σ dcl a := e in m 7−→ k ; dcl a :=− in− ∥ µ⊗ a ↪→ e′ ▷Σ,a~τ m
(A.32a)

k ; dcl a :=− in− ∥ µ⊗ a ↪→ e′ ◁Σ e 7−→ k ∥ µ ◁Σ e (A.32b)

On entry to a declaration of a the memory is extended with a new location, a, whose contents
is initialized to the value of e. On exit from the declaration that location is deallocated from
the memory. This behavior exemplifies the stack-allocation of assignables in MA. Indeed, we
may view the memory as a stack onto which are pushed and popped bindings for assignables
that are not otherwise declared in the memory.

Chapter 35

35.1. Define commands ∗ e1[e2] and e1[e2] ∗= e3 by the following dynamics:

µ ∥ ∗ (&A )[i] 7−→ µ ∥ A[i] (A.33a)

e val
µ ∥ (&A )[i] ∗= e 7−→ µ ∥ A[i] := e (A.33b)

35.2. The following recursive types each in turn satisfy the stated requirements:

(a) ( rec t is ( nat× t ) opt ) ref.

(b) rec t is ( ( nat× t ) opt ) ref.

(c) rec t is ( ( nat× t ) ref ) opt.

(d) rec t is ( nat× ( t ref ) ) opt.

(e) rec t is ( ( nat ref )× ( t ref ) ) opt.

(f) rec t is ( ( ( nat ref )× ( t ref ) ) opt ) ref.

Each of these definitions has a claim to being that of a mutable linked list, but no one seems
canonical compared to the others.
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Chapter 36

36.1. Under the by-name dynamics given in Chapter 19 the value of ω is s(ω ), so that evalua-
tion of ifzω {z ↪→ e0 | s( x ) ↪→ e1} strips off the successor and evaluates {ω/x}e1. Should
ω be evaluated again, the same process repeats, with each such evaluation recreating the
successor of ω. Under the by-need interpretation the value of ω is s( @ a ) for some cell a
containing s( @ a ). A conditional analysis once again strips the successor, and then eval-
uates {@ a/x}e1. Any further evaluation of the expression ω will once again result in the
stored value s( @ a ), without recreating it. The memo table is self-referential, or circular, in
that it contains a value that refers to its own memo cell, sharing the result once for all uses
of ω. This behavior is one of the attractions of by-need evaluation; suspension types provide
the same benefits in an eager setting.

36.2. The expression
( fix l isλ ( x : nat ) fold( cons · ⟨x, l( s( x ) )⟩ ) )( z )

has the required type
rec t is [nil ↪→ unit , cons ↪→ nat× t].

36.3. The lazy interpretation in terms of suspensions is given by the following equations:

unit ≜ unit

τ1 × τ2 ≜ τ̂1 × τ̂2

void ≜ void susp

τ1 + τ2 ≜ ( τ̂1 + τ̂2 ) susp

rec t is τ ≜ rec t is ( τ susp ).

Notice the additional level of suspensions required for sum types that is not required for
product types. These suspensions meet the requirement that, in the case of binary products,
the summand need not be determined until the value is required. The nullary case is similar:
the suspended expression must diverge, but only when its value is requested.

Chapter 37

37.1. The crux of the matter is that the sequential dynamics of the parallel let must be chosen so
as to match the parallel dynamics. Specifically, when evaluating par( e1 ; e2 ; x1 . x2 . e ), the
sequential dynamics must demand that e2 is fully evaluated, even if an exception arises
while evaluating e1. If it were to propagate the exception immediately, the parallel dynam-
ics would perform excess work on e2 until the exception in e1 arises, losing the required
correspondence.
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In both the sequential and the parallel dynamics the crucial rules are as follows:

e2 val

par( raise( e1 ) ; e2 ; x1 . x2 . e ) 7−→ raise( e1 )
(A.34a)

e1 val

par( e1 ; raise( e2 ) ; x1 . x2 . e ) 7−→ raise( e2 )
(A.34b)

It may seem unnecessary to insist in the sequential dynamics that e2 be a value before prop-
agating an exception arising from e1. But it is necessary to include this “extra work” in order
to match the work done by the parallel dynamics. The sequential case is penalized to suit
the parallel case.

