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Abstract

Bezem, Coquand, and Huber have recently given a constructively valid
model of higher type theory in a category of nominal cubical sets satisfying
a novel condition, called the uniform Kan condition (UKC), which gener-
alizes the standard cubical Kan condition (as considered by, for example,
Williamson in his survey of combinatorial homotopy theory) to admit
phantom “additional” dimensions in open boxes. This note, which repre-
sents the authors’ attempts to fill in the details of the UKC, is intended
for newcomers to the field who may appreciate a more explicit formula-
tion and development of the main ideas. The crux of the exposition is an
analogue of the Yoneda Lemma for co-sieves that relates geometric open
boxes bijectively to their algebraic counterparts, much as its progenitor
for representables relates geometric cubes to their algebraic counterparts
in a cubical set. This characterization is used to give a formulation of
uniform Kan fibrations in which uniformity emerges as naturality in the
additional dimensions.

1 Cubical Sets
In their recent landmark paper Bezem et al. [2014] present a novel formulation of
cubical sets using symbols (or names) for the dimensions (or coordinates) of an
n-dimensional cube.1 Briefly, they define a category � whose objects are finite
sets, I, of symbols and whose morphisms f : I → J are set functions I → J + 2,
where 2 is the set {0, 1}, that are injective on the preimage of J. Identities are
identities, and composition is given as in the Kleisli category for a “two errors”
monad—the symbols 0 and 1 are propagated, and otherwise the morphisms are
composed as functions.

If an object I of � has n elements, it is said to be an n-dimensional set of
dimensions. The notation I, x is defined for a symbol x /∈ I to be I ∪ {x}, and
is extended to I, x, y, . . . for a finite sequence of distinct symbols not in I in the
evident way. The notation I \ x, where x ∈ I, is just the set I with x omitted.
The morphism f[x 7→ y] : I, x → J, y, where f : I → J, x /∈ I, and y /∈ J, extends
f by sending z ∈ I to f(z) and x to y.

Some special morphisms of � are particularly important:
1Pitts [2013] gives a formulation in terms of his category of nominal sets [Pitts, 2014]
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1. Identity: id : I→ I sending x ∈ I to itself.

2. Composition: f · g, g ◦ f : I→ K, in diagrammatic and conventional form,
where f : I→ J and g : J→ K, defined earlier.

3. Exchange: x↔ y : I, x, y→ I, x, y, where x, y /∈ I, sending x to y and y to
x.

4. Specialize: x 7→ 0, x 7→ 1 : I, x→ I sending x to 0 and 1, respectively.

5. Inclusion: ιx : I→ I, x, where x /∈ I, sending y ∈ I to y.

These are all “polymorphic” in the ambient sets I of symbols, as indicated im-
plicitly. It is useful to keep in mind that any f : I → J in the cube category
can be written as a composition of specializations, followed by permutations,
followed by inclusions.

A cubical set is a covariant presheaf (i.e., a co-preasheaf) on the cube cate-
gory, which is a functor X : �→ Set. Explicitly, this provides

1. For each object I of �, a set X(I), or XI.

2. For each morphism f : I → J of �, a function X(f), or Xf, in XI → XJ
respecting identity and composition.

As a convenience write Xx or X{x}, for X{x}, and Xx,y or X{x, y}, for X{x,y}, and
so forth.

Think of XI as consisting of the I-cubes, which are n-dimensional cubes
presented using the n dimensions given by I. This interpretation is justified by
the structure induced by the distinguished morphisms in the cube category:

1. Xx7→0 and Xx7→1 mapping XI,x → XI are called face maps that compute
the two (n − 1)-dimensional faces of an n-dimensional cube in XI along
dimension x, where I is an n-dimensional set of dimensions. By convention,
in low dimensions, x 7→ 0 designates the “left” or “bottom” or “front” face,
and x 7→ 1 designates the “right” or “top” or “back” face, according to
whether one visualizes the dimension x as being horizontal or vertical or
perpendicular.

