
On The Type Structure of Standard ML �

Robert Harpery

Carnegie Mellon University

Pittsburgh, PA 15213

John C. Mitchellz

Stanford University

Stanford, CA 94305

January 10, 1992

Abstract

Standard ML is a useful programming language with a polymorphic type system and a

exible module facility. One notable feature of the core expression language of ML is that

it is implicitly typed: no explicit type information need be supplied by the programmer. In

contrast, the module language of ML is explicitly typed; in particular, the types of parameters

in parametric modules must be supplied by the programmer. We study the type structure

of Standard ML by giving an explicitly-typed, polymorphic function calculus that captures

many of the essential aspects of both the core and module language. In this setting, implicitly-

typed core language expressions are regarded as a convenient short-hand for an explicitly-typed

counterpart in our function calculus. In contrast to the Girard-Reynolds polymorphic calculus,

our function calculus is predicative: the type system may be built up by induction on type levels.

We show that, in a precise sense, the language becomes inconsistent if restrictions imposed by

type levels are relaxed. More speci�cally, we prove that the important programming features

of ML cannot be added to any impredicative language, such as the Girard-Reynolds calculus,

without implicitly assuming a type of all types.

�A preliminary version of this paper appeared in Proc. 15th ACM Symp. on Principles of Programming Languages,

1988, under the title \The Essence of ML."

ySuported in part by the Science and Engineering Research Council of the United Kingdom, and in part by the
Defense Advanced Research Projects Agency, monitored by the O�ce of Naval Research under contract N00014-84-
K-0415, ARPA Order No. 5404.

zSupported in part by an NSF PYI Award, matching funds from Digital Equipment Corporation, the Powell
Foundation, and Xerox Corporation; NSF grant CCR-8814921 and the Wallace F. and Lucille M. Davis Faculty
Scholarship.

1

Type Structure of Standard ML 2

1 Introduction

Various forms of typed �-calculus have become popular as theoretical models of programming
languages. One motivation for studying these elemental languages is that they provide some in-
sight into programming languages with similar typing features. For example, the Girard-Reynolds
second-order �-calculus seems useful for analyzing languages with polymorphic functions or ab-
stract data type declarations [Gir72, Rey74, MP88]. The richer type systems proposed by Martin-
L�of [Mar82], Constable [C+86], and Huet and Coquand [CH88] also provide formal logics for
reasoning about programs. This general line of research has a di�erent
avor from the original
Scott-Strachey approach to programming language semantics, since the meta-language of type the-
ory re
ects the type structure of the object languages studied. However, the long-term goals are
the same: a precise understanding of programming language constructs and a sound mathematical
basis for reasoning formally or informally about programs.

In \The Essence of Algol" [Rey81], Reynolds presents a study of Algol-60 in the denotational
style, contending that \Algol may be obtained from the simple imperative language by imposing a
procedure mechanism based on a fully typed, call-by-name lambda calculus." In addition to testing
the Scott-Strachey approach for programming language analysis, Reynolds' study gave an impor-
tant picture of Algol as the composition of several independent constituents. Using the framework
of type theory, we propose an analogous case study of the programming language Standard ML
[HMM86, MTH90], only the �rst steps of which are completed here. In this paper, we will describe
a typed �-calculus that encompasses many of the essential features of Standard ML and use this
to analyze some potential extensions of the language. We have chosen Standard ML as the basis
for this analysis because it is su�ciently well-developed to be interesting and useful as a \real"
programming language, and su�ciently well-designed to support detailed analysis. In a sequel to
this paper, we use the categorical techniques developed in [Mog91] to re�ne the calculus presented
here in a manner that clearly identi�es the compile-time/run-time distinction in Standard ML
[HMM90].

Standard ML is an updated version of the programming \meta-language" of the LCF sys-
tem [GMW79], comprising a core expression language with polymorphic functions [Mil85] and a
module language for de�ning interdependent program units [Mac85]. The core language is de-
signed around an automatic type inference algorithm that performs compile-time checking of \un-
typed" expressions. The module language is designed to support the organization of programs into
separately-compilable units, and involves a moderate amount of explicit type information.

The main focus of this paper will be the type system of Standard ML. To simplify the presen-
tation, we will omit exceptions and references; what is left is still quite interesting. The two main
areas of investigation will be the discrepancy between implicitly- and explicitly typed frameworks,
and the importance of separating the types into two distinct universes. With respect to the �rst
point, we will argue that the implicitly-typed core language is pro�tably viewed as a short-hand for
an explicitly-typed language. This simpli�es the semantics of the language, since only well-typed
expressions must have meaning, and allows us to study the implicitly-typed expression language
within the same framework as the module language. It is worth noting that although the semantics
is simpli�ed, there seems to be no signi�cant loss of generality in taking this point of view. We will
see that Milner's type inference model, as described in [Mil78], and the ideal model of [MPS86]
may be viewed as models of our explicitly-typed core calculus.

An important feature of the analysis is that our type system is strati�ed into levels, or universes ,
in the style of Martin-L�of's type theory [Mar82], and in keeping with the suggestions of [Mac86].
As in Martin-L�of's theory, our universes result in a predicative language, which means that the

Type Structure of Standard ML 3

types may be ranked in such a way that every value occurs with higher rank than any values on
which its existence or behavior is predicated. (For example, functions always occur at a higher rank
than their arguments.) The universe distinctions are faithful to the separation of monotypes from
polytypes in Milner's earlier work [Mil78, DM82], and allow us to show that implicit ML typing is
syntactically equivalent to our explicit typing rules. The predicative universes also distinguish our
calculus from both the implicit polymorphic typing of [Mit88, MPS86, Car85] and the explicitly-
typed polymorphic calculus of [Gir71, Gir72, Rey74]. In particular, the pure ML calculus without
recursion has classical set-theoretic models, while the Girard-Reynolds calculus does not [Rey84].

Some studies of ML typing (e.g., [Car85, Mit88, MPS86]) have suggested, in e�ect, that the
restrictions imposed by universes might be relaxed to allow the full second-order polymorphism of
the Girard-Reynolds calculus [Gir71, Gir72, Rey74]. However, these studies were generally based
on consideration of the ML core language alone, and did not take modules into account. We will
adopt the view of modules proposed by MacQueen, in which the main constructs are reduced to
the � and � types (the so-called \dependent" types) of Martin-L�of's type theory [Mac86]. Using
the typed �-calculus with these constructs, we are able to show that universes play an important
role.

Our examination of universes involves close study of a restricted subset of the language. In the
fragment of Standard ML without recursion or recursively-de�ned types, every expression evaluates
to a normal form, regardless of the order of evaluation. (The fact that no evaluator could continue
inde�nitely is called the strong normalization property.) This is what one would naturally expect,
since no construct explicitly provides unbounded search or recursion. However, we will show that
if the distinction between universes is removed, it becomes possible to de�ne a type of all types.
It follows from previous work on type : type, speci�cally, [Coq86, Gir72, How87, MR86], that
there exist recursion-free programs that cannot be evaluated to a normal form by any evaluation
strategy. As argued in [MR86], this alters the character of the language dramatically. In addition,
Cardelli [Car88a] argues that taking type : type has signi�cant practical disadvantages because it
eliminates the distinction between \compile time" and \run time" values. In particular, it is no
longer possible to determine, without evaluating arbitrary expressions, whether a given expression
denotes a type. This stands in the way of e�cient compile-time type checking. Therefore, we
believe that the separation of types into universes is essential to ML.

In this paper, we will not be concerned with evaluation order. The main reason is that for the
fragment of ML without recursion or generative constructs, full evaluation in any order produces the
same result. Consequently, our analysis of universes applies to both eager and lazy dialects of ML,
and any similar language based on any other evaluation strategy. In fairness, we should emphasize
that the relevance of type : type to programming remains a topic for further research. While it
seems undesirable for a language to provide two distinct methods of recursion, one directly and one
indirectly via type : type , we do not have clear-cut evidence that this is truly pathological. However,
in further study of type : type, many subtle and important issues remain to be investigated. For
example, we suspect that any study of representation independence [Rey83, MM85, Mit86a] or full
abstraction [Plo77, Sto88] would be complicated dramatically by a type of all types.

The next section contains a short summary of the usual type inference rules for the core language
of ML. In Section 3, an alternative, explicitly-typed core language is given. The two approaches
are proved equivalent in Section 4, and the semantics of the core language is discussed in Section
5. Sections 6 through 9.3 consider a full calculus encompassing the module language. A review of
modules is given in Section 6, followed by a reduction to � and � types in Section 7. Section 8 con-
siders the importance of universe distinctions and type : type. In Section 9 we give a brief overview
of the type-theoretic treatment of various type declarations, and of the \sharing" constraints of

Type Structure of Standard ML 4

MacQueen's module language. Concluding remarks appear in Section 10. All type systems are
de�ned formally in tables at the end of the paper.

Type Structure of Standard ML 5

2 Implicitly typed ML

Many studies of ML have focused on the type inference algorithm for the core expression lan-
guage [Mil78, DM82, MPS86, Wan84]. This algorithm allows the ML programmer to write, for
example,

let id(x)= xin . . .

automatically inferring the fact that the function id is a function from type t to t, for any t. Milner's
seminal paper [Mil78] describes the type inference algorithm and proposes a semantic framework
for justifying its behavior. In Milner's semantics, an untyped expression denotes some element of
an untyped value space, and a type denotes a subset of this space. Types are therefore viewed as
predicates expressing properties of untyped terms. One consequence of this view is that a given
term can be assigned a variety of types; the type inference algorithm allows the programmer to
enjoy the
exibility a�orded by this semantics.

The syntactic part of Milner's analysis is re�ned in [DM82], where an inference system for
assigning types to expressions is given. The type inference rules are proved sound by showing that
if it is possible to infer that expression e has type �, then the untyped meaning of e belongs to
the set denoted by �. The type inference algorithm is then treated as a decision procedure for the
inference system.

Milner's semantic analysis is elaborated in [MPS86, Car85], where the meanings of polymorphic
types are clari�ed and recursive types are given semantics (see also [Mit88]). In Milner's model,
the sets denoted by type expressions do not include a special error value of the domain, called
wrong. Consequently, the soundness of ML typing is often summarized by the slogan well-typed
expressions cannot go wrong [Mil78].

Although there are quite a few constructs in the core expression language of ML, the behavior
of the type checker may be understood by considering the fragment presented in [DM82], which we
will call Core-ML. The syntax of Core-ML is given by

e :: = x j ee j �x:e j letx= e in e;

where x may be any identi�er. The let expression form is taken as primitive because it has a
typing rule that is not derivable from the others. We will review the type inference algorithm for
Core-ML brie
y, so that we may later compare Core-ML with an explicitly-typed calculus.

We will use two classes of type expressions, monomorphic and polymorphic. In earlier work,
monomorphic expressions have been the type expressions without variables, and the polymorphic
expressions have had their type variables implicitly bound. Following Damas and Milner, we will
make the same intuitive distinction in a slightly di�erent way. We begin with some in�nite set of
type variables, an arbitrary collection of base types, and de�ne the monomorphic type expressions
(or monotypes) by

� :: = t j � j � ! �

where � may be any base type and t any type variable. In a monomorphic type expression � , a
type variable t stands for some unknown, monomorphic type. The polymorphic type expressions
(also called type schemes or polytypes) are de�ned by

� :: = � j 8t:�:

Intuitively, the elements of type 8t:� have type � for every possible value of the type variable t

(which will generally occur in �). The constructor 8 binds t in �, so that 8t:� = 8s:[s=t]�, where

Type Structure of Standard ML 6

[s=t]� denotes substitution of s for free occurrences of t in �, with renaming of bound variables to
avoid capture as usual. The purpose of the universal quanti�er is to distinguish between generic
type variables, which may be replaced by any monotype, and ordinary type variables, which denote
a speci�c, but indeterminate, monotype. Note that every monotype is regarded as a polytype.
This is merely a technical convenience, for one could equally well introduce an explicit \lifting" of
monotypes, writing, say, * � for � regarded as a polytype.

