
Commentary on Practical Foundations for
Programming Languages (Second Edition)

Robert Harper
Carnegie Mellon University

June 28, 2018

It may be useful to many readers for me to explain the many decisions made
in the organization and presentation of ideas in PFPL, and to suggest some
variations and extensions that I have considered during and after writing the
book. The discussion necessarily reflects my own opinions.

Contents

1 Paradigms 2

2 Preliminaries 3

3 Statics and Dynamics 3

4 Partiality and Totality 5

5 Functions First, or Not 5

6 The Empty and Unit Types 6

7 Static and Dynamic Classification 7

8 Inductive and Coinductive Types 7

9 Recursion in PCF 8

10 Parallelism 9

11 Laziness and Eagerness 11

12 Self-Reference and Suspensions 12

13 Recursive Types 13

1

14 Dynamic Typing 14

15 Subtyping 15

16 Dynamic Dispatch 16

17 Symbols and References 17

18 Sorts of Symbols 18

19 Exceptions 19

20 Modalities and Monads in Algol 20

21 Assignables, Variables, and Call-by-Reference 22

22 Assignable References and Mutable Objects 23

23 Types and Processes 23

24 Type Classes 25

1 Paradigms

The earliest attempts to systematize the study of programming languages made
use of the concept of a paradigm, apparently from Thomas Kuhn’s The Structure
of Scientific Revolutions. The trouble is, the notion of a paradigm is so vague that
it has no value for the systematic study of programming languages. Neverthe-
less, it is common to classify languages into trendy-sounding categories such
as “imperative”, “functional”, “declarative”, “object-oriented”, “concurrent”,
“distributed”, and “probabilistic” programming. These classifications are so
widespread that I am often asked to justify why I do not adhere to it.

It’s a matter of taxonomy versus genomics, as described in Stephen Gould’s
critique of cladistics (the classification of species by morphology) in his essay
“What, if anything, is a zebra?” (Gould, 1983). According to Gould, there are
three species of black-and-white striped horse-like animals in the world, two of
which are genetically related to each other, and one of which is not (any more
so than it is to any mammal). It seems that the mammalian genome encodes
the propensity to develop stripes, which is expressed in disparate evolutionary
contexts. From a genomic point of view, the clade of zebras can be said not
to exist: there is no such thing as a zebra! It is more important to study the
genome, and the evolutionary processes that influence it and are influenced by
it, than it is to classify things based on morphology.

Paradigms are clades; types are genes.

2

2 Preliminaries

Part I, on syntax, judgments, and rules, is fundamental to the rest of the text,
and is essential for a proper understanding of programming languages. Nev-
ertheless, it is not necessary, or advisable, for the novice to master all of Part I
before continuing to Part II. In fact, it might be preferable to skim Part I and
begin in earnest with Part II so as to gain a practical understanding of the is-
sues of binding and scope, the use of rules to define the statics and dynamics
of a language, and the use of hypothetical and general judgments. Then one
may review Part I in light of the issues that arise in a cursory study of even
something so simple as a language of arithmetic and string expressions.

Having said that, the importance of the concepts in Part I cannot be over-
stressed. It is surprising that after decades of experience languages are still
introduced that disregard or even flout basic concepts of binding and scope. A
proper treatment of binding is fundamental to modularity, the sole means of
controlling the complexity of large systems; it is dismissed lightly at the peril
of the programmer. It is equally surprising that, in an era in which verification
of program properties is finally understood as essential, languages are intro-
duced without a proper definition. It remains common practice to pretend that
“precise English” is a substitute for, or even preferable to, formal definition,
despite repeated failures over decades to make the case. All that is needed for
a precise definition is in Part I of the book, and exemplified in the remainder.
Why avoid it?

3 Statics and Dynamics

Each language concept in PFPL is specified by its statics and its dynamics, which
are linked by a safety theorem stating that they cohere. The statics specifies
which are the well-formed expressions of a language using context-sensitive
formation constraints. The dynamics specifies how expressions are to be eval-
uated, usually by a transition system defining their step-by-step execution and
when evaluation is complete. The safety theorem says that well-formed pro-
grams are either completely evaluated or are susceptible to transition, and that
the result of such a transition is itself well-formed.

The statics of a language is usually an inductively defined typing judgment
of the form x1 : τ1, . . . , xn : τn ` e : τ, stating that an expression e has the
type τ uniformly in the variables x1, . . . , xn ranging over their specified types.
The inductive definition takes the form of a collection of typing rules that jointly
defined the strongest, or most restrictive, judgment closed under those rules.
The minimality requirement gives rise to the important principle of induction on
typing, an instance of the general concept of rule induction applied to the given
typing rules. It is of paramount importance that the typing judgment obey the
structural properties of a hypothetical general judgment as defined in Part I of
the book. In particular typing must be closed under substitution, must assign
the assumed type to each variable, and must be stable under adding spurious

3

variable assumptions. Experience shows that languages that fail to validate
the variable and substitution properties are inherently suspect, because they
violate the mathematical concept of a variable developed since antiquity.

The dynamics of a language is usually given as a transition judgment on ex-
ecution states defining the atomic steps of execution together with a specifica-
tion of what are the initial and terminal states. In many cases states are simply
expressions, and transition is inductively defined by a collection of rules us-
ing Plotkin’s method of structural operational semantics. In more sophisticated
settings the state may contain additional information such as the contents of
memory or the presence of concurrently executing processes, but the general
pattern remains the same. An SOS specification of a transition system is the
universal format used throughout PFPL. Besides being fully precise and per-
spicous, structural dynamics lends itself well to mechanization and verification
of safety properties.

Other methods of specifying the dynamics are of course possible. An ab-
stract machine is a transition system whose defining rules are premise-free (that
is, are all axioms, and never proper inference rules). Usually it is straightfor-
ward to derive an abstract machine from a structural dynamics by introducing
components of the state that account for the implicit derivation structure in the
latter formulation. An evaluation dynamics consists of an inductive definition of
the complete value, if any, of an expression in terms of the values of its con-
stituent expressions and their substitution instances. An evaluation dynamics
may be regarded as a characterization of multistep evaluation to a value. It
can be convenient in some situations to think directly in terms of the outcome
of evaluation, rather than in terms of the process of reaching it. But doing so
precludes speaking about the cost, or time complexity, of a program, which may
be defined as the number of steps required to reach a value. A cost dynamics
defines not only the value of an expression, but also the cost of achieving that
value. Costs need not be limited to step counts, as is illustrated in the chapter
on parallelism.

A cost dynamics is both more and less than an evaluation dynamics. Read-
ing the cost and value as outputs, it specifies both the value and cost of an
expression, but reading the cost as input, it specifies only the values of expres-
sions that are achievable with the specified cost. There is no inherent reason to
prefer one reading to the other. For a specified e and n the cost dynamics may
be defined as the n-fold head expansion of a value in terms of the transition
dynamics. The transition dynamics may be recovered from the cost dynamics
by defining e to transition to e′ when, for any n ≥ 0, if e′ evaluates to v with
cost n, then e evaluates to v with cost n + 1. Conversely, a cost dynamics may
be seen as a specification of n-step transition to a value. Thus, a cost dynam-
ics is the transition dynamics in disguise, and so properties of the latter may
readily be transferred to the former. In particular, it is no surprise that one may
characterize type safety properties using a cost dynamics, precisely because it
contains the transition dynamics in terms of which safety is defined.

Transition systems are sometimes called “small step” dynamics, in contrast
to evaluation relations, which are then called “big step” dynamics. There is no

4

accounting for taste, but in my opinion evaluation dynamics does not define a
transition relation, but an evaluation relation, and is not comparable as a matter
of size with a proper transition system. Moreover, in many cases the values
related to expressions by an evaluation (or cost) dynamics are not themselves
forms of expression. In such cases it is senseless to treat evaluation as a kind of
transition; it is, quite plainly, just evaluation.