2. Xιx : XI → XI,x is called a degeneracy map that treats an n-cube as a
degenerate (n + 1)-cube, with degeneracy in the dimension x. So, for ex-
ample, a line in the x dimension may be regarded as a square in dimensions
x and y, corresponding to the reflexive identification of the line with itself.
Similarly, a point may be thought of as a degenerate-in-x line, and thence
as a degenerate-in-y square, or it may be thought of as a degenerate-in-y
line and then a degenerate-in-x square. The equation ιy ◦ ιx = ιx ◦ ιy
along with functoriality guarantees that these two degenerate squares are
the same; a point can thus be thought of as a degenerate-in-x-and-y square
“directly”.
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3. Xx↔y : XI,x,y → XI,x,y is a change of coordinates map that swaps the
names of the dimensions x and y; it is necessarily a bijection. A change
of coordinates map is also regarded as a degeneracy map in Bezem et al.
[2014]

The face maps justify thinking of X∅ as the points of X, of X{x} as the lines
(in dimension named x), of X{x,y} as the squares, and so on. Compositions
of face maps are again face maps, and so too for degeneracies and changes of
coordinates. When I ⊆ J, the generalized inclusion ι : I → J stands for the
evident composition of inclusion maps, in any order, and if π : I → J is a
permutation of sets, then it may be regarded as a change of coordinates map
by treating it as a composition of exchanges. When the cubical set X involved
is clear from context, we sometimes write ∂ix(κ) for Xx 7→i.

It is well to remember that, being a subcategory of Set, the maps in the
cubical category enjoy the equational properties of functions, and that such
equations are necessarily respected by any cubical set. Thus, for example, a
cube κ ∈ XI determines a degenerate I, x cube Xιx(κ) ∈ XI,x in the sense that
its end points are both κ:

Xx 7→0(Xιx(κ)) = X(x7→0)◦ιx(κ)
= Xid(κ)

= κ,

and the same holds true for the specialization x 7→ 1. These equations follow
directly from the definition of the involved morphisms in � as certain functions
on finite sets. As a consequence of these cubical identities every morphism in �

is equal to a composition of face maps followed by a composition of exchanges
followed by a composition of degeneracies.

A morphism F : X→ Y of cubical sets is, of course, a natural transformation
between them, as functors into Set. That is, for each object I of � there is
a function FI : XI → YI such that for each map f : I → J in � the equation
Yf ◦ FI = FJ ◦Xf. Identities and compositions are defined as usual. Cubical sets
thereby form a category, cSet.

Let X be a cubical set, and let κ ∈ XI for some object I of �. That is, κ is
an I-cube of X of dimension n. It is useful to consider the cubes Xf(κ) ∈ XJ
as f ranges over all maps f : I → J in �. Such cubes may be considered as the
exposition of the cubical structure of κ in the sense that they determine these
aspects of κ:

1. The m-dimensional faces of κ for each m < n, expressed in terms of
various choices of dimensions for dimension m. These are determined by
the specialization morphisms of �.

2. The re-orientations of κ, which are determined by the exchange morphisms
of �.
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3. The m-dimensional degeneracies of κ, for each m > n, expressed in terms
of various choices of dimensions. These are given by the inclusion mor-
phisms of �.

This leads directly to the definition of the free-standing I-cube, notated �I, as
the co-representable cubical set

�I , hom(I,−) : �→ Set.

A morphism κ : �I → X from the free-standing I-cube into X may be seen as
specifying an I-cube in X. By the Yoneda Lemma there is a bijection

homcSet(�
I,X) ∼= XI,

so that the two concepts of a cube in X coincide (up to a bijection that is not
usually notated explicitly).

2 Uniform Kan Complexes
A central idea of Bezem et al. [2014] is the uniform Kan condition, a gener-
alization of the well-known Kan condition, that ensures that a cubical set has
sufficient structure to support the interpretation of cubes as identifications. To
motivate the condition, let us first consider the homotopic interval, which is
supposed to be an abstraction of the unit interval on the real line, consisting
of two end points, 0 and 1, and a line, seg, between them. The idea is that a
mapping from the interval into a space X is a “drawing” of a line in the space
X, and hence can be used to construct paths and mediate their homotopies.

It is not clear at once what should be the definition of the interval, but in a
spirit of minimalism one might consider it to be given by the following equations
at dimensions 0 and 1, and to consist solely of the requisite degeneracies at all
other dimensions:2

I∅ , {0, 1} (1)

I{x} , {x0, x1, seg} (any name x). (2)

This is “a” definition of some cubical set, but is it the “right” definition? That
is, does it support the interpretation of cubes as identifications? The presence
of the line seg immediately raises questions about the inverse of seg, and the
absence of evidence for the ω-groupoid laws.