In the Damas-Milner system, the assertion that a Core-ML expression e has type � is written
e:�. Since the type of an expression will generally depend on the types given to free ordinary
variables, we will use typing statements that incorporate such assumptions. A type assignment, or
context, �, is a �nite sequence of bindings of the form x:�, with no variable x occurring twice. It
is useful to think of a context � as a partial function from variables to types and write �(x) for
the unique � with x:� in � (if such a binding exists). We will also use the notation Dom(�) for
the set of expression variables occurring in �, and write �; x:� (where x 62 Dom(�)) for the type
assignment obtained by appending the indicated binding to �. A typing is a triple of the form
� . e : �, which may be read, \the expression e has type scheme � in context �."

The Damas-Milner type assignment system is given in Table 1. We write `DM � . e : � if
� . e : � is derivable in this system, and say that an expression e is typable in a context � i� there
is a type scheme � such that `DM � . e : �.

A type � is a substitution instance of �0 i� there is a substitution S of monotypes for type
variables such that S(�0) = �, where equality is modulo renaming of bound variables. A monotype
� is a generic instance of a polytype � = 8t1 . . . tn:� 0, written � v � , i� there is a substitution S of
monotypes for t1 . . . tn such that S(�

0) = � . For polytypes, we say � v �0 if every generic instance of
�0 is also a generic instance of �. Syntactically, this means that there is an � variant 8s1 . . .sk :� 0 of
�0 such that no si (1 � i � k) occurs free in � and � v � 0; see [DM82, Mit88] for further discussion,
and [Mit88] for an interpretation of generic instantiation as semantic containment. When � v �0,
we say � is more general than �0. It is worth mentioning that the generic instance relation is
preserved by substitution, i.e., if � v �0, then S(�) v S(�0) for any substitution S.

The following technical lemma summarizes some useful properties of the Damas-Milner system.

Lemma 2.1 1. If `DM � . e : �, then `DM �0 . e : � whenever �0(x) v �(x) for x free in e.

2. If `DM � . e : � and S is any substitution, then `DM S(�) . e : S(�).

An important property of the Damas-Milner system is that every typable expression has a
principal typing, from which all other typings may be e�ciently derived. A typing � . e : � is a
principal typing for expression e if `DM � . e : � and, whenever `DM �0 . e : �0, we have � v �0

and �0(x) v �(x) for every x occurring in �. In other words, the principle typing for e must be
derivable, and it must give the most general type in the \least general" context.1

Theorem 2.2 (Damas-Milner) If an untyped Core-ML expression e is Damas-Milner typable,
then there exists a principal typing � . e : �. Furthermore, there is an algorithm which, given e,
computes the principle typing if it exists, and fails otherwise.

It is shown in [KMM91, KTU90] that any algorithm which decides whether an untyped Core-ML
term has a type necessarily requires exponential time for in�nitely many terms. It follows that
computing the principal type of a Core-ML term requires exponential time.

1This formulation of principal typing di�ers from [DM82] in that the latter de�nes the principal typing with
respect to a given context. Further discussion of this point may be found in [Lei83].

Type Structure of Standard ML 7

3 Explicitly Typed ML

In contrast to the Milner-style analyses of ML, we will view ML programs as being explicitly typed
in the sense that a given term has at most one type in any given context (modulo type equality). To
achieve this, we will modify the syntax of terms to include explicit type information. In particular,
a type is assigned to the bound variable of a �-abstraction at the point where it is bound, and the
type abstraction and instantiation associated with polymorphism are made explicit. We view the
untyped concrete syntax of ML as a convenient shorthand for an explicitly-typed abstract syntax,
with the type inference algorithm bridging the gap. The main reason for taking this position is that
the implicitly-typed approach does not scale up to the full language. For example, ML includes
type constraints, type de�nitions, and an explicitly-typed modules language.

In addition, we choose to view ML as an explicitly-typed language because it provides a better
basis for studying equational properties of the language such as representation independence and
full abstraction. (See [Rey83, Sto88] for discussion of these topics.) Viewing ML as an explicitly-
typed language also leads to technical simpli�cations in the semantics of the language. Without
explicit typing, the semantics would become somewhat more complicated, since we would need
a \universal domain"-like interpretation for untyped lambda abstraction, type abstraction, and
type constructors like ! and �. Moreover, a semantics for an implicitly-typed language would
entail identifying any two expressions that are equal as untyped terms. It is worth remarking that
there is no semantic loss of generality in focusing on the explicitly-typed language, since models
of the implicitly-typed system, such as Milner's original domain interpretation [Mil78] and related
structures [MPS86], give rise to models of the explicitly-typed system in a natural way. (See
Section 5.)

We therefore introduce an explicitly-typed function calculus, called Core-XML, for core explicit
ML. This calculus is essentially equivalent to Core-ML, the implicitly-typed language presented
above. The types of Core-XML fall into two classes, corresponding to the monomorphic and
polymorphic types of Core-ML. To introduce some useful terminology, we will say that � is a type
of the �rst universe, and write � :U1, if � is built up from base types and type variables using the
function-space constructor !. This means that � :U1 i� � is a monomorphic type expression of
Core-ML.

The polymorphic type expressions of Core-ML quantify over the monomorphic types. In
Core-XML this corresponds to universal quanti�cation over the �rst universe, and so it is nat-
ural to regard these types as being of a \higher" second universe. We will say that � is a type of
the second universe, and write �:U2, if � has the form �t1:U1: . . . :�tn:U1:� , where � : U1. Thus U2

consists of exactly the Core-ML polymorphic types, except that we will write � instead of 8, and
the universe of each type variable is written explicitly. This is to allow a smooth generalization to
full XML with type variables ranging over both universes, a step we will take in Section 7. As a
matter of convenience, we follow Damas and Milner and consider every monomorphic type to be a
polymorphic type, and hence we e�ectively have U1 � U2. identi�cation, and introduce to U2.

The presentation of Core-XML is simpli�ed by adopting the meta-variable conventions used in
the previous section, so that �; �1; . . . will always be U1 types, and �; �1; . . . will be U2 types. We
will not explicitly declare type variables in contexts. Rather, we assume at the outset that all type
variables r; s; t; . . . denote elements of U1.

The un-checked pre-terms of explicitly typed Core-XML are given by the grammar,

M :: = x j MN j �x:�:M j M [�] j �t:M j letx:�=M inN;

where metavariables M and N range over pre-terms. In this grammar, x may be any term variable,
MN is the application of function M to argument N , �x:�:M denotes the function de�ned by

Type Structure of Standard ML 8

treating M as a function of variable x, M [�] is the application of polymorphic function M to type
argument � , and �t:M is the polymorphic function obtained by treating M as a function of type
variable t. Following Damas-Milner, we retain let as a primitive construct in Core-XML since its
typing rule is not derivable from the other rules. The value of expression letx:�=M inN is the
value of N when x is given the value of M . In the full XML system, let will be de�nable in terms
of abstraction and application, and therefore will be eliminated.

The type checking rules of the language are listed in Table 2. To distinguish implicit Core-ML
typing from explicit Core-XML typing, we will write `X � . M : � if the typing � . M : � is
derivable from the Core-XML typing rules. The essential di�erence between `DM and `X is that
the gen and spec rules of the implicit system are replaced by rules for explicit type abstraction
and type application. A pre-term M is a term of Core-XML if `X � . M : � for some � and �.

The di�erence between Core-XML and the Girard-Reynolds polymorphic �{calculus [BMM90,
Rey74, Gir72] lies in the distinction between universes U1 and U2. Rule tapp of Core-XML only
allows a type application � . M [�] : [�=t]� when � is a type of the �rst universe U1. However, in the
Girard-Reynolds calculus, there is no universe distinction, and we can apply a term of polymorphic
type to any type. One consequence of the universe distinction is that Core-XML has classical
set-theoretic models, while the Girard-Reynolds calculus does not [Rey84].

The language Core-XML is closely related to several explicitly-typed function calculi, in particu-
lar Martin-L�of's intensional type theory [Mar73], the AUTOMATH languages [DB80], the Calculus
of Constructions [CH88], and the type theory of LF [HHP87]. Since Core-XML is based on a pred-
icative notion of universe, it is most closely related to Martin-L�of's early type theories, except
that we do not, at this stage, take U1 : U2. It is worth remarking that Martin-L�of's later type
theory [Mar82, Mar84], and the NuPRL type theory [C+86], are type assignment systems, and
hence are more closely related to the type system de�ned by Damas and Milner for the study of
ML.

Type Structure of Standard ML 9

4 Equivalence of Explicit and Implicit Systems

In this section, we will show that implicitly-typed Core-ML and explicitly-typed Core-XML are
essentially equivalent. A related correspondence between implicit ML typing and Girard-Reynolds
typing restricted by \rank," which is similar to our universe restriction, was suggested earlier in
[Lei83, Section 7]. However, the statement of Theorem 7.1 in that paper is incorrect, since rank 2
typing of lambda terms allows us to type �-abstractions polymorphically, whereas the typing rules
of Core-ML do not. It is to avoid precisely this problem that we have included let in the syntax
of Core-XML.

The type erasure M� of an explicitly typed term M is de�ned as follows:

M� =

8>>>>>>><
>>>>>>>:

x if M � x
M�

1M
�
2 if M �M1M2

�x:M�
1 if M � �x:�:M1

M�
1 if M � �t:M1

M�
1 if M �M1[�]

letx=M�
1 inM

�
2 if M � letx:�=M1 inM2

Theorem 4.1 If `X � . M : �, then `DM � . M� : �.

Proof. The proof is by induction on derivations. The only nontrivial case is the tapp rule,
where the theorem follows from the fact that 8t:� v [�=t]� for any type � .

Theorem 4.2 If `DM � . e : �, then there exists an explicitly typed term M such that M� � e
and `X � . M : �. Furthermore, M can be computed e�ciently from a proof of � . e : �.

Proof. We use induction on typing derivations.

var Take M to be x.

gen By the induction hypothesis there exists an N such that N� � e and `X � . N : �. Since t

does not occur free in �, we may apply tabs to obtain `X � . �t:N : 8t:�. Take M to be
�t:N , and observe that M� � N� � e.

spec By the induction hypothesis there exists an N such that N� � e and `X � . N : �, with
� v �0. We know that � has the form � � 8t1 . . . tn:� , and similarly for �0. Choose an
�-variant 8s1 . . .sk :�

0 of �0 such that no si (1 � i � k) occurs free in � or �. Then there is a
substitution S acting on t1 . . . tn such that S(�) = � 0. By n applications of tapp followed by
k applications of tabs, we obtain

`X � . �s1 . . .sk:N�1 . . .�n : 8s1 . . .sk :[�1 . . .�n=t1 . . . tn]�

where �i = S(ti) (1 � i � n). But by the choice of S, this is

`X � . �s1 . . .sk :N�1 . . .�n : �
0:

Take M � �s1 . . .sk :N�1 . . .�n, and observe that M� � N� � e.

abs By induction we have `X �[x:�] . N : � 0 for some N such that N� � e, and thus `X � .
�x:�:N : � ! � 0. Take M to be �x:�:N .

Type Structure of Standard ML 10

app By induction we have `X � . N : � 0 ! � and `X � . P : � 0 for some N and P such that
N� � e and P � � e0. Take M � NP , and observe that M� � N�P � � ee0 and `X � . M : � ,
as desired.

let By induction `X � . N : � and `X �[x:�] . P : � 0 with N� � e and P � � e0. Take
M � letx:�=N inP , and observe that M� � let x=N� inP � � letx= e in e0, and
`X � . M : � 0.

Theorem 2.2 (from [DM82]) states that there is an algorithm which �nds, for any typable
expression e, a principal typing for e. It is a simple matter to modify this algorithm so that
it produces as well a derivation of the principal typing in the Damas-Milner system. Applying
Theorem 4.2, we obtain an algorithm X that, given a typable expression e, yields an explicitly
typed term M such that `X � . M : � (and fails otherwise). Algorithm X inserts type labels on
�'s and let's, type abstractions on all let-bound expressions, and type applications at all uses of
identi�ers whose type is of the form 8t1 . . . tn:� . For example, the explicitly-typed term produced
from

let I =�x:x inII

is
�t:let I :�t:t! t=�t:�x:t:x inI [t! t](I [t]):

Note that the principal type of let I =�x:x inII is 8t:t ! t, and �t:t!t is the type of the
explicitly-typed term.