37.2. The cost dynamics for parallelism in the presence of exceptions requires accounting for the
work performed in a computation that raises an exception, as well as one that does not. The
following rules are crucial:

e val
raise( e ) ⇑0 e

(A.35a)

e1 ⇓c1 v1

try( e1 ; x . e2 ) ⇓c1⊕1 v1
(A.35b)

e1 ⇑c1 v1 {v1/x}e2 ⇓c2 v2

try( e1 ; x . e2 ) ⇓c1⊕c2⊕1 v2
(A.35c)

e1 ⇑c1 v1 {v1/x}e2 ⇑c2 v2

try( e1 ; x . e2 ) ⇑c1⊕c2⊕1 v2
(A.35d)

e1 ⇓c1 v1 e2 ⇓c2 v2 {e1, e2/x1, x2}e ⇓c v

par( e1 ; e2 ; x1 . x2 . e ) ⇓(c1⊗c2)⊕c⊕1 v
(A.35e)

e1 ⇑c1 v1 e2 ⇓c2 v2

par( e1 ; e2 ; x1 . x2 . e ) ⇑(c1⊗c2)⊕1 v2
(A.35f)

e1 ⇓c1 v1 e2 ⇑c2 v2

par( e1 ; e2 ; x1 . x2 . e ) ⇑(c1⊗c2)⊕1 v2
(A.35g)

e1 ⇑c1 v1 e2 ⇑c2 v2

par( e1 ; e2 ; x1 . x2 . e ) ⇑(c1⊗c2)⊕1 v1
(A.35h)

Observe that in the case that both parallel computations raise an exception, the first one in
program order is propagated, in keeping with the structural dynamics. And as with the
structural dynamics both parallel computations must complete before the result is propa-
gated.
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37.3. Assume that the structural dynamics of XPCF has been incorporated as local transitions of
the P machine, as described in the chapter. There are now four binary join rules, correspond-
ing to which parallel computations raise exceptions:

e1 val e2 val
ν a1 ~ τ1 a2 ~ τ2 a ~ τ { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[ a1 ; a2 ]( x1 ; x2 . e ) }

7−→
loc

ν a ~ τ { a ↪→{e1, e2/x1, x2}e }


(A.36a)

e1 = raise( e ) e val e2 val
ν a1 ~ τ1 a2 ~ τ2 a ~ τ { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[ a1 ; a2 ]( x1 ; x2 . e ) }

7−→
loc

ν a ~ τ { a ↪→ raise( e ) }


(A.36b)

e1 val e2 = raise( e ) e val
ν a1 ~ τ1 a2 ~ τ2 a ~ τ { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[ a1 ; a2 ]( x1 ; x2 . e ) }

7−→
loc

ν a ~ τ { a ↪→ raise( e ) }


(A.36c)

e1 = raise( e ) e val e2 = raise( e′ ) e′ val
ν a1 ~ τ1 a2 ~ τ2 a ~ τ { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[ a1 ; a2 ]( x1 ; x2 . e ) }

7−→
loc

ν a ~ τ { a ↪→ raise( e ) }


(A.36d)

The sequential ordering of the subtasks specified in the parallel let is used to determine
which exception to propagate in the case that both parallel computations raise an exception
so as to be consistent with the left-to-right order of the sequential dynamics. No exceptions
are propagated until both parallel computations complete to ensure that the P machine per-
forms the same work as specified by the structural and cost dynamics.

37.4. The parallel let, par( e1 ; e2 ; x1 . x2 . e ) is translated to another parallel let, par( e′1 ; e′2 ; x′1 .
x′2 . e′ ), as follows:

(a) e′1 ≜ try l · e1 ow x′′1 ↪→ r · x′′1 ;

(b) e′2 ≜ try l · e2 ow x′′2 ↪→ r · x′′2 ;

(c) e′ ≜ case x′1 {l · x1 ↪→ case x′2 {l · x2 ↪→ e | r · x′′2 ↪→ raise( x′′2 )} | r · x′′1 ↪→ raise( x′′1 )}.