4 Partiality and Totality

A significant change in the second edition is that I have deferred discussion
of partiality until the basics of type structure are established. The advantage
of this approach is that it avoids distracting vacillations about partiality and
totality in the midst of discussing fundamental issues of type structure. The
disadvantage is that the deterministic dynamics is less well-motivated in the
total case, and that many semantic properties of types do not carry over from
the total to the partial case without signification complication (a prime example
being the parametricity properties of type quantification.)

For most practical purposes it is a bit unnatural to emphasize totality. In-
stead, it might be preferable to start out with PCF, rather than T, and omit
discussion of inductive and coinductive types in favor of recursive types. The
chief difficulty is that the discussion of representation independence for ab-
stract types is no longer valid; one must weaken the results to take account
of partiality, which complicates matters considerably by forcing consideration
of admissible predicates and fixed point induction. Perhaps this is a situation
where “white lies” are appropriate for teaching, but I chose not to fudge the
details.

5 Functions First, or Not

The illustrative expression language studied in Part II provides a starting point
for the systematic study of programming languages using type systems and
structural operational semantics as organizing tools. Systematic study begins
in Part III with (total) functions, followed by T, a variation on Gödel’s formal-
ism for primitive recursive functions of higher type. This line of development
allows me to get to interesting examples straightaway, but it is not the only
possible route.

An alternative is to begin with products and sums, including the unit and
empty types. The difficulty with this approach is that it is a rather austere
starting point, and one that is not obviously motivated by the illustrative ex-
pression language, or any prior programming experience. The advantage is
that it allows for the consideration of some very basic concepts in isolation. In
particular, the booleans being definable as the sum of two copies of the unit
type, one may consider binary decision diagrams as an application of sums
and products. Bdd’s are sufficient to allow modeling of combinational logic

5

circuits, for example, and even to generalize these to decision diagrams of ar-
bitrary type. One can relate the formalism to typical graphical notations for
bdd’s, and discuss equivalence of bdd’s, which is used for “optimization” pur-
poses.

One might even consider, in the latter event, the early introduction of fixed
points so as to admit representation of digital logic circuits, such as latches and
flip-flops, but this would conflict with the general plan in the second edition to
separate totality from partiality, raising questions that might better be avoided
at an early stage. On the other hand it is rather appealing to relate circular
dependencies in a circuit to the fixed point theory of programs, and to show
that this is what enables the passage from the analog to the digital domain.
Without feedback, there is no state, without state, there is no computation.

6 The Empty and Unit Types

One motivation for including the empty type, void, in Chapter 11 is to ensure
that, together with the binary sum type, τ1 + τ2, all finite sums are expressible.
Were finite n-ary sums to be taken as primitive, then the void type inevitably
arises as the case of zero summands. By the type safety theorem there are no
values of type void; it is quite literally void of elements, and may therefore be
said to be empty. It follows that, in a total language, there can be no closed
expressions of type void, and, in a partial language, that any such closed ex-
pression must diverge. Otherwise the expression would have to evaluate to a
value fo void, and that it cannot do.

The natural elimination form for an n-ary sum is an n-ary case analysis,
which provides one branch for each of the n summands. When n = 0 this
would be a nullary case analysis of the form case e { }, which evaluates e and
branches on each of the zero possible outcomes. Regrettably, the standard no-
tation used for a nullary case is abort(e), which plainly suggests that it would
induce some form of error during evaluation. But that is not at all the case! The
unhappy choice of notation confuses many readers, and it is best to avoid it in
favor of the more plainly self-explanatory nullary case notation.

Because it is empty, an important use of the type void is to state that some
expression must not return to the point at which it is evaluated. A particu-
larly common use of void is in a type τ ⇀ void, which classifies functions that,
once applied, do not return a value to the caller (by diverging, by raising an
exception, or throwing to a continuation). That type is quite different from the
type τ ⇀ unit, which, if it returns, returns the empty tuple (but might engen-
der effects during execution). To be emphatic, not returning a value is different
from returning an uninteresting value, yet, bizarrely, the industry standard is to
confuse the two situations! Specifically, it is standard practice to write void

for what is properly called unit, and having no proper void type at all! Thus,
in that notation, a function of type function of type τ ⇀ void may well return
to its caller, and there is no way to notate a function that definitely does not
return. Words matter; reduction of expressiveness matters even more.

6

7 Static and Dynamic Classification

The importance of sum types for static classification of data cannot be over-
stated. They have long been ignored in seat-of-the-pants language designs,
giving rise to absurdities such as “null pointers” in abstract languages (there
are none), the notion of dynamic dispatch in object-oriented languages (it is a
form of pattern matching, albeit without of exhaustiveness or coverage check-
ing), dynamically typed languages (see Section 14), and to ad hoc notions such
as enumeration types (which are but sums of unit type).

Static classification naturally generalizes to dynamic classification, in which
new classes may be generated at run-time. The same basic mechanisms extend
smoothly from the static to the dynamic case, obviating the need for special-
ized mechanisms such as exception generation or communication channel al-
location. Moreover, they provide a natural basis for ensuring confidentiality
and integrity of data. Coupled with an independent type abstraction mecha-
nism, one can create as many distinct dynamically classified types as one likes,
simply by defining them all to be the one type of dynamically classified values
and relying on abstraction to keep them distinct.

The distinction between dynamic and static classification sheds light on a
major deficiency of object-oriented languages. Because the totality of classes
must be known statically, it follows that, for semantic reasons, that whole-
program compilation is required, which completely defeats modular program
development. This leads to an emphasis on “just in time” compilation, another
word for whole-program compilation, to defer code generation until the class
hierarchy is known.

8 Inductive and Coinductive Types

The distinction between inductive and coinductive types is present only in the
case of total languages; in languages with partiality they are subsumed by re-
cursive types. For this reason it may be preferable to avoid the technical com-
plexities of inductive and coinductive types, and simply work with recursive
types in FPC. It is still worthwhile to discuss generic programming, which is of
independent interest, and to discuss streams, which are characterized by their
behavior, rather than their structure.

Streams raise an interesting question about the distinction between partial
and total languages. In the context of Chapter 15, it is not possible to write a
filter function for streams that, given a binary predicate (a function of type
nat → bool), produces the stream whose elements consist only of those el-
ements for which the predicate evaluates to true. Intuitively, the code for
filter does not know how long to wait for the next element to arrive; it can be
arbitrarily far in the future of the stream, or even not exist at all if the predicate
is always false! But it is in the nature of a total language to build in the “proof”
that it terminates on all inputs. To implement filter requires an unbounded

7

search operation, using a fixed point construction that sacrifices guaranteed ter-
mination.

The definition of positive type operator given in Chapter 14 can be reformu-
lated using hypothetical judgments by maintaining a context ∆ of hypotheses
of the form t1 pos, . . . , tn pos as follows:

∆ ` unit pos ∆ ` void pos

∆ ` τ1 pos ∆ ` τ2 pos

∆ ` τ1 × τ2 pos

∆ ` τ1 pos ∆ ` τ2 pos

∆ ` τ1 + τ2 pos

∆ ` τ1 type ∆ ` τ2 pos

∆ ` τ1 → τ2 pos

The reflexivity and weakening properties of the hypothetical judgment ensure
that ∆, t pos ` t pos. Even though ∆ ` τ pos implies that ∆ ` τ type, the
hypothetical ∆, t pos ` t type is not valid. Consequently, the requirement on
the domain of the function type ensures that the type variables declared in ∆
cannot occur within it, which is the defining characteristic of (strict) positivity.

9 Recursion in PCF

Plotkin’s language PCF is often called the E. coli of programming languages,
the subject of countless studies of language concepts. The formulation given
here is intended to make clear the connections with T, and the classical treat-
ment of recursive (that is, computable) functions. The relation to T is important
for explaining the significance of totality compared to partiality in a program-
ming language.