Type Structure of Standard ML 11

5 Semantics of Core-XML

5.1 Introduction

The Core-XML language has a straightforward Henkin-style model theory that is similar to the
semantics of second-order lambda calculus described in [BM84, BMM90, Mit88], except that we
have two universes instead of one collection of types. Categorical semantics may also be developed,
along the lines of [Mog91, HMM90], which resemble the indexed-categorical frameworks of [See84,
See87]. However, we will not discuss categorical semantics in this paper. We will summarize
some basic ideas regarding Henkin-style models primarily to emphasize that there is a semantic
connection between Core-ML and Core-XML, as well as a syntactic one. In particular, structures
such as the so-called ideal model of [Mil78, MPS86] provide models of Core-XML. A tangential
reason to consider the semantics of Core-XML is that when U1 and U2 are isomorphic, we have a
model of the impredicative Girard-Reynolds calculus (c.f. [Mit90]). Therefore, the semantics of
Core-XML may be considered more basic than the semantics of the Girard-Reynolds calculus.

An interesting choice in giving semantics to Core-XML lies in the interpretation of the contain-
ment U1 � U2. While it seems syntactically simpler to view every element of U1 as an element
of U2, there may be some semantic advantages of interpreting U1 � U2 as meaning that U1 may
be embedded in U2. With appropriate assumptions about the inclusion mapping from U1 to U2,
this seems entirely workable, and leads to a more
exible model de�nition than literal set-theoretic
interpretation of U1 � U2.

5.2 Model de�nition

Since Core-XML has two collections of types, U1 and U2, with U1 � U2, a Core-XML model A
will have two sets UA

1 and UA
2 with UA

1 � UA
2 . For each element a 2 UA

2 , we will also have a set
Doma of elements of type a. (Since UA

1 � UA
2 , this also gives us a set Doma for each a 2 UA

1 .)
In addition, we need some way to interpret type expressions with ! and 8 as elements of U1 or
U2, and some machinery to interpret function application. The following model de�nition is in the
same spirit as [BMM90].

A frame A for Core-XML is a tuple

A = hU ; dom; f�a;b;	fg; Ii;

where

� U = fUA
1 ; U

A
2 ; [U

A
1 ! UA

2];!
A;�Ag speci�es sets UA

1 � UA
2 , a set [UA

1 ! UA
2] of functions

from UA
1 to UA

2 , a binary operation !A on UA
1 and a map �A from [UA

1 ! UA
2] to U

A
2 .

� dom = fDoma j a 2 UA
2 g is a collection of sets indexed by types,

� f�a;b;	fg is a collection of functions, with one �a;b for every pair of types a; b 2 UA
1 from

the �rst universe, and one 	f for every function f 2 [UA
1 ! UA

2] mapping the �rst universe
to the second.

Each �a;b must be a bijection

�a;b : Dom
a!b �! [Doma �! Dom b]

between Doma!b and some collection [Doma �! Dom b] of functions from Doma to Domb.
Similarly, each 	f must be a bijection

	f : Dom
�f �! [

Y
a2U1

:Domf(a)]

Type Structure of Standard ML 12

between Dom�f and some subset [
Q
a2U1

:Domf(a)] of the cartesian product
Q
a2U1

:Domf(a).

� I : Constants ! [a2U2
Doma assigns a value to each constant symbol, with I(c) 2 Dom [[�]] if

c is a constant of type �2.

This concludes the de�nition.
If A is an Core-XML frame, then an A-environment is a mapping

� : Variables �! (UA
1 [

[

a2UA
2

Doma)

such that for every type variable t, we have �(t) 2 UA
1 . The meaning [[�]]� of any type expression

� in environment � is straightforward, as in [BMM90].
If � is a context, then � satis�es �, written � j= �, if �(x) 2 Dom [[�]]� for every x:� 2 �. The

meaning of a term `X � . M : � in environment � j= � is de�ned by induction as follows.

[[� . x : �]]� = �(x)
[[� . MN : �]]� = �a;b[[� . M : �!�]]� [[� . N : �]]�;

where a = [[�]]� and b = [[�]]�
[[� . �x:�:M : �!�]]� = ��1a;b(f) where f is the function

f(d) = [[�; x:� . M : �]]�[d=x] all d 2 Doma;

a = [[�]]� and b = [[�]]�
[[� . M� : [�=t]�]]� = 	f [[� . M : �t:�]]� [[�]]�;

where f(a) = [[�]]�[a=t] all a 2 UA
1 ;

[[� . �t:U1:M : �t:�]]� = 	�1
f (g) where f and g are the functions

g(a) = [[� . M : �]]�[a=t] all a 2 UA
1 ; and

f(a) = [[�]]�[a=t] all a 2 UA
1

An Core-XML frame is an environment model if [[� . M : �]]� exists, as de�ned above, for every
well-typed term � . M : � and every � j= �. For further discussion of this style of environment
model de�nition, see [BMM90].

5.3 Equational Soundness and Completeness

Equations have the form � . M = N : �, where M and N are terms of type � (in the context
�). The equational proof system of Core-XML is similar to that of the Girard-Reynolds calculus
[Gir71, Rey74, BMM90], with the following additional axiom for let:

� . (letx:�=M inN) = [N=x]M : �

A complete presentation of the equational system for Core-XML is omitted here since it is an
obvious fragment of the equation calculus for XML (which is presented below.)

It is easy to show that in every model, the meaning of each term has the correct semantic type.

Lemma 5.1 (Type Soundness) Let A be a Core-XML model, � . M : � a well-typed term, and
� j= � and environment. Then

[[� . M : �]]� 2 Dom [[�]]�

2Each constant of the language must be given a type. The type associated with any constant must be a closed
type expression (without free variables), so that the semantic type of the constant symbol is independent of the
environment.

Type Structure of Standard ML 13

In addition, the methods of [BMM90] may be used to show that the equational proof system is
sound and complete for models that do not have empty types. We also expect that the methods
of [MMMS87] may be used to prove equational completeness for models that may have empty
types, and that the approach of [MM91] will yield a completeness theorem for Kripke-style models,
without making any assumptions about type inhabitation.

5.4 Examples of Models

Since the only di�erence between Core-XML and the Girard-Reynolds second-order calculus is the
distinction between universes, every second-order model may be viewed as a Core-XML model with
U1 = U2. Consequently, Core-XML may be interpreted in the domain-theoretic and recursion-
theoretic models discussed in [ABL86, BMM90, Gir72, Tro73, McC79, Mit86b]. One di�erence
between the languages, however, is that Core-XML has classical set-theoretic models, while the
Girard-Reynolds calculus does not [Rey84]. In fact, any model of ordinary (non-polymorphic) typed
lambda calculus may be extended to a model of Core-XML by a simple set-theoretic construction.

5.4.1 Set-theoretic models

If we begin with some model A = hUA
1 ;!

A; fDoma j a 2 UA
1 g; Ii for the U1 types and terms,

we can extend this to a model for all of Core-XML using standard set-theoretic cartesian product.
For any ordinal �, we de�ne the set [U2]� as follows

[U2]0 = U1

[U2]�+1 = [U2]� [f
Q
a2U1

: f(a) j f : UA
1 ! [U2]� g

[U2]� =
S
�<�[U2]� for limit ordinal �

Note that for any �, the set [U2]� contains all cartesian products indexed by functions from

[U1 ! U2]� =
[
�<�

U1 �! [U2]� :

The least limit ordinal ! actually gives us a model. The reason for this is that every U2 type
expression � of Core-XML is of the form � � �t1:U1 . . .�tk :U1:� for some � :U1. It is easy to show
that any type with k occurrences of � has a meaning in [U2]k. Consequently, every type expression
has a meaning in [U2]!. This is proved precisely in the lemma below. To shorten the statement of
the lemma, we let An be the structure obtained from a U1 model A by taking

[U1 ! U2]n =
[
k<n

U1 ! [U2]k

and U2 = [U2]n

Lemma 5.2 Let � . M : � be any well-typed Core-XML expression, with � � �t1 . . .�tk :� ,
and such that in the derivation of � . M : �, every type of every subterm has no more that n
occurrences of the quanti�er �. Then for any environment � mapping variables into a U1 structure
A, the meaning [[� . M : �]]� exists and is well-de�ned in the structure An.

The lemma is proved by �rst showing that every � � �t1 . . .�tk :� with k < n has a meaning in
An, and then using induction on terms to prove the lemma.

While stage ! yields a model in which �t:U1:� is interpreted as ordinary set-theoretic cartesian
product over U1, the set of functions [U1 ! U2]! is not necessarily all set-theoretic functions from

Type Structure of Standard ML 14

U1 to U2 = [U2]!. In order to get a truly full set-theoretic model, we may have to consider much
larger ordinals. If we assume the existence of an inaccessible cardinal, then induction up to any
inaccessible cardinal that is larger than the cardinality of any set in the given U1 model, including
U1, yields a full set-theoretic model.

5.4.2 Partial equivalence relation models

One class of models that is pertinent to the development of the last few sections is obtained by
interpreting types as partial equivalence relations (PER's) on an applicative structure (see [Mit86b]
for further discussion and references.) The ideal model of [MPS86], for example, can be viewed as
a PER inference model, as de�ned in [Mit88], by replacing each ideal I with the partial equivalence
relation I � I . By the results of [Mit86b], this gives us a second-order model, and hence a model
of Core-XML. A similar Core-XML model can be constructed from Milner's original description
[Mil78], taking U1 to be the collection of monotypes, and de�ning the elements of U2 (the polytypes)
by quanti�cation over U1. In either case, we obtain a Core-XMLmodel with a degenerate equational
theory (all terms of the same type become equal), but type membership interpreted as expected.
Thus a consequence of the type soundness theorem for Core-XMLmodels (see, e.g., [Mit86b, Mit88])
is that Core-ML expressions \cannot go wrong." Since the details are essentially straightforward,
given the techniques in [Mit86b, Mit90], for example, we leave the precise construction to the
reader.

Type Structure of Standard ML 15

5.5 Coherence and the semantics of Core-ML

Since we view the syntax of implicitly-typed Core-ML as an abbreviation for explicitly-typed
Core-XML, a natural way to give semantics to Core-ML is by inserting type information into
terms, and giving semantics to the resulting Core-XML expressions in the models described in this
section. While this may seem straightforward, there is one subtle issue that must be brought out.
This is the problem of coherence: since there are many ways to insert type information into an
implicitly typed term, we must ask whether the meaning of an implicitly typed Core-ML term is
uniquely determined. In other words, do we get di�erent semantic interpretations depending on the
way we assign types to subexpressions? A well-taken criticism of our approach, on these grounds,
appears in [Oho89]. Another paper which discusses the general issue of coherence is [BTCGS91].

To avoid confusion, we will make a few de�nitions. We say a function R from Core-ML to
Core-XML is a type reconstruction function if, for every `DM � . e : � , we have R(� . e : �) =
� . M : � with `X � . M : � and M� = e, where M� is the type erasure of M de�ned in Section
4. If R is a set of reconstruction functions, then an R-meaning of a Core-ML term � . e : � in a
Core-XML model A is the meaning of R(e) in A, for some R 2 R. We say that a model A and set
R of reconstruction functions are coherent if all R meanings of a Core-ML term in A are identical.
A general goal in giving a meaning to Core-ML terms in a Core-XML model is that the meanings
should be R coherent, for some reasonable class of reconstruction functions.

For the pure languages of Core-ML and Core-XML described in this paper, it seems natural
to prefer models that are coherent for the class of all type reconstruction functions. Among the
examples given in Section 5, the partial equivalence relation models are coherent for all type
reconstruction functions, but set-theoretic models and models of the Girard-Reynolds second-order
lambda calculus may not be. An example illustrating the failure of coherence for terms that have
free polymorphic variables is given in [Oho89]. However, it is not hard to show that coherence
holds for all closed terms in all models, using the strong normalization property of reduction (see
[Bar84, Mit90]).

