
PFPL Supplement: Types for Program Modules∗

Robert Harper

Summer, 2020

1 Introduction

The two main issues in the design of program modules are

1. Abstraction. To limit the interdependence among the modules in a system it is essential to be
restrict the flow of type information among them.

2. Structure. To support multiple levels of modularity and to support reuse of modules it is
essential to permit their hierarchical and parameterized construction.

These aspects of modularity are at once separable, complementary, and opposed to each other.
Abstraction alone is well-handled by existential types. The interface of an abstract type is given

by an existential type. Its introductory form for an existential type packages a representation type
with the implementation of the operations in terms of that representation. Its eliminatory form
ensures that the representation type is hidden from the client, which ensures that the client is
insulated from changes of its representation.

Existential types provide no help with structuring a program. The elimination form encapsulates
the entire scope of an abstract type within which a package is opened. This means, in particular, that
the lowest-level (most widely used) abstractions in a program must be given the largest scope—these
abstractions lie at the root, rather than the leaves, of a larger program! Moreover, existential types
do not address the structure of programs, providing no support for hierarchy or parameterization.

The structure of programs is well-managed by dependent product and function types for modules,
as described in Chapter 45 of PFPL. Dependent products support the free flow of type information
in a module hierarchy, with those components lower in the hierarchy accessing those higher up using
projections. Dependent functions support parameterization, and permit the flow of type information
from argument to result of an instance, also by using projections in the result type to refer to the
argument module.

Dependent product and function types provide no help with abstraction, except insofar as one
may consider the body of a parameterized module to be the “client” of its parameters. As with
existentials, using dependent functions in this manner would invert program structure and obstruct
the very forms of module composition it is intended to support.

Thus, an expressive type system for modules must support both abstraction and structuring.
Neither suffices for the other, and both concepts are required. There is, however, a fundamental

∗Copyright © Robert Harper. All Rights Reserved.

1

tension between the two aspects of modularity that must be resolved in any design. The core issue is
the phase distinction between the statics and dynamics of a language. The clear separation between
compile-time and run-time featured in almost any programming language is threatened by modules,
which combine statics and dynamics in a single entity. For example, an existential package consists
of a representation type, its static component, with an implementation, its dynamic component. In
a two-level hierarchy the lower module can access the static component of the entire upper module,
appearing to create a type expression that involves both static and dynamic aspects. Similarly, in a
parameterized module, the static component of the result depends on the entire parameter module,
by projection, again appearing to violate phase separation.

It is natural to ask, so what? Why is it important to separate the static from the dynamic
components of a module? Fundamentally, it is a matter of equality. Given two modules M1 and
M2, when are their type components equal? Answering this is essential, because, for example, an
application is type correct only when the argument type is equal to the domain type of the function.
In special cases it may be plain to see that M1 and M2 have the same static components, and thus
present no difficulties for checking their equality (beyond what is already required for checking type
equality in the absence of modules).

Where the question becomes interesting (that is, difficult) is when the equality is not self-evident.
For example, suppose that M1 is of the form

if the moon is full thenM1,1 elseM1,2.

The static component of such a module is undefined during type checking, at least without provision
of further information, and hence cannot be deemed equal to any given static component. Less
extremely, M1 might have an ascribed signature that renders its static components opaque in all
contexts, precluding access to the “underlying truth.” For even if the ascribed module has a well-
defined static component, it maximizes flexibility to allow it to be changed to one (such as in the
preceding example) that does not, without affecting the type correctness of its clients.

To allow for this it is essential to distinguish module expressions from module computations,
which is achieved using a modality similar to that used for PCF Harper (2019). The key property
of a module value (a fully evaluated module expression) is that it always has a well-defined static
component, accessible by projection, that can be compared for equality with any other. Module
computations, however, must be bound to a module variable, which then stands as a placeholder for
its value, before being accessed. Encapsulated module computations are ascribed with a signature
that determines their public interface; such modules must be evaluated prior to their use, which has
the effect of “generating” new abstract types.

Acknowledgements: Thanks to Jon Sterling and Haoxuan Yue for their comments and corrections
to earlier drafts of this supplement.