Sums are used to record whether an expression has a normal or exceptional return, and the
case analysis represents the join-point logic required for exception propagation consistently
with the interpretation developed in the preceding exercises.
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Chapter 38

38.1. Simply allocate a future for e1, and replace uses of x in e2 by synchronization with that future:

letfut x be e1 in e2 ≜ let x′ be fut( e1 ) in {fsyn( x′ )/x}e2.

38.2. Define par( e1 ; e2 ; x1 . x2 . e ) to stand for

let x′1 be fut(e1) in let x2 be e2 in let x1 be fsyn(x′1) in e.

The order of bindings is important to ensure that evaluation of e2 proceeds in parallel with
evaluation of e1.

Chapter 39

39.1. Let true on channel a be represented by the process

$ ? a( ⟨t, f ⟩ . $ ( !! ( t ; ⟨⟩ ; 1 ) ) ),

and let false on channel a be represented by the process

$ ? a( ⟨t, f ⟩ . $ ( !! ( f ; ⟨⟩ ; 1 ) ) ).

The conditional branch on the boolean at a between processes P1 and P2 may then be repre-
sented by

ν t . ν f . $ ( ! a( ⟨& t, & f ⟩ ; $ ( ? t( . P1 ) + ? f ( . P2 ) ) ) ).

39.2. Define P ▷ p and E ▷ p as follows:

1 ▷ p ≜ ! p( ⟨⟩ )

( P1 ⊗ P2 ) ▷ p ≜ ν p1 . ν p2 . ( ( P1 ▷ p1 )⊗ ( P2 ▷ p2 )⊗ P1,2 ⊗ P2,1 ) where

P1,2 ≜ $ ? p1( . $ ? p2( . ! p( ⟨⟩ ) ) ) and

P2,1 ≜ $ ? p2( . $ ? p1( . ! p( ⟨⟩ ) ) )

( ! a( e ) ) ▷ p ≜ ! a( e )

( $ E ) ▷ p ≜ $ ( E ▷ p )

( ν a ~ τ . P ) ▷ p ≜ ν a ~ τ . ( P ▷ p ) (a ̸= p)

0 ▷ p ≜ 0

( E1 + E2 ) ▷ p ≜ ( E1 ▷ p ) + ( E2 ▷ p )

( ? a( x . P ) ) ▷ p ≜ ? a( x . ( P ▷ p ) )
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Using this we may define P ; Q by ν p . ( ( P ▷ p )⊗ $ ? p( . Q ) ), which arranges for the ini-
tiation of Q to be deferred until the completion of P. The channel p must be chosen to not
already occur in P or in Q so as to avoid unintended interference with the protocol.

39.3. Define G(i, o) to be the process

$ ? o( ⟨q, z⟩ . $ ? i( ⟨r, s⟩ . ! o( ⟨r ∨ z, q ∨ s⟩ ) ) ).

This process is the gate array that implements the latch. Then define L(i, o) to be the process

∗G(i, o)⊗ ! o( ⟨false, false⟩ ).

The companion process to the gate array provides the initial values of Q and Z, which are
required to activate the coupled gates.

It is easy to check that L(i, o)⊗ Ireseti and L(i, o)⊗ Iset(i) behave as specified. The latch is ca-
pable of receiving its own sent messages on the o channel, achieving the required feedback.

39.4. Define P1 + P2 to be the process

P ≜ ν a ~ unit . ( $ ? a( . P1 )⊗ $ ? a( . P2 )⊗ ! a( ⟨⟩ ) ),

where a is chosen to not occur in either P1 or P2. By Rule (39.4d) the process P evolves to
either

P′ ≜ ν a ~ unit . ( P1 ⊗ $ ? a( . P2 ) )

or
P′ ≜ ν a ~ unit . ( $ ? a( . P1 )⊗ P2 )

Informally these are equivalent to

P1 ⊗ ν a ~ unit . $ ? a( . P2 )

and to
ν a ~ unit . $ ? a( . P1 )⊗ P2,

respectively, by the choice of the channel a. The accompanying processes are inert because a
is private and there is no sender within the scope of its declaration.