A caveat in future work on ML is that when we include features such as recursion, references
and exceptions, it is important to consider the order of evaluation. Since the evaluation order
used in ML is eager, or call-by-value, some equational principles that are sound for the Core-XML
models described in this section will fail. Since the coherence or lack of coherence of a model
depends on its equational theory, we cannot expect that the semantic interpretation of implicitly
typed terms in an explicitly typed way will be coherent for arbitrary type reconstruction functions.
A particular example that may be telling for those familiar with ML is a term of the form

letx= ref nil in . . . 3::(!x) . . . 5::(!x) . . .

with all occurrences of x used at the same type. (The expression y::(!x) is ML notation for
the list obtained by adding y to the front of the list stored in reference cell x.) If we assume
that nil :8t: list(t) is a polymorphic list constant and ref :8t: t!ref (t) creates a reference of any
type, then the let-bound variable x in this term may have type 8t: ref (list(t)) or any instance
of this polymorphic type. Since the only type that x must have is ref (list(int)), we have type
reconstructions of the following forms:

letx:8t: ref (list(t)) =�t: (ref list(t)) (nil t) in . . . 3::(!(x int)) . . . 5::(!(x int)) . . .

letx:ref (list(int)) =(ref list(int)) (nil int) in . . . 3::(!x) . . . 5::(!x) . . .

If we interpret call-by-value so that an expression beginning with �t is not evaluated until it is
applied to an argument, then these two expressions have very di�erent meaning: in the �rst, two

Type Structure of Standard ML 16

list cells are created, and in the second, only one. Since no sensible equational theory would identify
these two programs, it is not possible to have a coherent semantics for any class of reconstruction
functions that allows both of these possibilities.

Type Structure of Standard ML 17

6 The ML Module Language

In this section we brie
y review the organization of the Standard ML modules system [Mac85,
MTH90, MT91]. The basic entities of the Standard ML module system are structures, signatures
and functors. Roughly speaking, a structure is a packaged environment, assigning types to type
identi�ers, values to value identi�ers, and structures to structure identi�ers. Signatures are a form
of \type" or \interface" for a structure, specifying type information for each of the components of
the structure. If a structure satis�es the description given in a signature (in a sense to be outlined
below), the structure is said to \match" that signature; a given structure will, in general, match
a variety of distinct signatures. Functors are functions mapping structures to structures. Since
ML does not support higher-order functors (i.e., functors taking functors as arguments or yielding
functors as results), there is no need for functor signatures.

Structures are denoted by structure expressions, the basic form of which is a sequence of dec-
larations delimited by keywords struct and end. Structures are not \�rst-class" in that they may
only be bound to structure identi�ers or passed as arguments to functors. We will see that this a
universe distinction, and not an ad hoc restriction of the language. The following declaration binds
a structure to the identi�er S:

structure S =

struct

type t = int

val x : t = 3

end

The structure expression following the equals sign de�nes an environment mapping t to int and
x to 3, and binds this environment to the identi�er S. In Standard ML this packaged environ-
ment is \timestamped" when the declaration is elaborated, marking it with a unique name that
distinguishes it from all other environments, regardless of their internal structure. Such structure
expressions are therefore said to be \generative" since each elaboration may be thought of as \gen-
erating" a new structure. The reason for making structure expressions generative in this sense is
that the modules language provides a form of version control based on specifying that two possibly
distinct structures or types must be equal. Since semantic equality of structures is undecidable,
timestamps are used as a practical (and e�ciently decidable) criterion for structure equality. We
will ignore the issue of generativity in what follows, but will return to it in Section 9.3.

The components of a structure are accessed by quali�ed names, using a syntax reminiscent
of record access in many languages. For instance, in the presence of the above binding for the
structure identi�er S, the identi�er S.x refers to the x component of S, and hence evaluates to
3. Similarly, S.t refers to the t component of S, and is equivalent to the type int during type
checking. This transparency of type de�nitions distinguishes ML structures from abstract data
type declarations (see [Mac86, MP88] for related discussion).

Signatures are a form of \type" or \interface" for structures, and may be bound to signature
identi�ers using a signature binding, as follows:

signature SIG =

sig

type t

val x : t

end

Type Structure of Standard ML 18

This signature describes the class of structures having a type component, t, and a value component,
x, whose type is the type bound to t in the structure. Since the structure S introduced above
satis�es these conditions, it is said to match the signature SIG. The structure S also matches the
following signature SIG': de�ned above:

signature SIG' =

sig

type t

val x : int

end

This signature is matched by any structure providing a type, t, and a value, x, of type int, which
is indeed the case for the structure S. Note, however, that there are structures which match SIG,
but not SIG', namely any structure that provides a type other than int, and a value of that type.

In addition to ambiguities of this form, there is another, more practically-motivated, reason
why a given structure may match a variety of distinct signatures. In ML signatures may be used
to provide distinct views of a structure by a process of ascription. The main idea is that the
signature may specify fewer components than are actually provided by the structure. The process
of ascription introduces a suitable \thinning" coercion that eliminates the additional components
of the structure. For example, we may introduce the signature

signature SIG'' =

sig

val x : int

end

and subsequently de�ne a view, T, of the structure S by writing

structure T : SIG'' = S

It should be clear from our discussion that S matches the signature SIG'' since it provides an
x component of type int. The presence of the signature expression SIG'' in the binding for T

causes the t component of S to be removed so that subsequently only the identi�er T.x is available;
the t component of S is not propagated to T, so that the identi�er T.t is unde�ned. To simplify
the development we do not detail the signature matching process, and instead regard structures as
providing a unique signature describing each component. In this sense we regard signature matching
as a convenience similar to that a�orded by the type inference algorithm for the core language. For
further discussion of signature matching, we refer the reader to [HMT87, Tof88, MTH90].

Discussion of ML \sharing" speci�cations is deferred to Section 9.3 below.
Functors (which are functions mapping structures to structures) are introduced using a syntax

similar to that found in many programming languages:

functor F (S : SIG) : SIG =

struct

type t = S.t * S.t

val x : t = (S.x,S.x)

end

This declaration introduces a functor F that takes as argument a structure matching the signature
SIG, and yields as result a structure matching the same signature. (In Standard ML the parameter

Type Structure of Standard ML 19

signature is mandatory, but, as a notational convenience, the result signature may be omitted, with
the default obtained by an extension of the type inference algorithm for the core language.) When
applied to a suitable structure S, the functor F yields as result the structure whose type component,
t, is bound to the product of S.t with itself, and whose value component, x, is the pair both of
whose components evaluate to the value of S.x.

By making use of free structure variables in signatures, certain forms of dependency of functor
results on functor arguments may be expressed. For example, the following declaration speci�es
the type of y in the result signature of G in terms of the type component t of the argument S:

functor G (S : SIG) : sig val y : S.t * S.t end =

struct

val y = (S.x,S.x)

end

This formulation of dependent types is consistent with the account given in [Mac86], and is ac-
counted for similarly in our model of ML.

Type Structure of Standard ML 20

7 Full XML

7.1 Syntax

In this section we will extend Core-XML to a function calculus XML by adding general constructs
that allow us to describe the features of the previous section. Following [Mac86], we will use general
sums and products in the style of Martin-L�of's type theory [Mar82] to model the modules system.
While general sums (also called \strong sums;" see [How80]) are closely related to structures, and
general cartesian products seem necessary to capture dependently-typed functors, the language
XML will be somewhat more general than ML. For example, while an ML structure may contain
polymorphic functions, there is no direct way to de�ne a polymorphic structure (i.e., a structure
that is parametric in a type) in the implicitly-typed programming language. This is simply because
there is no provision for explicit binding of type variables. However, polymorphic structures can be
\simulated" in ML by using a functor whose parameter is a structure containing only a type binding.
In XML, by virtue of the uniformity of the language de�nition, there will be no restriction on the
types of things that can be made polymorphic. For similar reasons, XML will have expressions
corresponding to higher-order functors and functor signatures, both of which would be useful
additions to the language. In Section 9.3, we will discuss the addition of sharing constraints.

Intuitively, general sums and products correspond to in�nitary disjoint union and Cartesian
product constructions in set theory. If � is a type, and �0 is a family of types indexed by �, then
the general product type, �x:�:�0(x), is a set of functions f such that f(x) is an element of �0(x)
for every x in �. Note that the range type depends on the domain element; for this reason general
products are sometimes called \dependent" products. The general sum type, �x:�:�0(x), consists
of pairs p such that fst(p) is an element of �, and snd(p) is an element of �0(fst(p)) (where fst and
snd are the �rst and second projections). Note that the type of the second component is expressed
as a function of the �rst component: general sums are a form of \dependent type".

Unfortunately, general products and sums complicate the formalization of XML considerably.
Since a structure may appear in a type expression, for example, it is no longer possible to describe
the well-formed type expressions in isolation from the elements of those types. This also makes the
well-formed contexts di�cult to de�ne. Therefore, we will de�ne XML by giving a set of inference
rules for determining the well-formed contexts, types and terms, in the style of Automath [DB80],
Martin-L�of [Mar82], and LF [HHP87]. The un-checked pre-terms of XML are given by the following
grammar:

M :: = U1 j U2 j triv j M !M j �x:M:M j �x:M:M

j x j � j �x:M:M j MM j �x:M:M j M [N]
j hx:�=M;M :�0i j fst(M) j snd(M)

The metavariables M , N , and P range over the pre-terms. We also use � and � to range over
pre-terms, particularly when the term is intended to be a type. Following Cardelli [Car88b], we use
an explicitly \dependent" form of ordered pair, hx:�=M;N :�0i, in which the variable x is bound
in N and �0. We no longer include let as a primitive construct of the language since it is de�nable
using abstraction over the polymorphic type � : U2 as (�x:�:N)M .

The type checking rules for XML appear in Tables 3 through 7. These rules refer to an equational
theory of well-typed terms that appears in Tables 8 through 11.

As in Core-XML the universes of XML are cumulative in the sense that every U1 type is a U2

type as well. This simpli�es the system somewhat, and, as we shall see below, is not signi�cantly
di�erent from a system with an explicit inclusion of U1 into U2. Another feature of our type system
is the treatment of ordered pairs of general sum type. The principal advantage of treating the
pairing operator as a binding operator is that it makes it simpler to retain explicit typing, for the

Type Structure of Standard ML 21

range type of the dependent sum is explicit in the notation. Without this information, the type of
the pair cannot be recovered. The same phenomenon gives rise to the non-uniqueness of signatures
in ML. The relation to the ordinary pairing operator is made clear by the equality axioms for pairs:
the second projection replaces x in N byM , so that \externally" they behave like ordinary ordered
pairs.

7.2 Equations and reduction

The equational proof system for XML is given in Tables 8 through 11. If we direct the equational
axioms from left to right, we obtain a reduction system of the form familiar from other systems
of lambda calculus (e.g., [Bar84, Mit90]). Strong normalization is the property that there are
no in�nite reduction sequences from XML terms. In other word, the simple symbolic interpreter
de�ned by the reduction rules is guaranteed to halt, on any term.

Strong normalization for XML may be proved using a translation into Martin-L�of's 1973 sys-
tem [Mar73]. It follows that the equational theory of XML is decidable. For other type systems,
it is often possible to prove strong normalization by an appropriate method of logical relations
[Sta85, Mit90]. We consider it a signi�cant open problem to develop a theory of logical relations
for full XML, a task that is complicated by the presence of general � and � types.

7.3 Representing Modules in XML

General sums allow us to write expressions for structures and signatures, provided we regard
environments as tuples whose components are accessed by projection functions. For example, the
structure

struct type t=int val x:t=3 end

may be viewed as the pair ht:U1=int ; 3:ti. In XML, the components t and x are retrieved by
projection functions, so that S.x is regarded as an abbreviation for snd(S). With general sums we
can represent the signature

sig type t val x:t end

as the type �t:U1:t, of which the pair ht:U1=int ; 3:inti is a member. The representation of structures
by unlabeled tuples is adequate in the sense that it is a simple syntactic translation to replace
quali�ed names by expressions involving projection functions.