2 A Language for Modularity

The syntax of the (revised) language Mod is given in Figure 1. Briefly,

1. Kinds and constructors are not affected by the presence of modularity constructs. This is
achieved by ensuring that it is possible to determine the static significance of a module ex-
pression using a technical device called variable twinning.

2. Expressions include the extraction of the dynamic part of a module expression.

2

3. Module computations may be encapsulated as module values, with specified signature, and
evaluated using sequencing, the associated elimination form.

4. Module values are mixed-phase entities with a static part consisting of constructors and a
dynamic part consisting of both constructors and values. Module values have well-defined
static parts, but module computations, such as the one in the introduction, do not.

5. There are two atomic forms of module value, a static module consisting of a constructor of a
kind, and a dynamic module consisting of an expression of a type. The static part of a static
module is itself; the static part of a dynamic module is trivial.

6. Module values include hierarchies, which are pairs in which the signature of the second com-
ponent may depend on the static part of the first component, and families, which are functions
whose result signature may depend on the instance module.

7. Module computations include initialization, which executes an encapsulated expression com-
putation for use within a module. The encapsulated computation might well allocate mutable
storage, which gives rise to the terminology.

8. Sealing of a module with a signature arises as the introductory form for the type of encap-
sulated (suspended) module computations, which must be active with a binding construct,
thereby enforcing abstraction. Abstract type proxy for the (implied) underlying state of the
module computation; for example, any two instances of a hash table have distinct underlying
state and hence induce distinct abstract types. Even pure modules can be sealed, and hence
be regarded as having a pro forma effect, so as to maximize future opportunities for replacing
a pure module by an impure one that relies on state.

Contexs are defined by the following grammar:

Γ ::= • | Γ, u :: κ | Γ, x : τ | Γ, X↓u : σ

Contexts may declare constructor variables of a kind, value variables of a type, and twinned module
variables with constructor variables of a signature. Static contexts, ∆, are those contexts that bind
only constructor variables.

The judgment forms that comprise the statics of the language are summarized in Figure 2. The
definitions of these forms make essential use of the computation of the static aspect of a pure module
and of its signature, those aspects that that govern its static behavior. Only pure modules have well-
defined static aspects; this motivates the modal separation between expressions and computations.
The dynamic aspect of a module is its run-time significance, which in general encompasses its static
aspect, and also includes the runnable code of the module. The judgments governing the dynamic
aspects are parameterized by a context Σ that is used to associate types to locations and other
dynamically-generated constants; it plays no explicit role here, but is required when stating and
proving safety for a full language.

The static aspect of a signature and a module is specified in Figure 3, which defines simultane-
ously (1) the static context, kd(Γ), associated with a context, Γ; (2) the kind part, kd∆(σ), of a
signature, σ, relative to a static context, ∆; and (3) the constructor part, con∆(E), of a module
expression E, relative to a static context, ∆. For notational convenience conΓ(E) is defined to
mean con∆(E), where kd(Γ) ≜ ∆. Similarly,

These operations are well-defined when they are suitably well-formed:

3

Sig’s σ ::= con(k) [k] static
val(τ) [τ] dynamic
comp(σ) {σ} capsule
Σ(σ1 ; u . σ2) u :: σ1 × σ2 hierarchy
Π(σ1 ; u . σ2) u :: σ1 → σ2 family

Mod Exp’s E ::= X X variable
con(c) [c] constructor
val(e) [e] expression
comp[σ](M) M :> σ capsule
hier(E1 ; E2) ⟨E1 ; E2⟩ hierarchy
fam[σ1](X . u . E2) λX↓u : σ1.E2 family
fst(E) E · 1 upper
snd(E) E · 2 lower
inst(E1 ; E2) E1(E2) instance

Mod Comp’s M ::= ret(E) retE value
bnd(E1 ;X . u . M2) bndX↓u← E1 ;M2 sequence
use(e) use e use dynamic module

Kinds κ ::= Ty Ty type
Unit 1 unit
S(c) S(c) singleton
Σ(κ1 ; u . κ2) u :: κ1 × κ2 product
Π(κ1 ; u . κ2) u :: κ1 → κ2 function

