PFPL Supplement: Comparing fix and self

Robert Harper

October 2018

General recursion, \(\text{fix} \, x : \tau \rightarrow e \), is only sensible in a by-name dynamics for PCF, because it steps to \([\text{fix} \, x : \tau \rightarrow e \, / \, x] \, e\), which substitutes a non-value for the variable \(x \) in the expression \(e \). In a by-value dynamics general recursion is, for this reason, not sensible and must be replaced by type-specific forms of self-reference, such as the self-referential function form \(\text{fun} \{ \tau_1 ; \tau_2 \}(f \cdot x \cdot e) \), which is postulated to be a value of type \(\tau_1 \rightarrow \tau_2 \). Such a function is a value that is unrolled on application, substituting the recursive function value itself for the recursive variable, \(f \), in the body of the function.

In FPC an alternative account of self-reference is provided by the recursive type \(\tau \text{self} \), the type of self-referential values \(\text{self} \, x \rightarrow e \). Within \(e \), the self-reference, \(x \), must be unrolled, writing \(\text{unroll} \, (x) \), to unroll the recursion and access the underlying expression \(e \). More precisely, we have the transition

\[
\text{unroll} \, (\text{self} \, x \rightarrow e) \rightarrow ([\text{self} \, x \rightarrow e / x] \, e),
\]

which makes sense in either a by-name or a by-value dynamics.

Using self types the recursive factorial function has type \((\text{nat} \rightarrow \text{nat}) \, \text{self} \), which reveals in its type that it is self-referential. To call such a function, either externally or internally within its definition, it is necessary to first \(\text{unroll} \) the self-reference and apply it to an argument, which may be either a value or a computation, depending on the dynamics. In any case the self-referential variable is only ever replaced by a value.

Curiously, in FPC we may define \(\text{fix} \) from self, and obtain the expected dynamics, even under a by-value dynamics! The “trick” is to anticipate the need to unroll any self-reference within \(\text{self} \, x \rightarrow e \) by forming \(\hat{e} \) to be \([\text{unroll} \, (x) / x] \, e\), and then defining \(\text{fix} \, x : \tau \rightarrow e \) to be the expression \(\text{unroll} \, (\text{self} \, x \rightarrow \hat{e}) \). Observe that

\[
\text{fix} \, x : \tau \rightarrow e = \text{unroll} \, (\text{self} \, x \rightarrow \hat{e})
\]

\[
\rightarrow [\text{self} \, x \rightarrow \hat{e} / x] \hat{e}
\]

\[
= [\text{self} \, x \rightarrow \hat{e} / x] \, [\text{unroll} \, (x) / x] \, e
\]

\[
= [\text{unroll} \, (\text{self} \, x \rightarrow \hat{e}) / x] \, e
\]

\[
= [\text{fix} \, x : \tau \rightarrow e / x] \, e.
\]

The penultimate line summarizes the result of the iterated substitution; it does not arise in the dynamics itself as a substitution of a non-value for a variable, which would be disallowed in the by-value case.
References