Since general products allow us to type functions from any collection to any other collection,
we can write functors as elements of product types. For example, the functor bound to F by the
declaration (where SIG is the signature above)

functor F(S: SIG): SIG =

struct

type t = S.t * S.t

val x : t = (S.x,S.x)

end

is de�ned by the expression

�S:(�t:U1:t):hs:U1=(fst(S)� fst(S)); hsnd(S); snd(S)i:(fst(S)� fst(S))i;

which has type
�S:(�t:U1:t):(�s:U1:s):

Type Structure of Standard ML 22

The XML calculus is more general than Standard ML in two apparent respects. Since there is
no need to require that subexpressions of XML types be closed, we are able to write explicitly-
typed functors with nontrivial dependent types in XML. In addition, due to the uniformity of the
language, we also have a form of higher-order functors.

Ignoring generativity, structure bindings in Standard ML are transparent in the sense that the
components of a bound structure are fully visible within the scope of the binding. To capture
this aspect of ML in type-theoretic terms, structure bindings are rendered using transparent let
bindings, which are derived from dependent tuples. Speci�cally, a structure binding of the form

structure S =

struct

type t = int

val x : t = 7

end;

is represented by the XML term

sndhS:�t:U1:t=ht:U1=int ; 7:ti; . . .i

where \. . ." is the translation of the remainder of the program, in keeping with the general idea
that the top-level is a let expression of inde�nite extent. Notice that the typing rules governing
strong sums ensure that the de�nition of S is propagated to the remainder of the program, so that,
in particular, fst(S) is equivalent to int , as required. Functor bindings are handled similarly.

Type Structure of Standard ML 23

8 Predicativity and the relationship between universes

8.1 Universes

Each of the constructs of XML is designed to capture a speci�c part of the programming language.
In an e�ort to provide a vocabulary for discussing extensions to ML, and to simplify the presenta-
tion of the type theory, we have allowed arbitrary combinations of constructs and straightforward
extensions like higher-order functor expressions. While generalizing in certain ways that seem syn-
tactically and semantically natural, we have retained the distinction between monomorphic and
polymorphic types by keeping U1 and U2 distinct. The restrictions imposed by universes are essen-
tial to the proof of Theorem 4.1 and have the technical advantage of leading to far simpler semantic
model constructions. However, it may seem reasonable to generalize ML polymorphism by lifting
the universe restrictions (as in the Girard-Reynolds second-order lambda calculus), or alter the
design decisions U1 � U2 and U1:U2.

In this section we will show that the decision to take U1 � U2 and U1 : U2 is essentially forced
by the other constructs of XML, and that in the presence of structures and functors, the universe
restrictions are essential if we are to avoid introducing a type of all types. We refer the reader to
[Coq86, How87, MR86, Car88a] for background information and further discussion of the merits
of type:type. As discussed in the introduction, it seems fair to say that type :type would certainly
change the character of ML dramatically. However, further research is needed to understand the
rami�cations of type :type more precisely.

8.2 U1 as a subset of U2

In XML, we have U1 � U2, since every U1 type is also treated as a U2 type. The main reason
for this is that it simpli�es both the use of the language, and a number of technical details in its
presentation. For example, by putting every � :U1 into U2 as well, we can write

� : U2

�t:U1:� : U2

for the �-formation rule, instead of giving two separate cases for � :U1 and �:U2. An important
part of this design decision is that U1 � U2 places no additional semantic constraints on XML.
More speci�cally, if we remove the relevant typing rule from the language de�nition, we are left
with a system in which every U1 type is represented as a retract of some U2 type. This allows us
to faithfully translate XML into the language without U1 � U2, so that every semantic model of
XML without U1 � U2 may serve as a semantic model for XML with U1 � U2. The justi�cation
for assuming U1 � U2 is made more precise by the following lemma.

Lemma 8.1 Let � :U1 be any type from the �rst universe, and let t be a variable that is not free in
� . Then there are XML contexts

i[] � �t:U1:[] and j[] � []triv;

where triv may be any type, with the following properties:

� � . i[M] : �t:U1:� whenever � . M : �

� � . j[M] : � whenever � . M : �t:U1:�

� � . j[i[M]] = M : � for all � . M : � .

Type Structure of Standard ML 24

In other words, given the hypotheses above, we may assume � :U2 without loss of generality.

Using the contexts i[] and j[], it is quite easy to translate every term in XML with U1 � U2

into an equivalent expression that is typed without using U1 � U2. Essentially, the translation
replaces every use of � :U1 as a U2 type with (�t:U1:�) : U2, and encloses terms in contexts i[] and
j[] to make the typing work out right. Since this translation preserves equality and the structure
of terms, there is no loss of generality in having U1 � U2.

8.3 Strong sums and U1:U2

In the explicitly-typed core language Core-XML, we have U1 � U2, but not U1:U2. However, when
we added general product and sum types, we also made the assumption that U1:U2. The reasons
for this are similar to the reasons for taking U1 � U2: it makes the syntax more
exible, simpli�es
the technical presentation, and does not involve any unnecessary semantic assumptions. A precise
statement is spelled out in the following lemma.

Lemma 8.2 In any fragment of XML which is closed under the term formation rules for types of
the form �t:U1:� , with � :U1, there are contexts

i[] � h[]; �i and j[] � fst [];

where triv may be any U1 type with closed term �:triv, satisfying the following conditions.

1. If � . � : U1, then � . i[�] : (�t:U1:triv).

2. If � . M : (�t:U1:triv), then � . j[M] : U1.

3. � . j[i[�]] = � : U1 for all � . � : U1.

In other words, given the hypotheses above, we may assume U1:U2 without loss of generality.

In words, the lemma says that in any fragment of XML with sums over U1 (and some U1 type
triv containing a closed term �), we can represent U1 by the type �t:U1:triv . Therefore, even if we
drop U1:U2 from the language de�nition, we are left with a representation of U1 inside U2. For this
reason, we might as well simplify matters and take U1:U2.

8.4 Impredicativity and \type:type"

In XML, as in ML, polymorphic functions are not actually applicable to arguments of all types.
For example, the identity function de�ned by id(x) = x has polymorphic type, but it can only be
applied to elements of types from the �rst universe. We cannot apply the same identity function id
to both integers and structures. One way to eliminate this restriction is to eliminate the distinction
between U1 and U2. If we replace U1 and U2 by a single universe in the de�nition of Core-XML,
then we obtain the second-order lambda calculus of Girard and Reynolds [Gir71, Gir72, Rey74]. (A
similar technique is used to introduce impredicativity into Nuprl in [How87].) The Girard-Reynolds
calculus has a number of reasonable theoretical properties (see, e.g., [BMM90, Mit86b, MP88]) and
seems to be a useful tool for studying polymorphism in programming languages.

However, if we make the full XML calculus impredicative by eliminating the distinction between
U1 and U2, the language becomes very di�erent from the Girard-Reynolds calculus. Speci�cally,
since we have general products and U1:U2, it is quite easy to see that if we let U1 = U2, then Meyer
and Reinhold's language �� :� with a type of all types [MR86] becomes a sublanguage of XML.
Note that although the term formation rules of XML only provide general products over U2 types,
letting U1 = U2 will give us products over all types.

Type Structure of Standard ML 25

Lemma 8.3 Any fragment of XML with U1:U2, U1 = U2, and closed under the type and term
formation rules associated with general products is capable of expressing all terms of �� :� of [MR86].

Proof. The proof is a straightforward induction on the typing rules of �� :� . Since we assume
that U1 = U2, we may unambiguously write U for the collection of types. This makes it easy to see
that the typing rules and equational rules of �� :� are derived rules of XML with U1:U2, U1 = U2

and general products. (This is not surprising, since the language �� :� is designed to be a \minimal"
calculus with a type of all types and general products.) In particular, if U is the collection of all
types, then we clearly have U :U , by hypothesis.

By Lemma 8.2, we know that sums over U1 give us U1:U2. This proves the following theorem.

Theorem 8.4 The function calculus �� :� with a type of all types may be interpreted in any fragment
of XML without universe distinctions which is closed under general products, and sums over U1 of
the form �t:U1:� .

Intuitively, this says that any language without universe distinctions that has general products
(ML functors) and general sums restricted to U1 (ML structures with type and value but not
necessarily structure components) also contains the language �� :� with a type of all types. Since
there are a number of questionable properties of �� :� , such as nontermination without explicit
recursion and undecidable type checking, relaxing the universe restrictions of XML would alter the
language dramatically.

8.5 Trade-o� between weak and strong sums

When we �rst discovered Theorem 8.4, we announced it as a trade-o� theorem in programming
language design3. The \trade-o�" implied by Theorem 8.4 is between impredicative polymorphism
and the kind of � types used to represent ML structures in XML. Generally speaking, impredicative
polymorphism is more
exible than predicative polymorphism, and � types allow us to type more
terms than the existential types associated with data abstraction (see [MP88]).

Either impredicative polymorphism with the \weaker" existential types, or restricted predica-
tive polymorphism with \stronger" sum types seems reasonable. By the normalization theorem
for the impredicative Girard-Reynolds calculus [Gir72, Mit86b]4, we know that impredicative poly-
morphism with existential types is strongly normalizing. As noted in Section 7, a translation into
Martin-L�of's 1973 system [Mar73] shows that XML with predicative polymorphism and \strong"
sums is also strongly normalizing. However, by Theorem 8.4, we know that if we combine strong
sums with impredicative polymorphism by taking U1 = U2, the most natural way of achieving this
end, then we must admit a type of all types. By Girard's paradox [Coq86, MR86, How87], type :type
(in the presence of other constructs) implies that strong normalization fails. In short, assuming
we wish to avoid type:type and non-normalizing recursion-free terms, we have a trade-o� between
impredicative polymorphism and strong sums.

In formulating the XML type theory, it became apparent that there were actually several
ways to combine impredicative polymorphism with strong sums. The most reasonable is this:

3We described our \trade-o� theorem" in the types electronic mail forum in the spring of 1986. Hook and
Howe then replied that they had discovered a similar phenomenon independently [HH86]. We also learned that
Coquand had proved the same theorem by a di�erent means in [Coq86], which was in preparation at the time of our
announcement.

4Girard's original proof included existential types. While the somewhat simpler proof in [Mit86b] does not,
normalization with existential types can easily be derived by encoding 9t:� as 8r[8t(�!r)!r].

Type Structure of Standard ML 26

instead of adding impredicative polymorphism by equating the two universes, we may add a form
of impredicative polymorphism by adding a new type binding operator with the formation rule

�; t:U1 . � : U1

� . 8t:U1:� : U1

Intuitively, this rule says that if � is a U1 type, then we will also have the polymorphic type
8t:U1:� in U1. The term formation rules for this sort of polymorphic type would allow us to apply
any polymorphic function of type 8t:U1:� to any type in U1, including a polymorphic type of the
form 8s:U1:�. However, we would still have strong sums like �t:U1:� in U2 instead of U1. The
normalization theorem for this calculus follows from that of the theory of constructions with strong
sums at the level of types [Coq86] by considering U1 to be prop, and U2 to be type0.

Type Structure of Standard ML 27

9 Extensions

9.1 Introduction

ML contains a variety of language features beyond those we have considered so far. For the bene�t
of the reader familiar with ML, we brie
y sketch an approach to type declarations and sharing
constraints in XML.

9.2 Type Declarations

There are three mechanisms for introducing types and type constructors in ML: type abbreviations,
concrete data type declarations, and abstract data type declarations. A type abbreviation is a form
of \compile-time" let-binding which allows for the de�nition of a type constructor in terms of types
and type constructors that have been previously introduced. A concrete type declaration simulta-
neously introduces a recursively-de�ned type constructor, a �nite collection of value constructors ,
and a pattern matching construct. An abstract type declaration introduces a \private" concrete
data type, together with a set of \public" operations on that type. We give a brief description of
each form below. For more information, see [HMM86, MTH90].

In the remainder of this section, we show how the three forms of type declarations just mentioned
may be treated in XML. In each case, we do this by �rst extending Core-XML with a form of
declaration that resembles the surface syntax of ML and then showing how this may be desugared
into simpler XML constructs. While type abbreviations may be interpreted directly in pure XML,
concrete and abstract type declarations require the extension of XML with disjoint unions, type
recursion and existential types.