A convenient, direct method for defining the interval is described3 in Bezem
et al. [2014]. First, construct the interval as a strict groupoid generated by
0, 1, and seg, and second, apply a general theorem showing that every strict
groupoid may be turned into a cubical set supporting cubes as identifications.

2Equivalently, it is the free-standing cube of the singleton set {x} for some dimension x.
3Note that we are not referring to the unit interval defined in Bezem et al. [2014], but the

general construction of a cubical set from a groupoid defined later in the paper.
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The latter is accomplished by essentially taking objects of the strict groupoid
as points, morphisms in the strict groupoid as lines, and add squares sufficient
to ensure that the groupoid laws are all properly witnessed. In the case of
the interval the construction is illustrated by the first three dimensions of the
interval given in Figure 1. After some calculation it turns out that each I-cube
in this constructed cubical set is an assignment of corners of an unlabeled I-cube
to {0, 1}. The assignment •0 •1 corresponds to seg and the assignment
•1 •0 is its inverse. There are 2|I| corners of an unlabeled I-cube, and

thus the number of I-cubes (assignments) is therefore 22
|I|

.

∅ •0 •1

{x} •0 •0
•0 •1 •1

•1 •0 •1
seg •1 •0

seg−1

{x, y}

•0 •0

•0 •0
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•0
•0

•1 •1

•1 •1
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•1
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•0 •0

•1

seg
•0
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•1 •0
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•1 •0
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•0
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•1 •1

•1 •0
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•1 •0

•1 •1
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•1 •1

•0 •1
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Figure 1: Cubes of the First Three Dimensions of I

Another possible definition of the interval is by a glueing construction that
simply specifies that the two points 0 and 1 are to be identified. Such glueing
constructions are usually presented by a pushout construction, which exactly ex-
presses the identification of specified elements of two disjoint sets. The pushout
method is essentially a special case of the concept of a higher inductive defini-
tion [The Univalent Foundations Program, 2013], which allows identifications
at all dimensions to be specified among the elements generated by given points.
For example, the interval is the free ω-groupoid generated by 0, 1, and seg [The
Univalent Foundations Program, 2013]. The universal property states that to
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define a map out of the interval into another type, it suffices to specify its be-
havior on the points 0 and 1 in such a way that the identification seg is sent to
an identification of the images of the end points. It can be shown that, in the
presence of type constructors yet to be formulated in the higher-dimensional
case, this formulation suffices to ensure that the necessary identifications are
generated by a higher inductive definition.

The discussion of the interval is intended to raise the question: when is
a cubical set a type? One answer is simple enough, but hardly informative:
exactly when it is possible to interpret the rules of type theory into it. But it
would be pleasing to find some syntax-free criteria for specifying when cubes
may be correctly understood as heterogeneous identifications of their faces in a
type. So far we have argued, rather informally, that the least to be expected is
that identifications be catenable, when compatible, and reversible, along a given
dimension, and that the corresponding groupoid laws hold, at least up to higher
identifications. These conditions are surely necessary, but are they sufficient?
Another criterion, whose importance will emerge shortly, is functoriality, which
states that families of types and families of terms should respect identifications of
their free variables in an appropriate sense. In the case of families of types their
interpretation as cubical families of sets implies that isomorphic sets should be
assigned to identified indices. Finally, another condition, which is not possible to
explain fully just now, will also be required to ensure that the elimination form
for the identification type behaves properly even in the presence of non-trivial
higher-dimensional structure.

One may consider that these should be the defining conditions for a cubical
set to be a type, but they are distressingly close to the answer based on the
rules of type theory. Bezem et al. propose that a type is a uniform Kan com-
plex and that a family of types is a uniform Kan fibration.4 The formulation
of these conditions goes back to pioneering work of Daniel Kan in the 1950’s
on the question of when is a cubical set a suitable basis for doing homotopy
theory? Kan gave an elegant condition that ensures, in one simple criterion,
that cubes behave like identifications. The UKC, introduced by Bezem et al.,
generalizes the Kan condition and enables a constructively valid formulation.
Unfortunately, it is not known whether the uniform Kan criteria are sufficient
to support the interpretation of standard type theory. In particular, the defi-
nitional equivalence required of the elimination form for the identification type
has not been validated by the model—it holds only up to higher identification.
Still, the UKC comes very close to providing a semantic criterion for a cubical
set to be a type. The remainder the paper is based on the UKC criterion, which
we now describe in greater detail.