39.5. Represent the process P by the process

P′ ≜ ν t . ( St ⊗ $ ? a1( x1 . P′1 )⊗ . . .⊗ $ ? ak( xk . P′n ) ),

in which, for each 1 ≤ i ≤ n,

P′i ≜ ν s . ν f . ( ! t( s, f )⊗ $ ? s( . ( Ft ⊗ Pi ) )⊗ $ ? f ( . ( Ft ⊗ ! ai( xi ) ) ) ).

Here St ≜ $ ? t( s, f . ! s( ⟨⟩ ) ) and Ft ≜ $ ? t( s, f . ! f ( ⟨⟩ ) ) are the Milner booleans reach-
able on channel t, which serves as the lock channel. When synchronized the receives check
whether the lock is available. If so, it is seized, and the corresponding process is activated;
if not, the message is resent for possible synchronization with another receiver executing
concurrently.
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39.6. The solution is straightforward; simply give up on specifying too accurately the types of
values carried on each channel. The polyadic π-calculus is, in this respect, a uni-typed,
rather than multi-typed, language.

Chapter 40

40.1. A class declaration is a command with the following syntax:

Cmd newcls[ τ ]( a . m ) cls a ~ τ in m class declaration

The statics of class declaration is given by the rule

Γ ⊢Σ a~τ m ∼·· τ′

Γ ⊢Σ newcls[ τ ]( a . m ) ∼·· τ′
(A.37)

Its dynamics is given by the following execution rule:

newcls[ τ ]( a . m )
ε
=⇒
Σ

ν a ~ τ {m } (A.38)

The channel reference allocation command may then be defined by the equation

newch[ τ ] ≜ newcls[ τ ]( a . ret ( & a ) ).

40.2. The receive-on-channel-reference event rcvref( e ) is governed by the following statics:

Γ ⊢Σ e : cls( τ )

Γ ⊢Σ rcvref( e ) : event( τ )
(A.39)

The dynamics of this construct is given by these rules:

e 7−→
Σ

e′

rcvref( e ) 7−→
Σ

rcvref( e′ )
(A.40a)

rcvref( & a ) 7−−−→
Σ,a~τ

rcv[ a ] (A.40b)

Chapter 41
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41.1. A new channel reference may be allocated at any site, which is recorded in its type.

Γ ⊢Σ newch[ τ ] ∼·· chan[ τ ](w ) @ w
(A.41)

Execution allocates a new channel situated at that site, and returns a reference to it.

newch[ τ ]
ε @ w
===⇒

Σ
ν a ~ τ @ w { ret( & a )⊗ 1 }

(A.42)

The dynamic send command takes a channel reference as argument.

Γ ⊢Σ e1 : chan[ τ ](w ) Γ ⊢Σ e2 : τ

Γ ⊢Σ sndref( e1 ; e2 ) ∼·· unit @ w
(A.43)

It evolves to a static send command once the reference is resolved.

e valΣ

sndref( & a ; e ) ε @ w
===⇒

Σ
snd[ a ]( e ) (A.44)

The dynamic receive event takes a channel reference as argument.

Γ ⊢Σ e : chan[ τ ](w )

Γ ⊢Σ rcvref( e ) : event[ τ ](w )
(A.45)

It evolves to a static receive event once the reference is resolved.

rcvref( & a ) 7−→
Σ
rcv[ a ] (A.46)

41.2. To perform an asynchronous remote send, simply change the locus of control to w′ before
sending the message.

atw′ do sndref( e ; e′ ).