Constr’s c, τ ::= u u variable
triv ⟨⟩ null tuple
comp(τ) τ comp computation
mod(σ) σ mod dynamic module
pair(c1 ; c2) ⟨c1,c2⟩ pair
proj[i](c) c · i projection (i = 1, 2)
λ[κ1](u . c2) λ (u :: κ1) c2 abstraction
app(c1 ; c2) c1[c2] application

Exp’s e ::= x x variable
val(E) E · val value part
comp(m) comp(m) computation
mod[σ](M) M :> σ dynamic module

Comp’s m ::= ret(e) ret e expression
bnd(e1 ; x . m2) bndx← e1 ;m2 sequence
loc(E ;X . u . m) locX↓u← E ;m local

Figure 1: Abstract Syntax

4

∆ ctx ∆ is a static context
∆ ⊢ κ kind κ is a kind in ∆
∆ ⊢ c :: κ c is a constructor of kind κ in ∆

∆ ⊢ κ ≤ κ′ k is a subkind of κ′ in ∆

Γ ctx Γ is a context
Γ ⊢Σ e : τ e is an expression of type τ in Γ
Γ ⊢Σ m ∼·· τ m is a computation of type τ in Γ

∆ ⊢ σ sig σ is a signature in Γ
Γ ⊢Σ E : σ E is a module expression of signature σ in Γ
Γ ⊢Σ M ∼·· σ M is a module computation of signature σ in Γ

∆ ⊢ σ ≤ σ′ sig σ is a subsignature of σ′ in ∆

Figure 2: Static Judgment Forms

Lemma 2.1 (Phase Separation).

1. If Γ ctx, then there exists unique ∆ such that kd(Γ) ≜ ∆ and ∆ ctx.

2. If ∆ ⊢ σ sig, then there exists unique κ such that kd∆(σ) ≜ κ and ∆ ⊢ κ kind.

3. If Γ ⊢Σ E : σ, with kd(Γ) ≜ ∆ and kd∆(σ) ≜ κ, then there exists unique c such that
con∆(E) ≜ c and ∆ ⊢ c :: κ.

Lemma 2.2 (Self-Recognition and Subsumption).

1. If Γ ⊢Σ E : σ, then Γ ⊢Σ E : Sσ (E).

2. If Γ ⊢Σ E : σ and ∆ ⊢ σ ≤ σ′ sig, where kd(Γ) ≜ ∆, then Γ ⊢Σ E : σ′.

3. If Γ ⊢Σ M ∼·· σ and ∆ ⊢ σ ≤ σ′ sig, where kd(Γ) ≜ ∆, then Γ ⊢Σ M ∼·· σ′.

A substitutions is a finite map sending constructor variables to constructors, expression variables
to expression, and module variables to module expressions. A static substitution is a finite map
sending constructor variables to constructors. The statics of substitutions is given by the judgment
Γ ⊢Σ γ : Γ defined in Figure 8. The general form restricts to the static case, written ∆′ ⊢ δ :: ∆′,
when the contexts and substitution govern only constructor variables.

Definition 2.3. Suppose that Γ′ ⊢Σ γ : Γ for some Γ ctx. The action γ̂(ε) of γ on a syntactic
object ε is defined as follows:

∅̂(ε) ≜ ε

̂γ ⊗ u ↪→ c(ε) ≜ {c/u}γ̂(ε)
̂γ ⊗ x ↪→ e(ε) ≜ {e/x}γ̂(ε)

̂γ ⊗X↓u ↪→ E(ε) ≜ {E/X}{c/u}γ̂(ε), where conΓ′(E) ≜ c

5

kd∆([κ]) ≜ κ

kd∆([τ]) ≜ 1

kd∆({σ}) ≜ 1

kd∆(u :: σ1 × σ2) ≜ u :: κ1 × κ2 if kd∆(σ1) ≜ κ1 and kd∆,u::κ1(σ2) ≜ κ2
kd∆(u :: σ1 → σ2) ≜ u :: κ1 → κ2 if kd∆(σ1) ≜ κ1 and kd∆,u::κ1(σ2) ≜ κ2