We begin with type abbreviations. We extend the grammar of Core-XML with a transparent
type binding construct of the form

type (t1; . . . ; tn) t = � in e:

The scope of the type constructor t is the expression e; the scope of the type variables t1; . . . ; tn is
the type expression � . The e�ect of such a transparent type binding is to introduce an n-argument
type construct t with the property that (�1; . . . ; �n) t is equivalent to [�1; . . . ; �n=t1; . . . ; tn]� during
type checking of e. For example, the expression

type (s1; s2) t = s1!s2 in e

has the e�ect of introducing a two-place type constructor t within e so that during type checking
of e the types (int; int) t and int!int are equivalent.

We may represent type declarations in pure XML using a combination of product and function
types at the U2 level. Speci�cally, we regard the expression

type (t1; . . . ; tn) t = � in e

as short-hand for the XML expression

snd(ht:Un
1!U1=�ht1:U1; . . . ; tn:U1i:�; ei)

where Un
1 stands for the n-fold Cartesian product U1 � � � � � U1, and where the pattern-directed

�-abstraction abbreviates the less perspicuous

�t:Un
1 :[�

n
1 (t); . . . ; �

n
n(t)=t1; . . . ; tn]e:

Type Structure of Standard ML 28

Here, and below, �ni stands for the appropriate combination of �rst and second projections to select
the ith component from a value of n-fold product type.

The reason we use pairing and projections associated with � types for type abbreviations,
instead of the apparently simpler alternative,

(�t:Un
1 ! U1: e) (�ht1:U1; . . . ; tn:U1i: �);

is that in the latter term, the expression �t:Un
1 ! U1: e would have to be well-typed. This requires

e to be well-typed for any function t:Un
1 ! U1: In contrast, a pair ht:Un

1 ! U1=M; Ni is typed
by showing that the term [M=t]N obtained by substitution is well-typed. This is easily seen in the
appropriate � typing rule in Table 6.

Concrete type de�nitions are somewhat more complex since they simultaneously introduce a
recursively-de�ned type constructor, a �nite set of value constructors for building values of that
type, and a pattern matching construct for de-structuring values of that type. To account for
concrete data types in Core-XML, we extend the grammar of expressions as follows:

e ::= datatype (t1; . . . ; tn) t=c1 of �1 j � � � j cm of �m in e
j case e of c1(x1:�1)) e1 j � � � j cm(xm:�m)) em

Note that the vertical bars, \j", in datatype and case expressions are part of the object syntax
of Core-XML, not meta-notation. Both the datatype and case forms are binding operators. The
scope of the type constructor t in a datatype expression of the above form includes both the body
of the expression, e, and the type expressions �1, . . . , �m, re
ecting the fact that t may be de�ned
recursively. The scope of the value constructors c1; . . . ; cm associated with t is the body e of the
declaration. The scope of the type parameters t1; . . . ; tn of t is limited to the type expressions
�1; . . . ; �m. In a case expression of the above form, the scope of each variable xi is limited to the
corresponding expression ei (1 � i � m).

The e�ect of a datatype expression is to introduce within the body of the expression an n-place
type constructor and m value constructors. The type constructor is recursively de�ned in terms of
the given value constructors in a manner outlined below. The case construct supports simultaneous
case analysis and decomposition of values of the type introduced by a datatype expression in a
manner similar to that of Standard ML. The full Standard ML language provides a somewhat richer
form of pattern-matching that admits both layered and nested patterns, but we do not consider
this generalization here.

ML concrete data type declarations may be accounted for in an extension of XML with disjoint
union types at the U1 level, existential types [MP88] at the U2 level, and the ability to form
recursively-de�ned type constructors at the U2 level. We brie
y summarize these extensions before
discussing the interpretation of concrete data type declarations in XML.

Disjoint unions, which we write using the symbol +, are likely to be familiar from a variety
of programming languages. If �1; �2:U1, then the disjoint union type �1 + �2 is also a U1 type
expression. Expressions of union type are formed using injection functions, inl and inr according
the rules that if � . M : �1, then � . inlM : �1+ �2 and if � . M : �2 then � . inrM : �1+ �2. The
case statement is used to test which summand a value belongs to, according to the following rule.

� . M : �1 + �2 �; x1:�1 . N : � �; x2:�2 . P : �

� . caseM of inl(x1:�1)) N j inr(x2:�2)) P : �

Existential types, which may be regarded as a \weak" form of � type, are formed according to
the rule below. Although we could existentially quantify over any collection from U2, we will only

Type Structure of Standard ML 29

need existential quanti�cation over collections of the form Un
1!U1. For simplicity, we only present

the formation and typing rules for the form of existential types we need.

�; t:Un
1!U1 . � : U2

� . 9t:Un
1!U1:� : U2

(t 62 Dom(�))

There are two di�erences between existential types in XML and the language considered in [MP88].
The form given here is more general in that we quantify over n-ary type constructors, rather than
just types. It is more restrictive in that we only provide predicative quanti�cation in the sense that
the existential type 9t:Un

1!U1:� belongs to the second, rather than the �rst, universe. Expressions
of existential type are formed and used according to the following two rules.

� . � : Un
1!U1 � . M : [�=t]� �; t:Un

1!U1 . � : U2

� . ht:Un
1!U1=�;M :�i : 9t:Un

1!U1:�
(t 62 Dom(�))

� . M : 9t:Un
1!U1:� �; t:Un

1!U1; x:� . N : �

� . abstype t:Un
1!U1 with x:� is M in N : �

(t 62 FV (�))

For further discussion of existential types, the reader is referred to [MP88, CW85, Mac85].
To account for recursively-de�ned type constructors, we introduce a �xed-point operator

�xn : ((Un
1!U1)! (Un

1!U1))! (Un
1!U1)

for each n � 0. (For the special case n = 0, the �xed-point operator has type (U1!U1)!U1.)
Intuitively, for any type functional �:(Un

1!U1)! (Un
1!U1), the type function �xn �, when applied

to an n-tuple of types h�1; . . . ; �ni, yields a type isomorphic to � (�xn �) h�1 . . . �ni. Formally, the
extension of XML with recursive type functions over U1 is completed by adding the constants

Inn : ��:(Un
1!U1)! (Un

1!U1):�t:U
n
1 : (� (�xn �) t)! (�xn �) t

Outn : ��:(Un
1!U1)! (Un

1!U1):�t:U
n
1 : (�xn �) t! � (�xn �) t

for each n � 0, together with equational axioms making them mutually inverse to one another.
Rather than de�ne the solution of type constructor equations only up to isomorphism, it would
also be possible to take �xn � h�1; . . . ; �ni to be equal to � (�xn �) h�1; . . . ; �ni, but this would allow
more XML terms to be typable than would be accepted by the usual ML type checking algorithm.

With this additional machinery in hand we may represent concrete data types in XML as
follows. The concrete data type declaration

datatype (t1; . . . ; tn) t = c1:�1 j � � � j cm:�m in e

is rendered in XML as the elimination form

abstype t:Un
1 ! U1 with c:� is ht:Un

1 ! U1=�xn(�); d:�i in e0

associated with the existential type 9t:Un
1 ! U1:�; where the expressions �, �, d, and e0 are given

below. The main idea behind this representation is that a concrete data type declaration introduces
a \new" recursively-de�ned type constructor, together with operations corresponding to each of the
value constructors, and an operation corresponding to the case analysis form associated with that
type. The typing rules governing abstype ensure that the type constructor t is distinct from both
the given de�nition and from all other type constructors in that scope. In view of the fact that

Type Structure of Standard ML 30

abstype binds the variable t in e0 it is always possible to arrange (by an application of �-conversion)
that t is distinct from all other type constructors. Thus the ML notion of \type generativity" is
reduced to the more familiar idea of renaming of bound variables.

The expression � of type (Un
1 ! U1)! (Un

1 ! U1) is de�ned to be

�t:Un
1 ! U1:�ht1:U1; . . . ; tn:U1i:(�1 + � � �+ �m):

Note that by the de�nition of � and the rules governing recursively-de�ned type constructors, the
type �xn � ht1; . . . ; tni is isomorphic (via In and Out) to the type [�xn �=t]�1 + � � �+ [�xn �=t]�m:
The type � is de�ned to be the product �1� � � �� �m � �m+1, where for each 1 � i � m, the type
�i is

�t1:U1: . . . :�tn:U1:�i ! t ht1; . . . ; tni;

and the type �m+1 is

�t1:U1: . . . :�tm:U1:�u:U1:t ht1; . . . ; tni ! (� t ht1; . . . ; tni ! u)! u:

Intuitively, �i is the type of the ith constructor, for 1 � i � m, and �m+1 is the type of the case
construct for the data type. The expression d of type [�xn �=t]� is the tuple hd1; . . . ; dm; dm+1i,
where for each 1 � i � m, the expression di is

�t1:U1: . . . :�tn:U1:�xi:[�xn �=t]�i:Inn�ht1; . . . ; tni (inj
m
i x)

and the expression dm+1 is

�t1:U1: . . . :�tn:U1:�u:U1:�x:�xn � ht1; . . . ; tni:�f :�(�xn �) ht1; . . . ; tni ! u:f (Outn�ht1; . . . ; tni x):

Here injmi stands for the appropriate combination of inl's and inr 's to inject a value of the ith
summand into an n-ary disjoint union type. Intuitively, di is the implementation of the ith con-
structor, for 1 � i � m, and dm+1 provides the case construct for the data type. It is not hard
to see for each 1 � i � m + 1, the expression di is of type [�xn �=t]�i so that the tuple d has the
required type [�xn �=t]�.

The expression e0 is obtained from e by replacing occurrences of a value constructor ci with the
corresponding projection �m+1

i c, and by interpreting the case analysis form

case r of c1(x1:�1)) e1 j � � � j cm(xm:�m)) em

as the application �m+1
m+1 c �1 . . . �n � r f where r has type t h�1; . . . ; �ni, the entire expression has

type �, and the function f is given by

�x:� (�xn �) h�1; . . . ; �ni:
case x of inl(x1:� 01)) e1 j inr(y1:� 001)) . . .
case ym�2:�

00
m�2 of inl(xm�1:�

0
m�1)) em�1 j inr(xm:�

0
m)) em;

where for each 1 � i � m, the type � 0i is [�xn � t=t]�i, and the type � 00i is the \partial sum" type
� 0i+1 + � � �+ � 0m.

For example, the Core-XML expression

datatype t list = nil j cons of t � t list in e

is represented by the XML expression

abstype list :U1 ! U1 with ncc:� is hlist :U1 ! U1=�x1 �; d:�i in e0

Type Structure of Standard ML 31

where
� = �L:U1 ! U1:�t:U1:triv + (t� L(t))
� = �nil � �cons � �case

�nil = �t:U1:triv ! list(t)
�cons = �t:U1:(t� list(t))! list(t)
�case = �t:U1:�u:U1:list(t)! (triv + (t� list(t))! u)! u

e = henil ; econs ; ecasei
enil = �t:U1:�x:triv :In1�(inl(x))

econs = �t:U1:�x:t� (�x1 � t):In1�(inr(x))
ecase = �t:U1:�u:U1:�x:�x1 � t:�f :(1 + (t� (�x1 � t)))! u:f (Out1� t x)

The expression e0 is obtained from e as described above, replacing occurrences of nil and cons
by suitable projections of ncc, and replacing case analyses on terms of type � list by suitable
applications of the case analysis function, �1(�2 ncc).

Abstract type declarations are accounted for in Core-XML by adding expressions of the form:

abstype (t1; . . . ; tn) t=c1 of �1 j � � � j cm of �m withx1:�1=e1; . . . ; xk:�k=ek in e

Informally, the e�ect of an abstype declaration is to introduce a \private" concrete data type
for use in the de�nition of the \public" operations in the with clause, but hiding this declaration
from the \client" expression e, which has access only to these public operations. More precisely,
the scope of the constructors c1; . . . ; cm is limited to the de�nitions e1; . . . ; ek of x1; . . . ; xk, even
though the scope of the type constructor t includes not only the ei's but also the body e. On the
other hand, the scope of the variables x1; . . . ; xk naming the public operations is limited to e. (We
omit, for simplicity, the possibility of mutually recursive de�nitions of the public operations.)