There are two formulations of the Kan condition for cubical sets, one more
geometric in flavor, the other more algebraic [Williamson, 2012]. The algebraic
formulation is more suitable for implementation (giving constructive meaning to
the concept of a Kan complex), whereas the geometric formulation is historically

4More precisely, Bezem et al. interpret a family of types into a uniform Kan cubical family
of sets, not a uniform Kan fibration.
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prior, and more natural from the perspective of homotopy theory. What follows
is a development of both formulations, and their relationship to one another.
Specifically, the homotopy lifting property proposed by Kan corresponds to the
uniform box-filling operation proposed by Bezem et al.. The following account
differs considerably from that given by Bezem et al. in terms of the technical
development, but the conceptual foundations remain the same.

Recall that the free-standing I-cube, �I, is defined to be the co-representable
cubical set yI = hom(I,−) : �→ Set. Thus,

�IJ , hom(I, J) (J : �) (3)

�If(g) , f ◦ g (f : J→ J ′, g : I→ J) (4)

A geometric, or external, I-cube in X is a morphism κ : �I → X from the free-
standing I-cube into X. By the Yoneda Lemma each external I-cube, κ, of X
determines an algebraic, or internal, I-cube κ ∈ XI given by κI(id), and every
internal I-cube of X arises in this way. Thus XI may be considered to represent
all and only the geometric I-cubes of X.

A free-standing box is a cubical set given by a subfunctor of the free-standing
cube (that is, a co-sieve) determined by four parameters:

1. A set, I, specifying the included dimensions of the box.

2. A set, J, specifying the extra dimensions of the box.

3. A dimension, y /∈ I ∪ J, specifying the filling dimension of the box.

4. The polarity of the box, which specifies the filling direction.

A free-standing box is required to have both faces in its included dimensions,
and one face in its filling dimension, the starting face, so that it always has an
odd number of faces (as few as 1 when I = ∅ and as many as 2n + 1 when
J = ∅ and I is of size n). In the standard formulation of cubical sets, such as
the one given by Williamson [2012], there are no extra faces, so that a box may
be viewed as a cube with its interior and one face omitted, namely the opposite
face to the starting face in the filling dimension, which is called the ending face,
or composition, of the filler. The more general form of box considered given
here that of Bezem et al., and gives rise to the need to consider the relationship
between the filler of certain faces of a box and the filler of the whole box—their
uniformity condition ensures that these coincide.

To be precise, the set of all face maps that are applicable to a positive box
(as if it were a complete cube), ΩI

y, with parameters I and y as above, is

ΩI
y , { i 7→ b | i ∈ I and b ∈ {0, 1} } ∪ {y 7→ 0} (5)

and for a negative box the set, written ΩIy, is

Ω
I
y , { i 7→ b | i ∈ I and b ∈ {0, 1} } ∪ {y 7→ 1}. (6)
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Intuitively, they represent all the included faces (including the one in the fill-
ing dimension). All the face maps in these sets are “polymorphic” in ambient
dimensions in order to simplify various definitions. For example, the face map
(z 7→ 1) in ΩI

y for some z ∈ I can be considered a morphism from L, z to L for
any ambient dimensions L; in particular, it can be viewed as a morphism from
I, y, J to (I \ z), y, J for any extra dimensions J by setting L = (I \ z), y, J. In
general, for any dimensions I and y, every face map f ∈ ΩI

y determines a set
of dimensions K such that f can be seen as a morphism from I, y, J to K, J for
any extra dimensions J. While the extra dimensions J can be inferred from the
context, we sometimes write fJ explicitly to indicate the particular J-instance of
f ∈ ΩI

y with extra dimensions J. All J-instances of face maps in ΩI
y share the

same domain I, y, J.
The positive free-standing box, tI;Jy , with parameters I, y, and J is, as a

co-sieve, the saturation of the J-instances of face maps in ΩI
y. A co-sieve is a

subfunctor (that is, a subobject in the functor category) of a co-representable
functor, in this case of the free-standing cube with dimensions I, y, J defined by
Equation (3). The saturation of a set of morphisms S sharing the same domain,
intuitively, is the closure of S under post-composition with arbitrary morphisms.
More precisely, being a co-sieve, the saturation of the set S sends dimensions
K to the set in which each element is some morphism in S post-composed with
some morphism targeted at K, and acts functorially by post-composition. With
these definitions expanded, the positive free-standing box tI;Jy , as a cubical set,
was defined by the following equations:

(tI;Jy )K , { f : I, y, J→ K | f = h ◦ gJ for some g ∈ ΩI
y and h } (7)

(tI;Jy )f(g) , f ◦ g (f : K→ K ′, g : I, y, J→ K). (8)

The negative free-standing box, uI;Jy , is defined similarly, albeit the set ΩI
y

replaced by the set ΩIy. The standard positive (resp., negative) free-standing
box, tI;∅y (resp., uI;∅y ), disallows any extra dimensions [Williamson, 2012]; the
only omitted face is that opposite to the starting face of the box.