I have chosen to formulate PCF in Plotkin’s style, with a general fixed point
operator, but, contrary to Plotkin, to admit both an eager and a lazy dynamics.
This choice is not comfortable, because a general fixed point is a lazy concept
in that the recursively defined variable ranges over computations, not merely
values. I have waivered over this decision, but in the end can find no better
way to expose the important ramifications of general recursion.

Separating self-reference from functions emphasizes its generality, and helps
clarify a common misconception about recursive (self-referential) functions.
No stack is required to implement self-reference. (Consider, for example, that a
flip-flop is a recursive network of logic gates with no stack involved.) Stacks are
used to manage control flow, regardless of whether function calls or recursion
are involved; see Chapter 28 for a detailed account. The need for a stack to im-
plement function calls themselves is a matter of re-entrancy, not recursion. Each
application of a function instantiates its parameters afresh, and some means is
required to ensure that these instances of the function are not confused when
more than one application is active simultaneously. It is re-entrancy that gives
rise to the need for additional storage, not recursion itself.

8

10 Parallelism

The treatment of fork-join parallelism1 distinguishes two cases, the static and
dynamic, according to when the degree of parallelism is determined. The static
case is formulated using the definition construct par e1 = e2 and x1 = x2 in e,
which substitutes the values of e1 and e2 for x1 and x2, respectively, within e.
The binary form may easily be generalized to any statically determined degree
of parallelism. Conversely, any static degree of parallelism may be realized
by a cascade of binary splits. The dynamic case is formulated using a sequence
generator with which is created a sequence of values whose length and content
is not determined until run-time.

Although there is nothing wrong with this formulation, there is nothing
especially right about it either. The parallel definition mechanism feels rather
ad hoc, as does the sequence tabulation mechanism. It would be preferable if
these, or similar, constructs could arise from general semantic considerations,
rather than simply imposed from the outside, as it were, to achieve our ends.
Moreover, the asymmetry between the static and dynamic cases seems suspect.
Why is there not a symmetric treatment of both cases?

There is, but to see it requires taking a step back to think about the nature of
parallelism. When formulating a parallel language the goal is not to somehow
impose parallelism by some means not otherwise available, but rather to harness
the parallelism that is already present. Functional languages (rather, those with
an eager dynamics) give rise to parallelism without even trying. For example,
to evaluate the sum e1 + e2, we need, in general, to have evaluated both e1 and
e2, but nothing constraints how or when that may happen. All that is necessary
is to express the dependency of the sum on the summands, and the parallelism
will take care of itself. Thus, the essence of parallelism is not with introduc-
ing “simultaneity” or “concurrency” into a language (it is already there), but
rather with expressing sequential dependencies among computations (limits
to parallelism). So, oddly enough, the essence of parallelism is sequentiality.

The best way to express the required sequencing is to draw a modal dis-
tinction between two forms of expression: values, which have already been
evaluated, and computations, which have yet to be evaluated. Crucially, han-
dling a value imposes no cost, but evaluating a computation takes work. The
value/computation distinction is broadly similar to the expression/command
distinction in Modernized Algol. Both have their roots in a formalism called
lax logic, the core logic of dependency. The syntactic skeleton of a modally
separated value and computation language looks like this:

v ::= x | n | λ (x : τ) e | 〈v1, v2〉| | . . .
e ::= ret(v) | seq(v; x.e) | v1(v2) | . . .

The statics defines the judgments Γ ` v : τ and Γ ` e ∼·· τ. The dynamics
defines the judgment e ⇓c v, where c is a cost graph.

1Futures are another matter. They can be used to implement fork-join, and they also support
pipelining, so they are more general. But they are also unstructured, impeding the formulation of
a cost semantics.

9

The simplest computation, ret(v), simply returns the given value v, incur-
ring unit cost for the service. One computation may be sequenced prior to an-
other using the comp(τ) type. Value of this type are suspended computations,
comp(e), which are forced by the sequencing elimination form, seq(v; x.e). Thus,

comp(e) val ret(v) ⇓1 v
e1 ⇓c1 v1 [v1/x]e2 ⇓c2 v2

seq(comp(e1); x.e2) ⇓c1⊕c2 v2

In this setup one computation may depend on only one other, which ensures
that the work and the span of a computation coincide, eliminating parallelism.

To allow for parallelism the sequencing construct may be generalized to ad-
mit more than one dependent. Let us consider first the static case, in which one
computation may depend on the values of some fixed number of other com-
putations. This can be represented by generalizing the suspended computa-
tion type to a form of lazy product type whose values are tuples of unevaluated
computations, and whose elimination form sequences the evaluation of the
components of such a tuple before that of another computation. The sequenc-
ing is expressed using an eager product type whose values are tuples of values
and whose elimination form is pattern matching. Ordinarily, the elimination
forms for a lazy product type would be projections, so as to allow one compo-
nent to be accessed without disturbing the other. Contrarily, we demand that
all components of a lazy product be evaluated whenever it is used, and these
evaluations are parallel because nothing precludes it being so.

Thus we have the following statics for lazy products, viewed as a general-
ization of delayed computation types:

Γ ` e1 ∼·· τ1 Γ ` e2 ∼·· τ2

Γ ` e1 || e2 : τ1 & τ2

Γ ` v1 : τ1 & τ2 Γ, x : τ1 × τ2 ` e2 ∼·· τ2

Γ ` parseq(v1; x.e2) ∼·· τ2

Notice the interplay between the lazy and eager product types in the elimina-
tion rule! The first argument is required to be a (static) value, the second is an
abstraction whose body is a general computation. The corresponding dynam-
ics is given as follows:

e1 ⇓c1 v1 e2 ⇓c2 v2 [〈v1, v2〉/x]e ⇓c v

parseq(e1 || e2; x.e) ⇓(c1⊗c2)⊕c v

Thus, it is the elimination form for the parallel pair that induces the evaluation
of the two components of the pair, expressing the dependency of its body on
their values.

In the dynamic case, wherein the number of dependents is not determined
until evaluation time, a similar method applies. The analogue of lazy tuples is
a sequence generator which determines the length of the sequence and the value
of each of its elements. The elimination form for generators creates an eager

10

sequence whose size and elements are already determined. The statics mimics
that for lazy tuples, albeit with sequences playing the role of eager tuples:

Γ ` v1 : nat Γ, x : nat ` e2 ∼·· τ

Γ ` ||{v1}(x.e2) : τ pargen

Γ ` v1 : τ pargen Γ, x : τ seq ` e2 ∼·· τ2

Γ ` genseq(v1; x.e2) ∼·· τ2

The dynamics is also similar to that of lazy products:

[0/y]e ⇓c0 v0 . . . [n− 1/y]e ⇓cn−1 vn−1 [〈v0, . . . , vn−1〉/x]e′ ⇓c′ v′

genseq(||{n}(y.e); x.e′) ⇓(c0⊗...⊗cn−1)⊕c′ v′

The generator is used to create a sequence of the specified length, which is then
propagated to the dependent as a value of eager product type.

The modal distinction also resolves a technical problem with cost seman-
tics, namely the need to distinguish between an already-computed value, and
a computation that happens to be a value. Without the distinction there is an
ambiguity about how to treat the pair 〈e1, e2〉, when both components are al-
ready values. Should one consider that the pair is already evaluated, because
the components are values, or should one evaluate it in ignorance to derive
that it is its own value? Either way, the cost is calculated incorrectly. For if you
never evaluate it at all, then you never incur the cost for allocating it in the first
place. But if you evaluate it every time you see it, then you repeatedly incur
the cost of evaluation, which can be asymptotically significant when the values
involved are not of a statically known size. The modal distinction resolves the
ambiguity by distinguishing already-evaluated values from computations that
happen to evaluate to themselves (rather, their correlates as values). Thus, the
trivial computation, ret(〈v1, v2〉), is distinguished from the sequential compo-
sition parseq(ret(v1) || ret(v2); x.ret(x)).