The representation of abstype expressions in XML is similar to the representation of datatype
expressions, except that the recursive type is kept abstract by making the value constructors and
case analysis forms available only in the de�nitions of the operations of the abstract type. Thus an
abstype expression of the above form is represented by the expression

abstype t:Un
1 ! U1 with x:� is h�xn(�):U

n
1 ! U1; p:�i in e

where p is the expression

let c1:�1=d1; . . . ; cm:�m=dm; cm+1:�m+1=dm+1 in he1; . . . ; eki

of type � = �1� � � ��k, and where the expressions �, �1; . . . ; �m+1, and d1; . . . ; dm+1 are as above.

9.3 Generativity and Sharing

A distinctive feature of the ML module facility is the use of sharing constraints to ensure that incre-
mentally constructed systems are built from compatible components. The typical situation in which
sharing speci�cations are required arises when de�ning a functor that builds a structure out of two
argument structures, each of which are to have a third component in common. (MacQueen [Mac85]
gives an example in which a parser module is built from a lexer module and a symbol table module,
each of which make use of a symbol module. In order for the parser to be well-de�ned, the lexer
and the symbol table must share the same symbol implementation. See [Mac85] for more details.)
Such a situation may be described schematically as follows. We are to de�ne a functor F taking
as argument two structures, R of signature SIG R and S of signature SIG S, which have a common
component T of signature SIG T. The arguments to F may be packaged into a single structure of
signature SIG de�ned by

Type Structure of Standard ML 32

signature SIG =

sig

structure R : SIG_R

structure S : SIG_S

end

so that F may be introduced by a declaration of the form

functor F (X : SIG) : SIG_F = ...

where SIG F is the signature of the result of F. But this declaration is inadequate since it fails to
ensure that R and S are built from a common sub-structure T. This is achieved by the use of a
sharing constraint, as follows:

signature SIG_share =

sig

structure R : SIG_R

structure S : SIG_S

sharing R.T = S.T

functor F (X : SIG_share) : SIG_F = ...

The signature SIG share speci�es that the component structures R and S share the same sub-
structure T so that their use in the body of F is guaranteed to be sensible. An application of F
to a structure is well-formed only if the type checker can determine that the required equational
speci�cation holds.

A simple way to account for sharing speci�cations in XML would be to employ the notion of
an equality type introduced by Martin-L�of [Mar73]. Informally, the equality type M =� N , for � a
U2 type, is inhabited i� M and N are equal elements of type �, according to the rules of equality
for XML. The typing and equality rules for the equality type appear in Table 12. Signatures with
sharing constraints are represented using equality types as follows. The signature SIG share above
is represented by the type

�R:�R:�S:�S:p(R) =�T q(S)

where �R, �S , and �T represent the corresponding ML signatures, and where p and q are suitable
compositions of projections to select the component of R and S, respectively, corresponding to
their common component T.

Although this approach seems appealing at �rst glance, equality types fail to account for ML
sharing speci�cations in two important respects. First, they are far more expressive than ML
sharing speci�cations since they allow the imposition of arbitrary equational constraints, in contrast
to ML which admits sharing constraints only between \paths", which are represented in XML as
compositions of projection functions. This restriction to equations between paths seems essential,
as illustrated by the following example. It is well known that recursion is de�nable in the untyped
lambda calculus, via the �xed-point operator Y , and that the untyped lambda calculus may be
interpreted in a typed lambda calculus satisfying an equation t = t!t between types. (Further
discussion of Y may be found in [Bar84], for example, and the relationship between untyped lambda
calculus and type (or domain) equations in [Bar84, Sco80].) Given this, and the fact that equality
types allow us to type terms with respect to equational hypotheses, it is easy to show that equality
types give us terms without normal form. For example, if � is a context containing the typing
assumptions x:� =U1

�!� , for any U1 type � , then by the typing rules in Table 12, we may conclude

Type Structure of Standard ML 33

that � . � = �!� : U1. Therefore, using the type equality rule from Table 3, we may give any
term with type � type �!� , and vice versa. This allows us to give any untyped lambda term type
� , including untyped terms with no normal form. Discharging the typing assumption via lambda
abstraction, we can write a closed, well-typed functor with parameter x:f y:triv j � = �!� : U1 g
and nonnormalizing body.

A second sense in which equality types are inappropriate is that they express semantic equiv-
alence of structures, rather than the much more restricted notion of structure equivalence based
on unique names described in Section 6. The type-theoretic account of modules given above does
not attempt to account for ML notion of generativity, and hence cannot be readily extended to
give a faithful account of ML sharing speci�cations. We consider a proper account of ML notion
of generative structure equality to be an important direction for future work.

Type Structure of Standard ML 34

10 Conclusion and Directions for Further Investigation

We have given a precise description of the type system for much of ML, using a function calculus
called XML. Our analysis is based on the belief that ML is pro�tably viewed as an explicitly-typed,
predicative language with dependent product and sum types. Explicit typing is central to giving
a single account of both the core expression language and the module system, and seems useful
for further study. In particular, in papers [Mog91, HMM90], which were written after the work
described here was completed, XML is used to study the separation between compile-time and
run-time in Standard ML. The distinction between U1 and U2 in XML re
ects the typing rules
of ML, and leads to a number of signi�cant technical simpli�cations in the study of the language.
Moreover, universe distinctions seem essential to the character of ML, as discussed in Section 8.

Some important aspects of ML have been omitted. With regard to the core language, we have
omitted treatment of recursion, references and exceptions. These language features raise important
theoretical questions. We hope that an explicitly-typed study of polymorphic references would
clarify the relationship between polymorphism and type inference, a continuing trouble spot in the
ML type checker. With regard to the modules system, we have omitted treatment of the coercive
aspects of signature matching, and of sharing speci�cations in signatures. It seems likely that the
coercions associated with signature ascription may be accounted for in this framework by giving a
precise account of compile-time elaboration as a process of translation from the ML concrete syntax
into the abstract syntax of the XML calculus. Such a formalization would provide an interesting
alternative to the methods used in the de�nition of ML [MTH90]. Sharing speci�cations, and the
associated notion of \structure generativity", remain important topics for further research.

Another important direction is to develop an accurate, straightforward presentation of ML
operational semantics. As with other versions of lambda calculus, equality in XML is given by an
equational axiom system. This equational system may also be formulated as a set of reduction
rules, as usual. However, for the extension of XML obtained by adding exceptions, references and
recursion, capturing the operational semantics of ML relies on careful consideration of the order
in which rewrite rules are applied. (For example, if
 is a divergent expression, then (�x:0)

diverges in the current call-by-value implementation, but (�x:0)
 = 0 is provable using the usual
�-calculus style reasoning.) It would be interesting to explore a typed calculus that is faithful to
the operational semantics, following the pattern established by Plotkin's �v-calculus [Plo75] and
Martin-L�of's type theory [Mar82]. Some useful related ideas are developed in [Mog89].

Acknowledgements:

Thanks to Dave MacQueen for many insightful discussions of ML, and comments on this paper
in particular. Thanks also to John Greiner, Peter Lee, Eugenio Moggi, and Andrzej Tarlecki for
comments on an earlier draft.

Type Structure of Standard ML 35

References

[ABL86] R. Amadio, K. Bruce, and G. Longo. The �nitary projection model for second order
lambda calculus and solutions to higher order domain equations. In Proc. IEEE Symp.
on Logic in Computer Science, pages 122{130, 1986.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
Amsterdam, 1984. Second edition.

[BM84] K. Bruce and A. Meyer. A completeness theorem for second-order polymorphic lambda
calculus. In Proc. Int. Symp. on Semantics of Data Types, Sophia-Antipolis (France),
pages 131{144, Berlin, 1984. Springer LNCS 173.

[BMM90] K. B. Bruce, A. R. Meyer, and J. C. Mitchell. The semantics of second-order lambda
calculus. Information and Computation, 85(1):76{134, 1990. Reprinted in Logical
Foundations of Functional Programming, ed. G. Huet, Addison-Wesley (1990) 213{
273.

[BTCGS91] V. Breazu-Tannen, T. Coquand, C.A. Gunter, and A. Scedrov. Inheritance as explicit
coercion. Information and Computation, 93(1):172{221, 1991.

[C+86] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System, volume 37 of Graduate Texts in Mathematics. Prentice-Hall, 1986.

[Car85] R. Cartwright. Types as intervals. In Proc. 12th ACM Symp. on Principles of Pro-
gramming Languages, pages 22{36, January 1985.

[Car88a] L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138{164, 1988. Special issue devoted to Symp. on Semantics of Data Types, Sophia-
Antipolis (France), 1984.

[Car88b] L. Cardelli. Structural subtyping and the notion of powertype. In Proc 15th ACM
Symp. Principles of Programming Languages, pages 70{79, 1988.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and Computa-
tion, 76(2/3):95{120, 1988.

[Coq86] T. Coquand. An analysis of Girard's paradox. In Proc. IEEE Symp. on Logic in
Computer Science, pages 227{236, June 1986.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471{522, 1985.

[DB80] N.G. De Bruijn. A survey of the project Automath. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 579{607. Academic Press,
1980.

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In Proc.
9th ACM Symposium on Principles of Programming Languages, pages 207{212, 1982.

[Gir71] J.-Y. Girard. Une extension de l'interpretation de G�odel �a l'analyse, et son application
�a l'�elimination des coupures dans l'analyse et la th�eorie des types. In J.E. Fenstad,
editor, 2nd Scandinavian Logic Symposium, pages 63{92. North-Holland, Amsterdam,
1971.

Type Structure of Standard ML 36

[Gir72] J.-Y. Girard. Interpretation fonctionelle et elimination des coupures de l'arithmetique
d'ordre superieur. These D'Etat, Universite Paris VII, 1972.

[GMW79] M.J. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF. Springer LNCS 78,
Berlin, 1979.

[HH86] J. Hook and D. Howe. Impredicative strong existential equivalent to type:type. Tech-
nical Report TR 86-760, Cornell University, 1986.

[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. In Proc.
IEEE Symp. on Logic in Computer Science, pages 194{204, June 1987. To appear in
J. Assoc. Comput. Machinery.

[HMM86] R. Harper, D.B. MacQueen, and R. Milner. Standard ML. Technical Report ECS{
LFCS{86{2, Lab. for Foundations of Computer Science, University of Edinburgh,
March 1986.

[HMM90] R. Harper, J.C. Mitchell, and E. Moggi. Higher-order modules and the phase dis-
tinction. In Proc. 17th ACM Symp. on Principles of Programming Languages, pages
341{354, January 1990.

[HMT87] R. Harper, R. Milner, and M. Tofte. A type discipline for program modules. In
TAPSOFT '87, Berlin, 1987. Springer LNCS 250.

[How80] W. Howard. The formulas-as-types notion of construction. In To H.B. Curry: Essays
on Combinatory Logic, Lambda-Calculus and Formalism, pages 479{490. Academic
Press, 1980.

[How87] D.J. Howe. The computational behavior of Girard's paradox. In Proc. IEEE Symp.
on Logic in Computer Science, pages 205{214, June 1987.

[KMM91] P.C. Kanellakis, H.G. Mairson, and J.C. Mitchell. Uni�cation and ML type recon-
struction. In Computational Logic, Essays in Honor of Alan Robinson, pages 444{478.
MIT Press, 1991.

[KTU90] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. ML typability is Dexptime-complete. In
Proc. 15th Colloq. on Trees in Algebra and Programming, pages 206{220. Springer
LNCS 431, 1990. To appear in J. Assoc. Comput. Machinery under title, "An Analysis
of ML Typability".

[Lei83] D. Leivant. Polymorphic type inference. In Proc. 10th ACM Symp. on Principles of
Programming Languages, pages 88{98, 1983.

[Mac85] D.B. MacQueen. Modules for Standard ML. Polymorphism, 2(2), 1985. 35 pages. An
earlier version appeared in Proc. 1984 ACM Symp. on Lisp and Functional Program-
ming.

[Mac86] D.B. MacQueen. Using dependent types to express modular structure. In Proc. 13th
ACM Symp. on Principles of Programming Languages, pages 277{286, 1986.

[Mar73] P. Martin-L�of. An intuitionistic theory of types: Predicative part. In H. E. Rose and
J. C. Shepherdson, editors, Logic Colloquium, '73, pages 73{118, Amsterdam, 1973.
North-Holland.