kd(•) ≜ •
kd(Γ, u :: κ) ≜ ∆, u :: κ if kd(Γ) ≜ ∆

kd(Γ, x : τ) ≜ ∆ if kd(Γ) ≜ ∆

kd(Γ, X↓u : σ) ≜ ∆, u :: κ if kd(Γ) ≜ ∆ and kd∆(σ) ≜ κ

con∆(u) ≜ u if u :: κ ∈ ∆

con∆([c]) ≜ c

con∆([e]) ≜ ⟨⟩
con∆(M :> σ) ≜ ⟨⟩

con∆(⟨E1 ; E2⟩) ≜ ⟨c1,c2⟩ if con∆(E1) ≜ c1 and con∆(E2) ≜ c2
con∆(λX↓u : σ1.E2) ≜ λ (u :: κ1) c2 if kd∆(σ1) ≜ κ1 and con∆,u::κ1(E2) ≜ c2

con∆(E · 1) ≜ c · 1 if con∆(E) ≜ c

con∆(E · 2) ≜ c · 2 if con∆(E) ≜ c

con∆(E(E1)) ≜ c[c1] if con∆(E) ≜ c and con∆(E1) ≜ c1

Figure 3: Static Parts of Signatures, Modules, and Contexts

e valΣ expression e is fully evaluated
e 7−−→

Σ
e′ expression e steps to e′

ν Σ{µ ∥m} final computation m is finished
ν Σ{µ ∥m} 7−−→ ν Σ′{µ′ ∥m′} computation m steps to m′, with effect

E valΣ module expression E is fully evaluated
E 7−−→

Σ
E′ module expression E steps to E′

ν Σ{µ ∥M} final module computation M is finished
ν Σ{µ ∥M} 7−−→ ν Σ{µ ∥M ′} module computation M steps to M ′, with effect

Figure 4: Dynamic Judgment Forms

6

Lemma 2.4 (Substitution). Suppose that Γ′ ⊢Σ γ : Γ and let ∆ ≜ kd(Γ), ∆′ ≜ kd(Γ′), and
δ ≜ con∆′(γ).

1. ∆′ ⊢ δ :: ∆.

2. If ∆ ⊢ κ kind, then ∆′ ⊢ δ̂(κ) kind, and if ∆ ⊢ κ ≤ κ′, then ∆′ ⊢ δ̂(κ) ≤ δ̂(κ′).

3. If ∆ ⊢ c :: κ, then ∆′ ⊢ δ̂(c) :: δ̂(κ).

4. If Γ ⊢Σ e : τ , then Γ′ ⊢Σ γ̂(e) : δ̂(τ).

5. If Γ ⊢Σ m ∼·· τ , then Γ′ ⊢Σ γ̂(m) ∼·· δ̂(τ).

6. If ∆ ⊢ σ sig, then ∆′ ⊢ δ̂(σ) sig, and if ∆ ⊢ σ ≤ σ′ sig, then ∆′ ⊢ δ̂(σ) <: δ̂(σ′).

7. If Γ ⊢Σ E : σ, then Γ′ ⊢Σ γ̂(E) : δ̂(σ).

8. If Γ ⊢Σ M ∼·· σ, then Γ′ ⊢Σ γ̂(M) ∼·· δ̂(σ).

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

Robert Harper. PCF-By-Value. Supplement to Harper (2016), Fall 2019. URL https://www.cs.
cmu.edu/~rwh/pfpl/supplements/pcfv.pdf.

7

S[κ] (E) ≜ [Sκ (c)] where con∆(E) ≜ c

S[τ] (E) ≜ [τ]

S{σ} (E) ≜ {σ}
Su::σ1×σ2 (E) ≜ u :: Sσ1 (E · 1)× S{c1/u}σ2

(E · 2) where con∆(E · 1) ≜ c1

Su::σ1→σ2 (E) ≜ λX↓u : σ1.Sσ2 (E(X))