11 Laziness and Eagerness

The distinction between laziness and eagerness is best explained in terms of
the semantics of variables: do they range over all expressions of their type, or
all values of their type? When all expressions have a unique value, the dis-
tinction seldom matters. But for languages that admit divergent, or otherwise
undefined, expressions, the distinction is important, and changes the character
of the language significantly. Whether one is more “mathematical” than the
other, as is often claimed, is a matter of debate, because the analogies to math-
ematics break down in the presence of partiality. Moreover, considerations of
efficiency are particular to programming, but play no role in mathematics. Put
another way, programs are not just proofs; they have a cost, and we care about
it. One might even say that cost is what distinguishes mathematics from com-
putation; we ought not expect two disparate subjects to coincide.

11

The distinction between laziness and eagerness is not wholly a matter of
cost; it is also about expressiveness. In a lazy language all expressions—even
the divergent ones—are considered to be values of their type. This makes it
natural to consider general recursion (fixed points) at every type, because even
those that diverge are treated as values of their type. Pairing is naturally lazy
(neither component is evaluated until it is used), and functions are naturally
“call-by-name”, because even a divergent argument is regarded as a value.
However, for sums the effect of including divergence is disastrous! There are
three booleans, true, false, and divergence, and so we cannot reason by cases in
the ordinary sense. The “empty” type has one element, divergence, and sums
have divergence as well as labelled, possibly divergent elements of their sum-
mands. The natural numbers, viewed as a recursive sum, not only includes
divergence, but also an infinite number, an unending stack of successors. Lazy
languages do not, and cannot have, a type of natural numbers; at the very least
divergence is a value, invalidating proofs by mathematical induction. Simi-
larly, such languages have no trees, no enumerations, no lists, no abstract syn-
tax, nor any inductive types whatsoever. Somehow this does not seem to count
against their supposedly “mathematical” nature, yet what could be less math-
ematical than to lack a type of natural numbers?

Rather than force divergence to always be a value, it makes more sense to
introduce a type constructor whose values are either divergence, or an actual
value of the given type. These are the suspension types considered in Chap-
ter 36, which put control into the programmer’s hands, rather than imposing
it for doctrinal reasons. Doing so allows one to distinguish between the proper
type nat of natural numbers and either form of the the lazy natural numbers,
namely the minimally lazy natural numbers, nat susp, which contains the nat-
ural numbers plus divergence, and the ultra-lazy natural numbers whose argu-
ments to successors are themselves suspended. Similarly, one can distinguish
lists from streams, and consider intermediate variations in which, say, only the
tails, or only the heads, of lists are suspended. Lazy languages have types called
lists, but in no case are they lists!

12 Self-Reference and Suspensions

Suspension types are naturally self-referential, because of the indirection for
memoization, so it makes the most sense to make them recursive. General re-
cursion can be implemented using such suspensions, but it makes little sense to
insist that recursion incur the overhead of memoization. Instead, one may con-
sider other types whose elements are naturally self-referential, and arrange for
that specifically. For example, one may consider that mutual recursion among
functions is a primitive notion by introducing the n-ary λ-abstraction

λn{τ1; . . . ; τn}(x, y1.e1; . . . ; x, yn.en).

The n-ary λ defines n mutually recursive functions, each abstracted on them
all collectively as the first argument, x, of each. (Typically x is spelled this or

12

self, but it is a bad idea to attempt to evade α-conversion in this way.)
The n-ary λ evaluates to an n-tuple of ordinary λ-abstractions, as suggested

by the following statics rule, which gives it a product-of-functions type:

Γ, x : 〈τ1 ⇀ τ′1, . . . , τn ⇀ τ′n〉, yi : τi ` ei : τ′i (1 ≤ i ≤ n)

Γ ` λn{τ1; . . . ; τn}(x, y1.e1; . . . ; x, yn.en) : 〈τ1 ⇀ τ′1, . . . , τn ⇀ τ′n〉

The dynamics implements the self-reference by unrolling:

λn{τ1; . . . ; τn}(x, y1.e1; . . . ; x, yn.en) 7−→ 〈λ (y1 : τ1) e′1, . . . , λ (yn : τn) e′n〉,

wherein each e′i (for 1 ≤ i ≤ n) is given by

[λn{τ1; . . . ; τn}(x, y1.e1; . . . ; x, yn.en)/x]ei.

Admittedly, the unrolling dynamics “cheats” by substituting the n-ary abstrac-
tion for a variable, even though it is not a value. But it is tantamount to a value
in that it evaluates to one (in one step). There is no harm in extending substi-
tution to valuable expressions (those tantamount to a value); it is the general
expressions, which may not terminate, that cause trouble.

If you really wish to avoid this generalization, then you can instead re-
gard the n-ary λ-abstraction to be a value of a special tuple-of-function type
whose elimination form is project-and-apply to an argument. The dynamics
of project-and-apply involves replacing the self-referential parameter by the
tuple-of-lambda’s, which is now deemed to be a value, and so the problem is
evaded.

13 Recursive Types

Recursive types (without any positivity requirement) only make sense for a
language with partial functions, and, using them, one may implement self-
reference with which to define them. Indeed, a single recursive type is suffi-
cient to interpret the λ-calculus, the original universal model of computation.
In the presence of partiality the distinction between eager and lazy evaluation
is semantically significant, and the interplay between eager and lazy strategies
is central to defining both inductive and coinductive types as recursive types.

Recursive types are the means by which the concept of a “data structure”
can be given full expression. Too often students are taught that data structures
are defined structurally, using “box and pointer” diagrams. But this approach
excludes important cases involving laziness or functions, which are not de-
pictable in those terms. For this reason alone it is useful to consider the general
case, with the isomorphism between a recursive type and its unfolding playing
the role of an “abstract pointer” that is not restricted to finitary representations
of data in memory.

Recursive types are essential for many programming concepts, most ob-
viously the definition of a self-referential value such as a function defined in

13

terms of itself. Less obviously, recursive types are crucial for understanding the
(misnamed) concept of dynamic typing (q.v.), for the representation of corou-
tines using continuations, and for a full treatment of dynamic dispatch (again,
via self-reference). Although deceptively simple in the formalism, recursive
types are a deep and fundamental concept that should be given full treatment
in any account of programming languages.

As a technical matter, the statics for the fold operation of recursive types
does not explicitly require that the type operator t.τ be well-formed. In general
a static typing judgment presupposes that the types in the judgment are well-
formed, which in the case of fold amount to the assumption that rec t is τ type.
It follows from the definition of the latter judgment that [rec t is τ/t]τ type, as
required for the premise of the rule to be properly formulated.

It is also worth noting that the type variable, t, used in the type expression
rec t is τ is not actually a variable type, because it is only ever replaced by
the recursive type itself. In essence type variables are being (ab)used as “back
pointers” to the recursive type itself. The formation rule for recursive types
is overly general in that it demands that t type ` τ type, whereas all that is
required is rec t is τ type ` [rec t is τ/t]τ. The former condition suffices for
the latter, but one could envision an alternative formulation of the statics that
uses the latter form as a more direct account of self-reference.

14 Dynamic Typing

The whole of Part IX is devoted to dynamic typing. The first point is that what
is dynamic are not types, but rather classes, of data. The second, which is much
the same, is that such languages are not untyped, but rather un-i-typed (to use
Dana Scott’s neat turn of phrase), the one type in question being a recursive
sum. Understanding this is essential to resolving the never-ending “debate”
about typed vs. untyped languages.