Just as the free-standing cube may be used to specify a geometric cube in X,
a free-standing box may be used to specify a geometric box in X. Specifically,
a positive (resp., negative) geometric box in a cubical set X is a morphism
β : tI;Jy → X (resp., β : uI;Jy → X). From this arises the geometric box projection
which projects out a positive (resp., negative) geometric box from a geometric
cube κ by pre-composition with the inclusion of the free-standing box into the
free-standing cube.

tI;Jy �I,y X uI;Jy �I,y X

β

ι0 κ

β

ι1 κ

The standard geometric Kan condition (that is, for boxes with no extra dimen-
sions) for a cubical set X states that every standard geometric box β in X may
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be filled, or completed, to a geometric cube κ in X by extending β along the in-
clusion of the free-standing box into the free-standing cube; see Figure 2. This
condition amounts to saying that the geometric box projection, restricted to
empty J, has a section. In topological spaces the lifting property holds because
the topological cube may be retracted onto any of its standard contained boxes.
A cubical set satisfying that geometric Kan condition is a standard geometric
Kan complex.

tI;∅y X

�I,y

β

ι0
κ

uI;∅y X

�I,y

β

ι1
κ

Figure 2: Standard Geometric Kan Condition

When extra dimensions J are allowed, the standard geometric Kan condition
should be generalized to the uniform geometric Kan condition, which not only
fills any geometric box but also relates the filler of any I, y-preserving cubical
aspect of a box to the same aspect of the filler.5 Let the augmentation of a
morphism h : J → J ′ with dimensions I distinct from J and J ′, written I, h, be
a morphism from I, J to I, J ′ which sends i ∈ I to i and j ∈ J to h(j). The
free-standing boxes (tI;Jy and uI;Jy ) and free-standing cubes (�I,y,J) all behave
functorially in J, in that the functorial action of a morphism h : J → J ′ is pre-
composition with the augmentation I, y, h : I, y, J → I, y, J ′. The uniformity
means that the filling operation from β to κ is natural in J in the sense of the
commutative diagrams given in Figure 3 in which h : J → J ′ is an arbitrary
morphism from J to J ′ in �.

To obtain a more combinatorial formulation of the Kan structure, it is useful
to formulate an algebraic representation of geometric boxes, much as the Yoneda
Lemma provides an algebraic representation of geometric cubes. Writing XI;Jy for
a suitably algebraic representation of positive algebraic boxes in X, the intention
is that there be a bijection

hI,Jy : homcSet(tI;Jy ,X) ∼= X
I;J
y , (9)

and, analogously, for there to be a suitably algebraic representation X
I;J

y of the
set of negative algebraic boxes for which there is a bijection

h
I,J

y : homcSet(uI;Jy ,X) ∼= X
I;J

y . (10)

Moreover, these bijections should be natural in J. These bijections should be
compared to the one given by the Yoneda Lemma for the free-standing cubes,

yI : homcSet(�
I,X) ∼= XI, (11)

5Note that the original uniformity condition proposed by Bezem et al. [2014] also demands
the fillings to respect permutations of included dimensions, which is implicit in our presenta-
tion because we assume α-equivalence everywhere.
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tI;J ′y tI;Jy X

�I,y,J
′

�I,y,J

(tI;−
y )h

ι0

β ′

β

ι0

(�I,y,−)h

κ ′

κ

uI;J ′y uI;Jy X

�I,y,J
′

�I,y,J

(uI;−
y )h

ι1

β ′

β

ι1

(�I,y,−)h

κ ′

κ

Figure 3: Uniform Geometric Kan Condition

which is natural in I.
To derive a suitable definition for XI;Jy and X

I;J

y , it is helpful to review the
definition of the free-standing boxes on given shape parameters I and y given
by Equations (7) and (8). Because the free-standing box tI;Jy is the saturation
of (the J-instances in) ΩI

y, an algebraic representation of a positive geometric
box β : tI;Jy → X may be expected to be determined by a family of (lower-
dimensional) cubes βf = βcod(fJ)(fJ) for each f ∈ ΩI

y. We say two morphisms
f1 and f2 are reconcilable if g1 ◦ f1 = g2 ◦ f2 for some g1 and g2. Two poly-
morphic face maps f1 and f2 are reconcilable if their compatible instances are
reconcilable. The naturality of β guarantees the following:

For any f1, f2 ∈

ΩI
y reconcilable by g1 and g2, Xg1

(βf1) = Xg2
(βf2). (12)

That is, if two cubes, f1 and f2, in the free-standing cube �I,y,J have coincident
aspects g1 and g2, then so does the box β. It turns out that Equation (12) is
the critical condition to make the family of cubes β qualified as a box.

Because ΩI
y consists solely of face maps, Equation (12) can be further re-

stricted; it is not necessary to check all possible g1’s and g2’s. We say two face
maps f1 and f2 are orthogonal if f1 ◦ f2 = f2 ◦ f1 holds, or equivalently they are
reconcilable by some instances of f2 and f1.6 As we shall see, Equation (12) is
equivalent to the following adjacency condtion for positive boxes:

For any orthogonal f1, f2 ∈

ΩI
y, Xf2(βf1) = Xf1(βf2). (13)

The intuition is that, given several cubes that should be faces of some cube, any
attaching part must be shared by at least two faces-to-be, and so it is sufficient
to check whether any two faces-to-be fit together.

Equation (13) is a special case of Equation (12) where g1 and g2 are re-
stricted to instances of f2 and f1, respectively. It suffices to show that Equa-
tion (13) implies Equation (12). Assuming Equation (13) and there are two
polymorphic face maps f1 and f2 in ΩI

y that are reconcilable by some g1 and

6Note that two occurrences f1 in the equation f1 ◦ f2 = f2 ◦ f1 refer to different instances
of the polymorphic face maps f1. So does f2.
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g2, the goal is to show that Xg1
(βf1) = Xg2

(βf2). Recall that any morphism
admits a canonical form that consist of face maps, renamings, and degeneracies,
in that order. Here consider a canonical form of the morphism g1 ◦ f1 = g2 ◦ f2.
If f1 and f2 are the same face map, then the canonical form implies that g1
and g2 are also the same, which implies Xg1

(βf1) = Xg2
(βf2) immediately.

Without loss of generality, suppose f1 and f2 are different face maps. Because
both f1 and f2 appear in the canonical form of g1 ◦ f1 = g2 ◦ f2, they must be
orthogonal; by Equation (13) Xf2(βf1) = Xf1(βf2). Moreover, the canonical
forms of g1 and g2 must differ by exactly one face map, where f1 is missing in
g1 and f2 is missing in g2, which is to say that g1 and g2 factors through a
“common morphism” g1,2 such that

g1 = g1,2 ◦ f2 (14)
g2 = g1,2 ◦ f1. (15)

By functoriality of X,

Xg1
(βf1) = Xg1,2

(Xf2(βf1)) = Xg1,2
(Xf1(βf2)) = Xg2

(βf2). (16)

More precisely, a positive algebraic box with parameters I, y, and J is defined
to be a family of cubes βf ∈ Xcod(fJ) indexed by the face maps f ∈ ΩI

y from
dimensions I, y, J to lower dimensions such that the adjacency condition (13)
holds. A negative algebraic box is defined similarly, except that every ΩI

y is

replaced by ΩIy. The set XI;Jy (resp., X
I;J

y ) of positive (resp., negative) algebraic
I, y-shaped boxes with extra dimensions J is defined to be the collection of all
such families of cubes {βf }f∈ ΩI

y
(resp., {βf }f∈ΩI

y
).

The definition of a positive algebraic box with extra dimensions J may be
extended to a functor in J, giving rise to the cubical set XI;−y of all I, y-shaped
boxes in X:

(XI;−y )J , X
I;J
y (J : �) (17)

(XI;−y )h(β)f , (X(K,−))h(βf) (h : J→ J ′, (f : I, y, J ′′ → K, J ′′) ∈ ΩI
y) (18)

An analogous definition may be given of the cubical set X
I;−

y by replacing ΩI
y

by ΩIy in the specification of its functorial action. Observe that in both cases
the functorial action “maps” the action of h over every cube in the collection of
cubes that compose an algebraic box.