To perform a synchronous remote send, change the locus of control to w′, then allocate a
call-back channel on which the result is to be sent along with the payload.

atw′ do bnd r← cmd newch[ τ′ ] ; bnd ← sndref( e ; ⟨e′, r⟩ ) ; sync( rcvref( r ) ).

The reply channel reference r refers to a channel at w′, which may be sent along with the
payload e′ on the channel reference e. Execution then synchronizes on the reply channel to
obtain the result.
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Chapter 43

43.1. Under the identification of κ1 × κ2 with Σ :: κ1 . κ2, Rules (43.16a) and (43.16b) are instances
of Rules (43.5c) and (43.5d).

The dependent elimination rules are derivable from the non-dependent ones via self-recognition.
For suppose that

∆ ⊢ c :: Σ u1 :: κ1 . κ2.

Then by self-recognition
∆ ⊢ c :: Σ u1 :: S( c · l :: κ1 ) . κ2.

Then by sharing propagation

∆ ⊢ Σ u1 :: S( c · l :: κ1 ) . κ2 ≡ S( c · l :: κ1 )× {c · l/u1}κ2.

Therefore by Rule (43.16b)
∆ ⊢ c · r :: {c · l/u1}κ2,

as required.

43.2. Under the identification of κ1→ κ2 with Π :: κ1 . κ2, Rule (43.17) is an instance of Rule (43.9c).

Conversely, suppose that

∆ ⊢ c :: Π u1 :: κ1 . κ2 and ∆ ⊢ c1 :: κ1.

By self-recognition and subsumption it follows that

∆ ⊢ c :: Π u1 :: S( c1 :: κ1 ) . κ2.

But then by sharing propagation we have

∆ ⊢ c :: S( c1 :: κ1 )→{c1/u2}κ2

from which the result follows by Rule (43.17).

43.3. The kind κ{p := c} is defined by induction on p by the following equations:

∆ ⊢ κ{ε := c} kind ≜ ∆ ⊢ S( c :: κ ) kind

∆ ⊢ (Σ u1 :: κ1 . κ2){l p := c} kind ≜ ∆ ⊢ Σ u1 :: κ′1 . κ2 kind, where

∆ ⊢ κ′1 kind ≜ ∆ ⊢ κ1{p := c}
∆ ⊢ (Σ u1 :: κ1 . κ2){r p := c} kind ≜ ∆ ⊢ Σ u1 :: κ1 . κ′2 kind, where

∆, u1 :: κ1 ⊢ κ′2 kind ≜ ∆, u1 :: κ1 ⊢ κ2{p := c} kind

The proofs of the required properties proceed by induction on the simple path.
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43.4. Any common prefix is traversed, and then kind modification is used to impose the required
equation.

∆ ⊢ u :: κ / u · ε ≡ u · ε kind ≜ ∆ ⊢ κ kind

∆ ⊢ u :: Σ u1 :: κ1 . κ2 / u · l p ≡ u · l q kind ≜ Σ u1 :: {u · l/u1}κ′1 . κ2, where

∆ ⊢ κ′1 kind ≜ ∆ ⊢ u1 :: κ1 / u1 · p ≡ u1 · q kind

∆ ⊢ u :: Σ u1 :: κ1 . κ2 / u · r p ≡ u · r q kind ≜ ∆ ⊢ Σ u1 :: κ1 . {u · r/u2}κ′2 kind, where

∆, u1 :: κ1 ⊢ κ′2 kind ≜ ∆, u1 :: κ1 ⊢ u2 :: κ2 / u2 · p ≡ u2 · q kind

∆ ⊢ u :: Σ u1 :: κ1 . κ2 / u · l p ≡ u · r q kind ≜ ∆ ⊢ Σ u1 :: κ1 . κ′2 kind, where

∆, u1 :: κ1 ⊢ κ′2 kind ≜ ∆, u1 :: κ1 ⊢ κ2{q := u1 · p} kind
∆ ⊢ u :: Σ u1 :: κ1 . κ2 / u · r p ≡ u · l q kind ≜ ∆ ⊢ Σ u1 :: κ1 . κ′2 kind, where