The dynamic language DPCF hews close to the static language PCF to fa-
cilitate comparison. Needless to say, many variations are possible. It is a useful
exercise to formulate a fragment of your favorite dynamic language, then re-
formulate it as a static language with a privileged recursive sum type. For ex-
ample, it is common to consider multi-argument (and even multi-result) func-
tions. Under analysis it becomes apparent that multiple arguments and results
are but a concession to static typing in which one admits that product types
exist. Moreover, the typical syntax for multiple arguments is just a form of pat-
tern matching for tuples. You may, if you wish, confine your attention to one
type, but as this example illustrates, you will not seriously want to do that.

As the development in the book makes clear, the term “dynamic typing” is
a misnomer—what is called a “type” in dynamic languages is, in fact, a static
class. Dynamic type-checking is not type checking, it is rather the class check-
ing that inheres in having sum types. The question remains, however, why
restrict attention to a single type? Why willfully ignore the static structure that
is unavoidably present in any dynamic language? Why pretend that having

14

multiple arguments is not a concession to there being product types? Why in-
sist that all values be classified? Why forego modular decomposition using
types?

The most obvious reason is ignorance. Dynamic typing arose in Lisp long
before there was any appreciation for the type structure of programming lan-
guages. The appeal of Lisp is powerful, especially if your only other experi-
ence is with simplistic imperative languages. But Lisp’s charms are not often
separated from their historical context: though once true, it is true no longer
that Lisp is the sole opponent of all other languages. And it remains unrec-
ognized that Lisp is a statically typed language. After decades of experience,
(recursive) sum types are unfamiliar, even unimagined, by many advocates of
dynamic languages. Absent a proper understanding of recursive sums, dy-
namic typing seems appealing—precisely because it offers sums in the implicit
form of run-time class checks. But this manifestation of sums foregoes the all-
important exhaustiveness check afforded by explicit case analysis, rather than
boolean tests for the class of a value.

Another reason for preferring dynamic languages is their immediacy. It is
infamous that every Lisp program does something, as long as the parentheses
match. It is consequently very easy to write code that does something vaguely
right, and to adopt a development strategy that amounts to debugging a blank
screen: get something going, then hack it into existence. Richly typed lan-
guages, on the other hand, impose the discipline that your code make minimal
type sense, and demand that you consider the types of values in play. Oppo-
nents argue that the type system “gets in their way” but experience shows that
this is hardly the case. Innovations such as polymorphic type inference make
a mockery of the supposed inconveniences of a rich type discipline.

It seems to me that the most sensible argument for dynamic typing is the
claim that behavioral typing subsumes structural typing. Behavioral typing,
the argument goes, is more expressive, and can account for richer specifica-
tions than common structural type systems. The argument is not without
merit. But it does not address the fundamental role of types, which is to ex-
press modular structure. Modularity is not a matter of behavior, it is a matter
of protocol, a discipline imposed by the programmer on herself to ensure that
programs decompose into neatly separable modules. Behavioral typing does
not address such considerations, and so remains complementary to structural
typing, rather than an alternative to it. In any case most dynamic languages in
common use lack even a rudimentary behavioral type system, so the argument
remains hypothetical.

15 Subtyping

Structural subtyping is, according to Pfenning (2008), based on the principle
that a value should have the same types as its η-expansion. For example, the
subtyping principle for function types may be justified by considering any ex-
pression e of type τ′1 → τ2. Under the assumptions that τ1 <: τ′1 τ2 <: τ′2, then e

15

should also have the type τ1 → τ′2, because its expansion, λ (x1 : τ1) e(x1), does
under those assumptions. Notice that if e were a λ-abstraction, the expansion
would not be needed to obtain the weaker typing, but when e is a variable,
for example, the expansion has more types than the variable as declared, so
subtyping adds some flexibility. Similarly, one may justify the n-ary product
subtyping principle on similar grounds. Given an n-tuple e, we may form an
m-tuple from it consisting of the first m ≤ n projections from e, in order, to
form a narrower view of e.

The treatment of numeric types stretches the meaning of structural subtyp-
ing to its limits. The idea is that an integer n may be “expanded” to the rational
n÷ 1, and a rational may be “expanded” to a real (say, a Cauchy sequence) rep-
resenting the same rational. Whether these count as η-expansions is question-
able; it is more accurate to say that they are justified by canonical choices of in-
clusions that are implicit in the interpretation of subtyping. Whereas one may
consider a dynamics in which values are identified with their η-expansions (so
that a narrow tuple may, in fact, be wider than its type would indicate), it is
less clear that this would be sensible for the numeric types—unless all num-
bers were to be represented as reals under the hood!

But if that were the case, the inclusions would more naturally be interpreted
as behavioral, rather than structural, subtypes. More precisely, the subtyping
principles would better be read as isolating certain reals as rationals and cer-
tain rationals as integers according to a semantic, rather than syntactic, criterion.
As such it is not always possible to determine whether a given real number is
rational or integral by purely mechanical means; it is, rather, a matter of proof.
In practice one gives syntactic conditions that suffice for practical situations,
which is exactly what I have done in Chapter 25 in developing a syntactic be-
havioral type system to track the class of a value in DPCF. In truth one cannot
determine the class of an arbitrary computation, but in practice one can often
get by with some relatively simple syntactic conditions that provide a mod-
icum of tracking ability. Conditionals invariably attenuate what can be stati-
cally tracked, and are especially problematic when the subtype relation lacks
meets, as it does in many popular languages.

16 Dynamic Dispatch

The discussion of dynamic dispatch is meant to address one of the more promi-
nent aspects of object-oriented programming.A great deal of emphasis is placed
on the idea of an “object” as a collection of “methods” that act on shared “in-
stance” data. Many a claim hinges on this supposedly distinguishing charac-
teristic of object-oriented programming. For example, it is common to set up
a false comparison to “abstract types”, which is said to conflict with object-
oriented programming. Yet, as is shown in Chapter 26 dynamic dispatch is a
particular use of data abstraction, to which it thereby cannot be opposed.

The main point of Chapter 26 is to make clear that the “method-oriented”
and “class-oriented” organizations of code are isomorphic, and hence inter-

16

changeable in all contexts. There is no distinction between the two organizations;
they can be interchanged at will. The central idea, a version of which also appears
in Abselson and Sussman’s Structure and Interpretation of Computer Programs, is
what I call the dispatch matrix, which determines the behavior of each method
on each class of instance. The dispatch matrix is symmetric in that it favors nei-
ther the rows nor the columns. One may, if one wishes, take a row-oriented or
a column-oriented, view of the dispatch matrix, according to taste. One may
also interchange one for the other at will, without loss or damage. There is
nothing to the choice; it reflects the fundamental duality between sums and
products, a duality that is equally present in matrix algebra itself. In particular,
the isomorphism

∏
c∈C

∏
d∈D

(τc → ρd) ∼=
(

∑
c∈C

τc

)
→
(

∏
d∈D

ρd

)

states that a dispatch matrix determines and is determined by a mapping from
the “row space” of instances of the classes to the “column space” of behaviors
of the methods, much as in linear algebra.

The distinction between the row- and column-oriented organizations would
appear to arise when considering inheritance, whereby one can specify the be-
havior of some new methods as a modification or extension of some existing
behaviors. The asymmetries between the two organizations can be easily re-
solved by making the dispatch matrix, which defines the behaviors of objects,
as the unit of inheritance (Chapter 27). Inheritance seems to require structural
subtyping, which may be taken as an indication of its dubious advisability.
Nevertheless, it is useful to study even the bad ideas in language design so as
to identify, and avoid repeating, them.