The positive algebraic box projection is a morphism of cubical sets

projI;J
y

: XI,y,J → XI;Jy

that sends κ ∈ XI,y,J to {Xf(κ) }f∈ ΩI
y
by selecting from the cube the boundary

faces determined by the shape of the box. Similarly, the negative algebraic box
projection

proj
I;J

y : XI,y,J → X
I;J

y

11



sends κ ∈ XI,y,J to {Xf(κ) }f∈ΩI
y
.

A positive (resp., negative) uniform algebraic filling operation is a section of
a positive (resp., negative) algebraic box projection:

fillI;Jy : XI;Jy → XI,y,J,

resp.,
fill
I;J

y : X
I;J

y → XI,y,J.

The filling operations choose an algebraic cube that fills each algebraic box in
X, naturally in the extra dimensions J. The uniform algebraic Kan condition
for a cubical set X states that such uniform filling operations exist for X.

Equivalence between algebraic and geometric uniform Kan struc-
tures. Now that we have phrased the uniform Kan structure, which consists
of the cubes, the boxes, the box projections, and the uniform filling operations,
in an algebraic manner, it is important to show that the algebraic and geomet-
ric formulations are equivalent, in the sense that the cubes, the boxes, and the
box projections all match up and there is an equivalence between uniform fill-
ing operations in two formulations. The algebraic and geometric cubes (X and
homcSet(�−, X)) are already aligned by the Yoneda Lemma. What is lacking are
the natural bijections between algebraic and geometric boxes (as expressed by
(9) and (10)) such that the box projections and the uniform filling operations
are related. The equivalence is summarized in Figure 4.

The natural bijections between geometric and algebraic boxes are pairs of
functions, one computing (algebraic) nerve of a geometric box, written nrvX;I;J

y

and nrvX;I;J
y for their positive and negative forms, and the other computing the

(geometric) realization of an algebraic box, written rlzX;I;J
y and rlz

X;I;J

y for their
positive and negative forms. The types of these functions are as follows:

nrvX;I;J
y : homcSet(tI;Jy ,X)→ XI;Jy

nrvX;I;J
y : homcSet(uI;Jy ,X)→ X

I;J

y

rlzX;I;J
y : XI;Jy → homcSet(tI;Jy ,X)

rlz
X;I;J

y : X
I;J

y → homcSet(uI;Jy ,X)

They are defined by the following equations:

nrvX;I;J
y (β)f , βcod(f)(f) (f ∈ ΩI

y) (19)

nrvX;I;J
y (β)f , βcod(f)(f) (f ∈ ΩIy) (20)

(rlzX;I;J
y (β))K(f) , Xf2(βf1) (f : (I, y, J→ K), f = f2 ◦ f1, f1 ∈

ΩI
y)

(21)

(rlz
X;I;J

y (β))K(f) , Xf2(βf1) (f : (I, y, J→ K), f = f2 ◦ f1, f1 ∈ ΩIy)
(22)

12



XI;Jy XI;J
′

y

homcSet(tI;Jy ,X) homcSet(tI;J
′

y ,X)

XI,y,J XI,y,J ′

homcSet(�I,y,J,X) homcSet(�I,y,J
′
,X)

(XI;−
y )h

fillI;JyprojI;J
y

fillI;J
′

y

projI;J
′

y

h

homcSet(tI;−
y ,X)h

liftI;Jy

−◦ι0

h

(X(I,y,−))h

y

homcSet(�
I,y,−,X)h

y

liftI;Jy

−◦ι0

Elements Geometric Algebraic Theorem Reference

Cubes �I → X XI Bijection Yoneda
Naturality (see boxes) Ext. to Yoneda

Positive Boxes tI;Jy → X XI;Jy Bijection Prop. 3
Naturality in J Prop. 4.

Negative Boxes uI;Jy → X X
I;J

y Bijection Prop. 3
Naturality in J Prop. 4.

Pos. Box Projection − ◦ ι0 projI;J
y

Identity Prop. 5

Neg. Box Projection − ◦ ι1 proj
I;J

y Identity Prop. 5
Pos. Uniform Filling liftI;Jy fillI;Jy Type Equivalence Prop. 6
Neg. Uniform Filling lift

I;J

y fill
I;J

y Type Equivalence Prop. 6

Figure 4: Equivalence between Algebraic and Geometric Kan Structures

Proposition 1. The function nrvX;I;J
y define valid positive algebraic boxes in

the sense that the adjacency condition (13) holds. So does nrvX;I;J
y except ΩI

y is
replaced by ΩIy.