Figure 5: Singleton Signatures: ∆ ⊢ Sσ (E) ≜ σ′

sig-con
∆ ⊢ κ kind
∆ ⊢ [κ] sig

sig-val
∆ ⊢ τ :: Ty

∆ ⊢ [τ] sig

sig-comp
∆ ⊢ σ sig

∆ ⊢ {σ} sig

sig-hier
∆ ⊢ σ1 sig ∆, u :: κ1 ⊢ σ2 sig kd∆(σ1) ≜ κ1

∆ ⊢ u :: σ1 × σ2 sig

sig-fam
∆ ⊢ σ1 sig Γ, u :: κ1 ⊢ σ2 sig kd∆(σ1) ≜ κ1

∆ ⊢ u :: σ1 → σ2 sig

Figure 6: Signature Statics: ∆ ⊢ σ sig

subsig-con
∆ ⊢ κ <:: κ′

∆ ⊢ [κ] <: [κ′]

subsig-val
∆ ⊢ τ :: Ty

∆ ⊢ [τ] <: [τ]

subsig-comp
∆ ⊢ σ <: σ′

∆ ⊢ {σ} <: {σ′}

subsig-hier
∆ ⊢ σ1 <: σ′

1 ∆, u :: κ1 ⊢ σ2 <: σ′
2 kd∆(σ1) ≜ κ1

∆ ⊢ u :: σ1 × σ2 <: u :: σ′
1 × σ′

2

subsig-fam
∆ ⊢ σ′

1 <: σ1 ∆, u :: κ′1 ⊢ σ2 <: σ′
2 kd∆(σ

′
1) ≜ κ′1

∆ ⊢ u :: σ1 → σ2 <: u :: σ′
1 → σ′

2

Figure 7: Signature Weakening: ∆ ⊢ σ <: σ′

8

subst-emp

• ⊢Σ ∅ : •

subst-con
Γ′ ⊢Σ γ : Γ kd(Γ′) ≜ ∆′ con∆′(γ) ≜ δ ∆′ ⊢ c :: δ̂(κ)

Γ′ ⊢Σ γ ⊗ u ↪→ c : Γ, u :: κ

subst-exp
Γ′ ⊢Σ γ : Γ conΓ′(γ) ≜ δ Γ′ ⊢Σ e : δ̂(τ)

Γ′ ⊢Σ γ ⊗ x ↪→ e : Γ, x : τ

subst-Val
Γ′ ⊢Σ γ : Γ conΓ′(γ) ≜ δ Γ′ ⊢Σ E : δ̂(σ)

Γ′ ⊢Σ γ ⊗X↓u ↪→ E : Γ, X↓u : σ

Figure 8: Substitution Statics

mod-var
kd(Γ) ≜ ∆ ∆ ⊢ σ <: σ′

Γ, X : σ Γ′ ⊢Σ X : Sσ′ (X)

mod-con
kd(Γ) ≜ ∆ ∆ ⊢ c :: κ

Γ ⊢Σ [c] : [Sκ (c)]

mod-exp
Γ ⊢Σ e : τ

Γ ⊢Σ [e] : [τ]

mod-comp
Γ ⊢Σ M ∼·· σ kd(Γ) ≜ ∆ ∆ ⊢ σ <: σ′

Γ ⊢Σ M :> σ′ : {σ′}

mod-hier
Γ ⊢Σ E1 : σ1 Γ ⊢Σ E2 : {c1/u}σ2 conΓ(E1) ≜ c1

Γ ⊢Σ ⟨E1 ; E2⟩ : u :: σ1 × σ2

mod-fam
Γ, X↓u : σ1 ⊢Σ E2 : σ2

Γ ⊢Σ λX↓u : σ1.E2 : u :: σ1 → σ2

mod-fst
Γ ⊢Σ E : u :: σ1 × σ2

Γ ⊢Σ E · 1 : σ1

mod-snd
Γ ⊢Σ E : u :: σ1 × σ2 conΓ(E) ≜ c

Γ ⊢Σ E · 2 : {c · 1/u}σ2

mod-inst
Γ ⊢Σ E : u :: σ1 → σ2 Γ ⊢Σ E1 : σ1 conΓ(E1) ≜ c1

Γ ⊢Σ E(E1) : {c1/u}σ2

Figure 9: Module Expression Statics: Γ ⊢Σ E : σ

9

mod-ret
Γ ⊢Σ E : σ

Γ ⊢Σ retE ∼·· σ

mod-use
Γ ⊢Σ e : mod(σ)