17 Symbols and References

One of the innovations of PFPL is the consolidation of a number of seemingly
disparate notions by breaking out the concept of symbols for their applications
to the semantics of various language constructs. Symbols are used in their own
right as atoms whose identity can be compared to a given atom. They are used
as fluid-bound identifiers and as assignables by a finite mapping associating
values to identifiers. They are used as dynamically generated classifiers to
enforce confidentiality and integrity of data in a program. And they are used
as channels for synchronized message-passing in concurent programs. The
commonality is simply this: symbols support open-ended indexing of families
of related operators. For example, there is one get and set operator for each
assignable, and we may allocate new assignables at will, implicitly giving rise
to a new pair of get and set operators. The situation is similar for each of the
language concepts just mentioned.

Symbols are central to the uniform treatment of references throughout the
book. Rather than being tied to mutation, the concept of a reference appears in

17

each of the applications of symbols mentioned above. In each case the primi-
tive operations of a construct are indexed by statically known (explicitly given)
symbols. For example, in the case of mutation, there are get and set operations
for each assignable, and in the case of dynamic classification, the introductory
form is indexed by the class name, and the elimination form is similarly in-
dexed by a particular class. The purpose of references is to extend these oper-
ations to situations in which the relevant symbol is not statically apparent, but
is instead computed at run-time. So, there is a getref operation that takes as
argument a reference to an assignable; once the referent is known, the getref

steps to the get for that assignable. Classes, channels, and so forth are handed
similarly. References have nothing to do with mutation. Rather, references are a
means of deferring the determination of the index of an operation until execu-
tion time. Thus, symbols are not values, but references to them are.

The dynamics of constructs that involve symbols involves an explicit asso-
ciation of types to the active symbols whose interpretation is determined by
the construct itself.2 To achieve this requires that the dynamics maintain the
signature of active symbols, which in turn requires that some type information
be made explicit in the language. This can lead to some technical complica-
tions, but overall it is preferable to omitting it, because the information cannot
otherwise be recovered if it were omitted. Another reason to maintain the sig-
nature in the dynamics is that doing so facilitates the identification of states
with processes in process calculus. For example, in the case of mutation, the
signature specifies the active assignables, which are themselves modeled as
processes executing concurrently with the main program, responding to get

and set requests on their channel. Besides being conceptually appealing, us-
ing process notation facilitates a substructural formulation of the dynamics in
which only the active parts of the state are mentioned explicitly, the remaining
being “framed in” using the usual rules of process calculus.

18 Sorts of Symbols

As discussed in Section 17 symbols in PFPL are used for open-ended index-
ing of families of operators. As new symbols are introduced, new instances
of these families become available. For example, if symbols are being used as
names of assignables, then the introduction of a new symbol, a with associated
type τ, gives rise to the expression &[a], a reference to the assignable a, which
is a value of the type τ ref of assignable references. The behavior of the deref-
erencing operations, ∗ e and e1 ∗= e2, is determined by the behavior of their
underlying operations on assignables, @ a and a := e. Similar concepts, such as
Lisp-like symbolic data, dynamic classification, and communication channels,
are handled by similar means.

The uniform treatment of operator indexing using symbols consolidates a
number of otherwise disparate, but closely related, concepts, by separating the

2For example, in the case of mutation, the type associated to an assignable is the type of its
associated value.

18

treatment of symbols per se from their application as assignables, classes, chan-
nels, and so forth. A shortcoming of their formulation in PFPL, though, is that
I have only allowed for one “sort” of symbols to be active at a time. This im-
mediately becomes problematic when we wish to have, say, assignables and
dynamic exceptions in play at the same time. Obviously not ever assignable
should be construed as also being an exception name, nor every exception
name as that of an assignable. What is required, in general, is to admit there
to be several disjoint signatures in use at a time, each declaring a collection of
active symbols and associating a type with each of them. Thus, in the case of
assignables and exceptions, one would have a signature Σasgn of assignables
and a signature Σexcn of exception names, each governing its own realm in-
dependently of the other. Alternatively, one could introduce a notion of species
for symbols, and associate a species, as well as a type, to each symbol in the
signature. In the example the species would be asgn for assignables and excn

for exception names.
To make this work the symbol allocation construct would have to be in-

dexed by the sort of symbol being allocated so that it is added to the appro-
priate signature (or marked with the appropriate sort). This further suggests
that symbol allocation should itself be broken out as a basic concept of syn-
tax shared by all languages that make use of symbols. The issue of whether to
consider scoped or scope-free allocation becomes one of the choice of structural
congruence, the difference being the absence or presence, respectively, of Mil-
ner’s scope extrusion principle. It is up to the dynamics of a specific language
to determine when, if ever, the scope of symbol may be exited. At the least
one must demand that the transition outcome be independent of the allocated
symbol for the exit to be sensible. Mobility requirements in the statics ensure
that the scope of a declaration may be exited whenever it ought to be in the
sense of the concept under consideration.

19 Exceptions

My account of exceptions distinguishes the control mechanism from the data
mechanism. In all languages that I know about these two aspects are not
clearly separated, resulting in all manner of confusion. For example, most lan-
guages with exceptions have some form of “exception declaration” construct
that introduces a mysterious thing called “an exception” that can be “thrown”
or “raised” with an associated data value. The raised value can be “handled”
by dispatching on the exception, recovering the associated value in the pro-
cess. Some languages attempt to track the possibility of raising an exception
in types, invariably with poor results. One reason for the failure of such meth-
ods is that it is not important to track what exceptions can be raised (which
cannot be safely approximated), but rather what exceptions cannot be raised
(which can be safely approximated). Worse, many programming methodol-
ogy sources discourage, or even ban, the use of exceptions in programs, an
egregious error based on not understanding the role of secrecy in an exception

19

mechanism.
As regards the control aspect of exceptions, there is no difference between

exceptions implemented as non-local control transfers and exceptions imple-
mented using sums. Using sums the value of an exception is either a value of
its intended type, or a value of the exception type that, presumably, provides
some indication as to why a value of the intended type cannot be provided. The
emphasis on the disjunctive meaning of sums is warranted. Many languages
attempt to account for exceptional returns using absurdities such as the non-
existent “null pointer” or similar devices whereby a certain range of returned
values is to be regarded as having an entirely other meaning from the remain-
ing values. Sums force the client to dispatch on whether the result is ordinary
or exceptional, and there can be no ambiguity or confusion, nor can the distinc-
tion be elided. This is as it should be. Exceptions simply make this checking
easier in cases where the “default” behavior is to propagate the exceptional
value, rather than actually do anything with it, the handler being the locus of
interpretation of the exceptional behavior. Admittedly most languages, aston-
ishingly, lack sums, but this does not justify claiming that exceptions should
also be ignored or repudiated!

The main criticism of exception is the fallacious belief that one cannot tell
where the exception is handled, the non-local transfer being supposedly out
of the programmer’s control, or easily subverted accidentally or on purpose.
Nonsense. Choosing the exception value correctly allows the programmer to
establish an exception as a shared secret between the raiser and the handler
that cannot be subverted. By declaring an exception that is known only to
the raiser and handler, one can ensure that they, and only they, communicate
with one another via the exception mechanism. The raiser is responsible to
ensure the integrity of the exception value (that it satisfies some agreed-upon
requirement) and the handler is responsible to ensure the confidentiality (only
it can decode the exception value, whose integrity may be assumed). Exceptions
are all about shared secrets.

Confidentiality, and integrity, are enforced using dynamic classification, which
is defined in Chapter 33. Exceptions are dynamic classes that may mediate be-
tween the “raiser” and the “handler” of an exception. The introductory form
of the class is provided only to those permitted to raise an exception of that
class, and the eliminatory form only to those permitted to handle it. To all
others the exception value is an indecipherable secret that passes through un-
scathed and uninterpreted. As this discussion makes clear, exception classes are
not fluids, contrary to wide-spread belief. Although one may use fluid binding
to implement the control aspect of exceptions (managing the current handler),
it has no bearing on their data aspect.