Type Structure of Standard ML 37

[Mar82] P. Martin-L�of. Constructive mathematics and computer programming. In Sixth Inter-
national Congress for Logic, Methodology, and Philosophy of Science, pages 153{175,
Amsterdam, 1982. North-Holland.

[Mar84] P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[McC79] N. McCracken. An Investigation of a Programming Language with a Polymorphic Type
Structure. PhD thesis, Syracuse Univ., 1979.

[Mil78] R. Milner. A theory of type polymorphism in programming. JCSS, 17:348{375, 1978.

[Mil85] R. Milner. The Standard ML core language. Polymorphism, 2(2), 1985. 28 pages. An
earlier version appeared in Proc. 1984 ACM Symp. on Lisp and Functional Program-
ming.

[Mit86a] J.C. Mitchell. Representation independence and data abstraction. In Proc. 13th ACM
Symp. on Principles of Programming Languages, pages 263{276, January 1986.

[Mit86b] J.C. Mitchell. A type-inference approach to reduction properties and semantics of
polymorphic expressions. In ACM Conference on LISP and Functional Programming,
pages 308{319, August 1986. Reprinted with minor revisions in Logical Foundations
of Functional Programming, ed. G. Huet, Addison-Wesley (1990) 195{212.

[Mit88] J.C. Mitchell. Polymorphic type inference and containment. Information and Com-
putation, 76(2/3):211{249, 1988. Reprinted in Logical Foundations of Functional Pro-
gramming, ed. G. Huet, Addison-Wesley (1990) 153{194.

[Mit90] J.C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B, pages 365{458. North-Holland,
Amsterdam, 1990.

[MM85] J.C. Mitchell and A.R. Meyer. Second-order logical relations. In Logics of Programs,
pages 225{236, Berlin, June 1985. Springer-Verlag LNCS 193.

[MM91] J.C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. Ann.
Pure and Applied Logic, 51:99{124, 1991. Preliminary version in Proc. IEEE Symp.
on Logic in Computer Science, 1987, pages 303{314.

[MMMS87] A. R. Meyer, J. C. Mitchell, E. Moggi, and R. Statman. Empty types in polymorphic
lambda calculus. In Proc. 14th ACM Symp. on Principles of Programming Languages,
pages 253{262, January 1987. Reprinted with minor revisions in Logical Foundations
of Functional Programming, ed. G. Huet, Addison-Wesley (1990) 273{284.

[Mog89] E. Moggi. Computational lambda calculus and monads. In Proc. IEEE Symp. on
Logic in Computer Science, pages 14{23, 1989.

[Mog91] E. Moggi. A category-theoretic account of program modules. Math. Structures in
Computer Science, 1(1):103{139, 1991.

[MP88] J.C. Mitchell and G.D. Plotkin. Abstract types have existential types. ACM Trans.
on Programming Languages and Systems, 10(3):470{502, 1988. Preliminary version
appeared in Proc. 12th ACM Symp. on Principles of Programming Languages, 1985.

Type Structure of Standard ML 38

[MPS86] D. MacQueen, G Plotkin, and R. Sethi. An ideal model for recursive polymorphic
types. Information and Control, 71(1/2):95{130, 1986.

[MR86] A.R. Meyer and M.B. Reinhold. Type is not a type. In Proc. 13th ACM Symp. on
Principles of Programming Languages, pages 287{295, January 1986.

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, 1991.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT
Press, 1990.

[Oho89] A. Ohori. A simple semantics for ML polymorphism. In Functional Prog. and Com-
puter Architecture, pages 281{292, 1989.

[Plo75] G.D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical Com-
puter Science, 1:125{159, 1975.

[Plo77] G.D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223{255, 1977.

[Rey74] J.C. Reynolds. Towards a theory of type structure. In Paris Colloq. on Programming,
pages 408{425, Berlin, 1974. Springer-Verlag LNCS 19.

[Rey81] J.C. Reynolds. The essence of Algol. In de Bakker and van Vliet, editors, Algorithmic
Languages, pages 345{372, Amsterdam, 1981. IFIP, North-Holland.

[Rey83] J.C. Reynolds. Types, abstraction, and parametric polymorphism. In Information
Processing '83, pages 513{523. North-Holland, Amsterdam, 1983.

[Rey84] J.C. Reynolds. Polymorphism is not set-theoretic. In Proc. Int. Symp. on Semantics
of Data Types, Sophia-Antipolis (France), pages 145{156, Berlin, 1984. Springer LNCS
173.

[Sco80] D.S. Scott. Relating theories of the lambda calculus. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 403{450. Academic Press,
1980.

[See84] R.A.G. Seely. Locally cartesian closed categories and type theory. Math. Proc. Camb.
Phil. Soc., 95:33{48, 1984.

[See87] R.A.G. Seely. Categorical semantics for higher-order polymorphic lambda calculus. J.
Symbolic Logic, 52:969{989, 1987.

[Sta85] R. Statman. Logical relations and the typed lambda calculus. Information and Control,
65:85{97, 1985.

[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. Pitman, London,
and John Wiley and Sons, New York, 1988.

[Tof88] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,
Edinburgh University, 1988. Available as Edinburgh University Laboratory for Foun-
dations of Computer Science Technical Report ECS{LFCS{88{54.

Type Structure of Standard ML 39

[Tro73] A.S. Troelstra. Mathematical Investigation of Intuitionistic Arithmetic and Analysis.
Springer LNM 344, Berlin, 1973.

[Wan84] M. Wand. A types-as-sets semantics for Milner-style polymorphism. In Proc. 11th
ACM Symp. on Principles of Programming Languages, pages 158{164, January 1984.

Type Structure of Standard ML 40

var � . x : � (�(x) = �)

gen

� . e : �

� . e : 8t:�
(t not free in �)

spec

� . e : �

� . e : �0
(� v �0)

abs

�; x:� . e0 : � 0

� . �x:e0 : � ! � 0
(x 62 Dom(�))

app

� . e : � 0 ! � � . e0 : � 0

� . ee0 : �

let

� . e : � �; x:� . e0 : � 0

� . letx= e in e0 : � 0
(x 62 Dom(�))

Table 1: Damas-Milner Type Assignment

Type Structure of Standard ML 41

var � . x : � (�(x) = �)

tabs

� . M : �

� . �t:M : �t:U1:�
(t not free in �)

tapp

� . M : �t:U1:�

� . M [�] : [�=t]�

abs

�; x:� . M 0 : � 0

� . �x:�:M 0 : � ! � 0
(x 62 Dom(�))

app

� . M : � 0 ! � � . M 0 : � 0

� . MM 0 : �

let

� . M : � �; x:� . M 0 : � 0

� . letx:�=M inM 0 : � 0
(x 62 Dom(�))

Table 2: Core-XMLType System

Type Structure of Standard ML 42

hi context

� . � : U1

�; x:� context

� . � : U2

�; x:� context
(x 62 Dom(�))

� context �(x) = �

� . x : �

� context �(x) = �

� . x : �

� . � � . � : U1

�; x:� . �

� . � � . � : U2

�; x:� . �
(x 62 Dom(�); � is M :� or M :�)

� . M : � � . � = � 0 : U1

� . M : � 0
� . M : � � . � = �0 : U2

� . M : �0

Table 3: Context and structural rules for XML

� context

� . U1 : U2

� . � : U1

� . � : U2

Table 4: Universes

� context

� . triv : U1

� context

� . � : triv

� . � : U1 � . � 0 : U1

� . �!� 0 : U1

� . � : U1 � . � 0 : U1 �; x:� . M : � 0

� . �x:�:M : �!� 0
(x 62 Dom(�))

� . M : �!� 0 � . N : �

� . MN : � 0

Table 5: Types and terms in U1

Type Structure of Standard ML 43

� . � : U2 �; x:� . �0 : U2

� . �x:�:�0 : U2
(x 62 Dom(�))

� . � : U2 �; x:� . �0 : U2 �; x:� . M : �0

� . �x:�:M : �x:�:�0
(x 62 Dom(�))

� . M : �x:�:�0 � . N : �

� . M [N] : [N=x]�0

� . � : U2 �; x:� . �0 : U2

� . �x:�:�0 : U2
(x 62 Dom(�))

� . M : � � . [M=x]N : [M=x]�0 �; x:� . �0 : U2

� . hx:�=M;N :�0i : �x:�:�0
(x 62 Dom(�))

� . M : �x:�:�0

� . fst(M) : �

� . M : �x:�:�0

� . snd(M) : [fst(M)=x]�0

Table 6: Types and terms in U2

� . � : U2 �; x:� . �0 : U2 �; x:� . M : �0 �; x:� . N : �0

� . f x:� j M = N : �0 g : U2
(x 62 Dom(�))

� . P : � � . [P=x]M = [P=x]N : [P=x]�0 : � . f x:� j M = N : �0 g : U2

� . P : f x:� j M = N : �0 g

� . P : f x:� j M = N : �0 g

� . P : �

� . P : f x:� j M = N : �0 g

� . [P=x]M = [P=x]N : [P=x]�0

Table 7: Equalizer types for sharing constraints

Type Structure of Standard ML 44

� . M = M : � � . M = M : �

� . M = N : �

� . N = M : �

� . M = N : �

� . N = M : �

� . M = N : � � . N = P : �

� . M = P : �

� . M = N : � � . N = P : �

� . M = P : �

� . M = N : � �;�0 context

�;�0 . M = N : �

� . M = N : � �;�0 context

�;�0 . M = N : �

� . M = N : � � . � = � 0 : U1

� . M = N : � 0
� . M = N : � � . � = �0 : U2

� . M = N : �0

Table 8: General equality rules for XML

� . �x:�:M = �y:�:[y=x]M : �!� 0 (y 62 FV(M))

� . (�x:�:M)N = [N=x]M : � 0

� . �x:�:Mx = M : �!� 0 (x 62 FV(M))

� . �1 = � 01 : U2 � . �2 = � 02 : U2

� . �1!�2 = � 01!� 02 : U2

� . M = M 0 : �!� 0 � . N = N 0 : �

� . MN = M 0N 0 : � 0

�; x:� . M = M 0 : � 0

� . �x:�:M = �x:�:M 0 : �!� 0

Table 9: Equality rules for the function type

Type Structure of Standard ML 45

� . �x:�:M = �y:�:[y=x]M : �x:�:�0 (y 62 FV(M))

� . (�x:�:M)N = [N=x]M : [N=x]�0

� . �x:�:Mx = M : �x:�:�0 (x 62 FV(M))

� . �1 = �01 : U2 �; x:�1 . �2 = �02 : U2

� . �x:�1:�2 = �x:�01:�
0
2 : U2

�; x:� . M = M 0 : �0

� . �x:�:M = �x:�:M 0 : �x:�:�0

� . M = M 0 : �x:�:�0 � . N = N 0 : �

� . M [N] = M 0[N 0] : [N=x]�0

Table 10: Equality rules for the product type

� . fsthx:�=M;N :�0i = M : �

� . sndhx:�=M;N :�0i = [M=x]N : [M=x]�0

� . �1 = �01 : U2 �; x:�1 . �2 = �02 : U2

� . �x:�1:�2 = �x:�01:�
0
2 : U2

(x 62 Dom(�))

� . M = M 0 : � � . [M=x]N = [M 0=x]N 0 : [M=x]�0

� . hx:�=M;N :�0i = hx:�=M 0; N 0:�0i : �x:�:�0
(x 62 Dom(�))

� . M = M 0 : �x:�:�0

� . fst(M) = fst(M 0) : �

� . M = M 0 : �x:�:�0

� . snd(M) = snd(M 0) : [fst(M)=x]�0

Table 11: Equality rules for the sum type

Type Structure of Standard ML 46

� . � : U2 � . M : � � . N : �

� . M =� N : U2

� . M = N : �

� . re
(M ;N) :M =� N

� . P : M =� N

� . M = N : �

� . � = �0 : U2 � . M = M 0 : � � . N = N 0 : �

� . M =� N = M 0 =�0 N
0 : U2

� . M = M 0 : � � . N = N 0 : �

� . re
(M ;N) = re
(M 0;N 0) :M =� N

Table 12: Equality Type