Γ ⊢Σ use(e) ∼·· σ

mod-bnd
Γ ⊢Σ E1 : {σ1} Γ, X↓u : σ1 ⊢Σ M2 ∼·· σ2 kd(Γ) ≜ ∆ ∆ ⊢ σ2 sig

Γ ⊢Σ bndX↓u← E1 ;M2 ∼·· σ2

Figure 10: Module Computation Statics: Γ ⊢Σ M ∼·· σ

exp-val
Γ ⊢Σ E : [τ]

Γ ⊢Σ E · val : τ

exp-comp
Γ ⊢Σ m ∼·· τ

Γ ⊢Σ comp(m) : τ comp

exp-dynmod
Γ ⊢Σ M ∼·· σ

Γ ⊢Σ M :> σ : σ mod

comp-ret
Γ ⊢Σ e : τ

Γ ⊢Σ ret e ∼·· τ

comp-bnd
Γ ⊢Σ e1 : τ1 comp Γ, x : τ1 ⊢ m2 ∼·· τ2

Γ ⊢Σ bndx← e1 ;m2 ∼·· τ2
comp-loc
Γ ⊢Σ E : σ mod Γ, X↓u : σ ⊢Σ m ∼·· τ kd(Γ) ≜ ∆ ∆ ⊢ τ :: Ty

Γ ⊢Σ locX↓u← E ;m ∼·· τ

Figure 11: Expression and Computation Statics

10

mod-val-con

[c] valΣ

mod-val-exp
e valΣ
[e] valΣ

mod-val-comp

M :> σ valΣ

mod–val-hier
E1 valΣ E2 valΣ
⟨E1 ; E2⟩ valΣ

mod–val-fam

λX↓u : σ1.E valΣ

mod-step-fst
E 7−−→

Σ
E′

E · 1 7−−→
Σ

E′ · 1

mod-step-fst-hier

⟨E1 ; E2⟩ · 1 7−−→
Σ

E1

mod-step-snd
E 7−−→

Σ
E′

E · 2 7−−→
Σ

E′ · 2

mod-step-snd-hier

⟨E1 ; E2⟩ · 2 7−−→
Σ

E2

mod-step-inst
E 7−−→

Σ
E′

E(E1) 7−−→
Σ

E′(E1)

mod-step-inst-arg
E valΣ E1 7−−→

Σ
E′

1

E(E1) 7−−→
Σ

E(E′
1)

mod-step-inst-fam
E1 valΣ con(E1) ≜ c1

(λX↓u : σ1.E)(E1) 7−−→
Σ
{E1/X}{c1/u}E

Figure 12: Module Expression Dynamics

11

mod-initial
µ0 : Σ0

ν Σ0{µ0 ∥M} initial

mod–final
E valΣ

ν Σ{µ ∥ retE} final

mod-step-ret
E 7−−→

Σ
E′

ν Σ{µ ∥ retE} 7−−→ ν Σ{µ ∥ retE′}

mod-step-bnd
E1 7−−→

Σ
E′

1

ν Σ{µ ∥ bndX↓u← E1 ;M2} 7−−→ ν Σ{µ ∥ bndX↓u← E′
1 ;M2}

mod-step-bnd-ret
E1 valΣ con(E1) ≜ c1

ν Σ{µ ∥ bndX↓u← (retE1) :> σ1 ;M2} 7−−→ ν Σ′{µ′ ∥ {E1/X}{c1/u}M2}

mod-step-bnd-step
ν Σ{µ ∥M1} 7−−→ ν Σ′{µ′ ∥M ′

1}

ν Σ{µ ∥ bndX↓u←M1 :> σ1 ;M2} 7−−→ ν Σ′{µ′ ∥ bndX↓u←M ′
1 :> σ1 ;M2}

mod-step-use
e 7−−→

Σ
e′

ν Σ{µ ∥ use(e)} 7−−→ ν Σ{µ ∥ use(e′)}

mod-step-use-step

ν Σ{µ ∥ use(M :> σ)} 7−−→ ν Σ{µ ∥M}

Figure 13: Module Computation Dynamics

12