20 Modalities and Monads in Algol

As an homage to the master, the name “Modernized Algol” (Chapter 34) is
chosen to rhyme with “Idealized Algol,” Reynolds’s reformulation (Reynolds,

20

1981) of the original, itself often described as “a considerable improvement
on most of its successors.” The main shortcoming of Algol, from a modern
perspective, is that its expression language was rather impoverished in most
respects, perhaps to achieve the a priori goal of being stack-implementable, a
valid concern in 1960. On the other hand, its main longcoming, so to say, is
that it made a modal distinction between expressions and commands, which was
later to be much celebrated under the rubric of “monads.” Indeed, Reynolds’s
formulation of Algol features the comm type, which in fact forms a monad of
unit type.

In Reynolds’s case the restriction to unit-typed commands was not prob-
lematic because there expressions are allowed to depend on the contents of the
store. In private communication Reynolds himself made clear to me that, for
him, this is the essential feature of the Algol language and of Hoare-style logic
for it, whereas I, by contrast, regard this as a mistake—one that becomes es-
pecially acute in the presence of concurrency, for then multiple occurrences of
the same “variable” (that is, assignable used an expression) raises questions of
how often and when is the memory accessed during evaluation. The answer
matters greatly, even if memory accesses are guaranteed to be atomic. Thus,
MA differs from Reynolds’s IA in that assignables are not forms of expres-
sion, which means that expression evaluation is independent of the contents of
memory (but not of its domain!).

MA stresses another point, namely that the separation of commands from
expressions is that of a modality, and not just that of a monad (see Pfenning
and Davies (2001) for more on this topic.) The modality gives rise to a con-
nective that has the structure of a monad, but this observation is posterior to
the modal distinction on which it is constructed. Without it, there are only
evaluatable expressions with types of the form cmd(τ), and nothing ever exe-
cutes. Somewhere there has to be a command that executes an encapsulated
command without itself being encapsulated, and it is there that the underlying
modality is exposed. This shows up in the Haskell language as the device of
“automatically” running an expression whose type happens to be that of the
“IO monad.” This is achieved by using the derived form

do e , bnd x← e ; ret x,

which is, of course, a command.
A subtext of the discussion of Modernized Algol is the remark that Haskell

is but a dialect of Algol. The main concepts of the Haskell language were already
present in Algol in 1960, and further elucidated by Reynolds in the 1970’s. In
particular so-called monadic separation of commands from expressions was
present from the very beginning, as was the use of higher-order functions with
a call-by-name evaluation order. The main advance of the Haskell language
over Algol is the adoption of recursive sum types from ML, a powerful ex-
tension not contemplated in the original. Another significant advance is the
elimination of assignables as forms of expression; the idea to make assignables
seem sort of like mathematical variables was, in my opinion, an egregious error
that is corrected in modern incarnations of the language.

21

21 Assignables, Variables, and Call-by-Reference

The original sin of high-level languages is the confusion of assignables with
variables, allowing one to write formulas such as a2 + 2 a+ 1 even when a is an
assignable.3 To make matters worse, most common languages don’t have vari-
ables at all, but instead press assignables into service in their stead. It all seems
fine, until one considers the algebraic laws governing the formulas involved.
Even setting aside issues of machine arithmetic, it is questionable whether the
equation a2 + 2 a+ 1 = (a+ 1)2 remains valid under the assignable-as-variable
convention. For example, concurrency certainly threatens their equivalence, as
would exceptions related to machine arithmetic. The strict separation of vari-
ables and assignables in Modernized Algol avoids these complications entirely
by forcing access to assignables to be made explicit before any calculation can
be done with their contents.

It is a good source of exercises to re-formulate a few standard language
concepts using this separation. For example, most imperative languages lack
any notion of variable, and must therefore regard the arguments to a procedure
or function as assignables. It is a good exercise to formulate this convention
in Modernized Algol: the argument becomes a variable, as it should be, and
the procedure body is surrounded by a declaration of an assignable whose
contents is initialized to that variable, with the choice of assignable name being
that given as the procedure parameter. The next step is to consider the age-old
notion of call-by-reference: given that the argument is an assignable, one may
consider restricting calls to provide an assignable (rather than an expresion) of
suitable type on which the body of the procedure acts directly. The assignable
argument is renamed to be the call-site assignable for the duration of the call.
From this point of view the standard concept of call-by-reference might better be
termed call-by-renaming: it is more accurate and it even sounds similar!

To be more precise, consider a type of call-by-renaming procedures, written
τ1⇒ τ2 whose values are procedures ρ{τ}(a.m), where a is an assignable sym-
bol scoped within the command m. Absent call-by-renaming, such a procedure
could be considered to be short-hand for the function

λ (x : τ) cmd(dcl a := x in m),

where x is a fresh variable, which allocates an assignable initialized to the ar-
gument for use within the body of the procedure. With call-by-renaming one
must instead regard these procedures as a primitive notion, restrict calls to pro-
vide an assignable as argument, and define the action of a call as follows:

(ρ{τ}(a.m))(b) 7−→ [a↔ b]m,

where a is chose (by renaming of bound symbols) to be fresh. The assignable b
must be within scope at the call site, and is provided to the body as argument.

3Indeed, the name “Fortran” for the venerable numerical computation language abbreviates
the phrase “Formula Translator.”

22

Notice that within the command m the assignable a is treated as such; it is
not regarded as a reference, but rather accessed directly by @ a and a := e, as
usual. The renaming on call ensures that these commands act on the passed
assignable directly, without indirection.

22 Assignable References and Mutable Objects

In Section 17 the concept of a reference is completely separable from that of an
assignable. A reference is a means of turning a symbol—of whatever sort—
into a value of reference type. It is a level of indirection in the sense that the
operations acting on references simply extract the underlying symbol and per-
form the corresponding operation for that symbol. The available operations
on references depend on the sort of the symbol. In the case of assignables the
operations include getref and setref, which code for the get and set oper-
ations associated with the underlying assignable. One may also consider the
references admit a equality test that determines whether or not they refer to the
same underlying symbol. Such a test is definable by simply changing the type
of the stored value from τ to τ opt, maintaining the invariant that the under-
lying value is always of the form just(−), except during an equality test. To
check equality of references, simply save the contents of one reference, then set
it to null, and check whether the contents of the other is also null. If so, they
are the same reference, otherwise they are not; be careful to restore the changed
value before returning!

Assignable references generalize naturally to mutable objects. Think of a
mutable object as a collection of assignables (its instance data) declared for use
within a tuple of functions (its methods) acting on those assignables.4 A refer-
ence is a single assignable, say contents, that is accessible only to the getref,
setref, and eq methods just described. More generally, a mutable object can
have any number of private assignables governed by any number of meth-
ods that act on them. Thus, assignable references are a special case of mutable ob-
jects. One may say informally that “mutable objects are references” or speak of
“references to mutable objects”, but in fact the concept of a mutable object is
self-standing and generalizes that of an assignable reference. There is no need
to speak of “object references” or “references to objects”, because objects are
themselves (generalized) references.

23 Types and Processes

The treatment of concurrency is divided into two parts: Chapter 39 introduces
abstract process calculus, and Chapter 40 incorporates concurrency into Mod-
ernized Algol. The central theme is that concurrency is entirely a matter of inde-

4For this one needs free assignables, of course, otherwise the tuple cannot be returned from the
scope of the declaration.

23

terminacy. Although this is a commonly accepted idea, the usual treatments of
concurrency involve quite a lot more than just that. Why is that?

In Chapter 39 I develop Milner-style process calculus, starting with a simple
synchronization calculus based on signals. Two processes that, respectively and
simultaneously, assert and query a signal can synchronize on their complemen-
tary actions to take a silent action, a true computation step. The formulation
follows Milner in using labeled transition systems to express both the steps of
computation as silent actions,5 and the willingness to assert or query a signal
as polarized transitions labeled by that action. Contrary to Milner, instead of
having “names” and “co-names”, I have two polarities of actions indexed by
signal names.