∆, u1 :: κ1 ⊢ κ′2 kind ≜ ∆, u1 :: κ1 ⊢ κ2{p := u1 · q} kind

Chapter 44

44.1. Taking τkey to be τelt and τval to be bool, define the module

Γ, D : σdict ⊢ Mset : σset

by the equations

Mset ≜
q

D · s ; ⟨emp ↪→ eemp , ins ↪→ eins , mem ↪→ emem⟩
y

eemp ≜ D · d · emp
eins ≜ λ ( ⟨x, d⟩ : τelt × D · s ) D · d · ins( ⟨⟨x, true⟩, d⟩ )

emem ≜ λ ( ⟨x, d⟩ : τelt × D · s ) ifnull D · d · fnd( ⟨x, d⟩ ) {null ↪→ false | just( ) ↪→ true}.

44.2. For N : σord, define σnodset to be σset with τelt chosen to be N · s, and for S : σnodset, define
σnodsetdict to be σdict with τkey chosen to be N · s and τval to be S · s. Define the module

N : σord, S : σnodset, D : σnodsetdict ⊢ Mgrph : σgrph

by the following equations:

Mgrph ≜
q

D · s ;
q

τedg ; ⟨emp ↪→ eemp , ins ↪→ eins , mem ↪→ emem⟩
yy

τedg ≜ N · s× N · s
eemp ≜ D · d ↪→ emp

eins ≜ λ ( ⟨e, g⟩ : τedg × D · s ) D · d · ins( ⟨e, g⟩ )
emem ≜ λ ( ⟨⟨s, t⟩, g⟩ : τedg × D · s ) ifnull D · d · fnd( s ) {null ↪→ false | just( a ) ↪→ S · d · mem( a )}.
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To determine whether ⟨s, t⟩ is a member of a graph, it suffices to determine whether t is a
member of the adjacency set associated to s.

44.3. See Solution 43.3.

44.4. Straightforward verification, given Solution 44.3.

Chapter 45

45.1. The required functor may be defined by

Morddictfun ≜ λ ⟨K ; V⟩ :
(
∑ : σord . σtyp

)
. MK,V

dict,

where the body MK,V
dict is readily adapted from the definition given in Chapter 44, taking τkey

to be K · s and τval to be V · s.

45.2. The type abstraction σordset of finite sets equipped with their ordered elements may be de-
fined as follows:

σordset ≜ ∑ E : σord .
r

t :: Ty ; τE
set

z

τE
set ≜ ⟨emp ↪→ t , ins ↪→ E · s× t→ t , mem ↪→ E · s× t→ bool⟩.

The signature of a functor implementing a set abstraction in terms of a given ordered type
may be defined as follows:

σsetfun ≜ ∏ E : σord . σordset{ · 1 · s := E · s}.
This signature may be implemented by the following functor:

Msetfun ≜ λ E : σord . let D be Mdictfun ( ⟨E ; Jbool ; ⟨⟩K⟩ ) in ME
set,

where ME
set is readily adapted from Mset given in Solution 44.1.

45.3. The signature σordgrph of finite graphs on an ordered type of nodes may be defined as follows:

σordgrph ≜ ∑ N : σord .
r

tgrph :: Ty ;
r

tedg :: S( τN
edg ) ; τN

grph

zz

τN
edg ≜ N · s× N · s

τN
grph ≜ ⟨emp ↪→ tgrph , ins ↪→ τN

edg × tgrph → tgrph , mem ↪→ τN
edg × tgrph → bool⟩.

The signature σgrphfun of a functor implementing graphs in terms of an ordered type may be
defined as follows:

σgrphfun ≜ ∏ N : σord . σordgrph{ · 1 · s := N · s}.
A functor implementing a graph on an ordered set of nodes may be defined as follows:

Mgrphfun ≜ λ N : σord . let S be Msetfun ( N ) in let D be Mdictfun ( ⟨N ; S⟩ ) in MN,S,D
grph ,

where MN,S,D
grph is readily adapted from Mgrph given in Solution 44.2.