Another difference from Milner is that I draw a distinction between pro-
cesses and events. An event is a sum of atomic events, which are continuations
conditioned on an action (assert or query a signal). A process is a parallel com-
position of atomic processes, the most important of which is synchronization
on an event. Making the separation avoids condundrums in Milner’s formal-
ism, such as intermixing of choice and parallel composition, that need not be
considered in a programming language context. In effect all choices are causal
in that they are mediated by the possibility of taking an action. (I suppose it
would be possible to admit spontaneous events, but I have not found a need
for it within the context of the book.)

One may then discuss the declaration of new signals, but no interesting is-
sues arise until message passing is introduced. So the next order of business is
to generalize signals to channels, which carry data, and which break the symme-
try between assertion and query of signals. Now channels have a sending and
a receiving side, with the sender providing the data and the receiver obtain-
ing it. Channels may be synchronous or asynchronous, according to whether
the sender is blocked until a receiver receives the message. The asynchronous
form is more general, at least in the presence of channel references, for one can
implement a receipt notification protocol corresponding to what is provided
by synchronous send.

In the π-calculus the only messages that can be sent along a channel are
other channels (or finite sequences of them in the so-called polyadic case). In-
stead, I choose to examine the question of the types of messages from the out-
set, arriving at the π-calculus convention as a special case involving recursive
and reference types. When channels are declared, the type of their data values
must be specified, and remains fixed for the lifetime of the channel. There is
no loss of generality in insisting on homogeneous channels, the heterogeneous
case being handled using sums, which consolidate messages of disparate types
into a single type with multiple classes of values. To mimic the π-calculus, I
consider a type of channel references, which are analogous to assignable references
as they arise in MA. The process calculus notion of scope extrusion captures the
distinction between scoped and (scope-)free channels found in MA.

The final step in the development of process calculus is the realization that

5Milner called these τ-transitions; I call them ε-transitions, as they are called in automata theory.

24

channels are nothing but dynamic classes in the sense of Chapter 33. There is
only one shared communication medium (the “ether” if you will) on which
one communicates dynamically classified values. The classifiers identify the
“channel” on which the message is sent, and its associated data constitutes
the data passed on that “channel.” By controlling which processes have ac-
cess to the constructor and destructor for a class one can enforce the integrity
and confidentiality, respectively, of a message. None of this has anything to do
with concurrency. Indeed, the entire matter is but one application of dynamic
classification. With that in hand, all that is left of process calculus is parallel
composition, which is indeterminacy of evaluation, and the transmission of
messages on the medium.

Chapter 40 is devoted to the integration of these ideas into a programming
language, called Concurrent Algol (CA), an imperative language with a modal
distinction between expressions and commands. Because assignables are de-
finable using processes, the commands are entirely concerned with dynamic
classification and synchronization. Two formulations of synchronization, non-
selective and selective, are considered. Non-selective communication resembles
the behavior of an ethernet transceiver: packets are drawn from the ether, and
are passed to the receiving process to dispatch on their channels and payloads.
A typical, but by no means forced, pattern of communication is to handle pack-
ets that one recognizes, and to re-emit those that one does not, exactly in the
manner of the aforementioned transceiver. Selective communication integrates
dynamic class matching so that the only packets received are those with a
known channel, and correspondingly known type of payload. Busy-waiting
is thereby avoided.

The formulation and proof of type safety for the concurrent language CA
in, to my knowledge, novel. The type system is structural; it makes no at-
tempt to ensure the absence of deadlock, nor should it.6 Consequently, one
must formulate the progress property carefully to allow for the possibility of
a process that is willing to communicate, but is unable to do so for lack of a
matching partner process. This is very neatly stated using labeled transitions:
a well-typed process that is not the terminal process is always capable of undertaking
an action. Spelled out, a well-typed, non-terminal process may either take a step
of computation (including a synchronization), or be capable of undertaking an
action (either a send or a receive). Theorem 40.3, which is paradigmatic for any
concurrent programming language, concisely summarizes the desired safety
property using labeled transitions.

24 Type Classes

The concept of a type class is often associated with the Haskell language, but
the concept was introduced by David MacQueen in his design of modules for
ML (see Milner et al. (1997) for the history.) As is explained in Chapter 44, a

6This would be a good use for type refinements, which are discussed in Chapter 25. Deadlock
is a matter of program behavior, not program structure.

25

type class is a descriptive signature, one that merely specifies the availability
of certain types and operations in a structure (module), whereas an abstraction
is prescriptive in that it specifies exactly what is to be visible in a structure.

The term “type class” in the Haskell language refers not only to the de-
scriptive form of signature described in Chapter 44, but also to a means of au-
tomatically deriving an instance of it based on a global context of declarations.
Instance declarations are simply functor declarations that build instances of a
target class from instances of the classes on which it depends. The automatic
instantiation mechanism composes such functors to obtain instances of a type
class based on circumstantial evidence. The techniques used rely on such sup-
positions as there being at most one linear ordering for a given type, which
is patently false and a common source of trouble. Dreyer et al. (2007) sepa-
rates the declaration of an instance from its use in a particular situation, which
avoids unnecessary suppositions and supports the smooth integration of the
module mechanisms described in the text.

References

Derek Dreyer, Robert Harper, and Manuel M. T. Chakravarty. Modular type
classes. In Proc 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Nice, France, January 2007.

S.J. Gould. Hen’s Teeth and Horse’s Toes. Norton, 1983. ISBN 9780393311037.
URL https://books.google.ca/books?id=EPh9jD0XwR4C.

Robert Harper. What, if anything, is a programming
paradigm? Cammbridge University Press Author’s Blog,
April 2017. URL http://www.cambridgeblog.org/2017/05/

what-if-anything-is-a-programming-paradigm/.

Shriram Krishnamurthy. Teaching programming languages in a post-linnaean
age. In ACM SIGPLAN Workshop on Undergraduate Programming Lan-
guage Curricula, 2008. URL https://cs.brown.edu/~{}sk/Publications/

Papers/Published/sk-teach-pl-post-linnaean/.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). The MIT Press, 1997.

Frank Pfenning. Church and Curry: Combining intrinsic and extrinsic typing.
In C.Benzmüller, C.Brown, J.Siekmann, and R.Statman, editors, Reasoning in
Simple Type Theory: Festschrift in Honor of Peter B. Andrews on His 70th Birthday,
Studies in Logic 17, pages 303–338. College Publications, 2008.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11(4):511–540, 2001.

John C. Reynolds. The essence of Algol. In Proceedings of the 1981 International
Symposium on Algorithmic Languages, pages 345–372. North-Holland, 1981.

26

https://books.google.ca/books?id=EPh9jD0XwR4C
http://www.cambridgeblog.org/2017/05/what-if-anything-is-a-programming-paradigm/
http://www.cambridgeblog.org/2017/05/what-if-anything-is-a-programming-paradigm/
https://cs.brown.edu/~{ }sk/Publications/Papers/Published/sk-teach-pl-post-linnaean/
https://cs.brown.edu/~{ }sk/Publications/Papers/Published/sk-teach-pl-post-linnaean/

	Paradigms
	Preliminaries
	Statics and Dynamics
	Partiality and Totality
	Functions First, or Not
	The Empty and Unit Types
	Static and Dynamic Classification
	Inductive and Coinductive Types
	Recursion in PCF
	Parallelism
	Laziness and Eagerness
	Self-Reference and Suspensions
	Recursive Types
	Dynamic Typing
	Subtyping
	Dynamic Dispatch
	Symbols and References
	Sorts of Symbols
	Exceptions
	Modalities and Monads in Algol
	Assignables, Variables, and Call-by-Reference
	Assignable References and Mutable Objects
	Types and Processes
	Type Classes