Proof. We only deal with positive boxes. Let β : tI;Jy → X be a geometric box
and β be nrvX;I;J

y (β). For any f1, f2 ∈

ΩI
y such that f2 ◦ f1 = f1 ◦ f2 = g,

Xf2(βf1) = Xf2(βcod(f1)(f1)) (definition of β = nrvX;I;J
y (β))

= βcod(g)((tI;Jy )f2(f1)) (naturality of β)

= βcod(g)(f2 ◦ f1) (functorial action of co-sieves)
= βcod(g)(f1 ◦ f2) (assumption)

= βcod(g)((tI;Jy )f1(f2)) (functorial action of co-sieves)

= Xf1(βcod(f2)(f2)) (naturality of β)

= Xf1(βf2) (definition of β = nrvX;I;J
y )

and thus β is a positive algebraic box.

13



Proposition 2. The functions rlzX;I;J
y and rlz

X;I;J

y are well-defined.

Proof. We only show the case of positive boxes. Suppose β ∈ XI;Jy is an algebraic
box. Let β = rlzX;I;J

y (β). Note that any morphism f ∈ (tI;Jy )K, by definition,
admits a factorization f = f2 ◦ f1 for some f1 ∈

ΩI
y, and thus the side condition

on the definition of rlzX;I;J
y can always be satisfied. The worry is that the same

morphism f may admit multiple different such factorizations, and it is necessary
to show the resulting cube is nevertheless properly defined. So, suppose that
f = f2 ◦ f1 = f ′2 ◦ f ′1, for some f1 and f ′1 ∈

ΩI
y, in order to show that

Xf2(βcod(f1)(f1)) = Xf ′2(βcod(f ′1)(f
′
1)).

The reasoning is similar to the intuition we gave earlier. The morphism f admits
a canonical form that consist of face maps, renamings, and degeneracies, in that
order. If f1 and f ′1 are the same face map, then the canonical form implies that
f2 and f ′2 must be the same, because face maps are epimorphisms, from which
Equation (2) follows immediately. Otherwise, assume f1 and f ′1 are different
face maps. The canonical forms of f2 and f ′2 must differ by exactly one face
map, where f1 is missing in f1 and f ′1 is missing in f ′2, which is to say that f2
and f ′2 share a “common morphism” f3 such that

f2 = f3 ◦ f ′1 and f ′2 = f3 ◦ f1.

Therefore

Xf2(βf1) = Xf3◦f ′1(βf1) (construction of f3)

= Xf3(Xf ′1(βf1)) (functoriality of X)

= Xf3(Xf1(βf ′1)) (adjacency condition of algebraic boxes)

= Xf3◦f1(βf1) (functoriality of X)
= Xf ′

2
(βf ′

1
) (construction of f3)

which proves that βK(f) is well-defined. Naturality of β is proved by considering
an arbitrary morphism g : K→ K ′ as follows:

Xg(βK(f)) = Xg(βK(f2 ◦ f1)) (decomposition of f)

= Xg(Xf2(βf1)) (definition of rlzX;I;J
y )

= Xg◦f2(βf1) (functoriality of X)

= βK(g ◦ f2 ◦ f1) (definition of rlzX;I;J
y )

= βK(g ◦ f) (decomposition of f)

= βK((tI;Jy )g(f)). (functorial action of tI;Jy )

Proposition 3. nrvX;I;J
y and rlzX;I;J

y are inverse to each other; so are nrvX;I;J
y

and rlz
X;I;J

y .
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Proof. As usual, it suffices to consider only positive boxes; the argument for
negative boxes is analogous. Let β ∈ XI;Jy be a positive algebraic box, let
β ′ = nrvX;I;J

y (rlzX;I;J
y (β)) be the nerve of its realization, and let the intermediate

geometic box β = rlzX;I;J
y (β). To show that β = β ′, consider any f ∈ ΩI

y, and
calculate as follows:

β ′f = βK(f) (definition of nrvX;I;J
y )

= Xid(βf) (definition of rlzX;I;J
y )

= βf. (functoriality of X)

Conversely, let β : tI;Jy → X be a positive geometric box, let β ′ = rlzX;I;J
y (nrvX;I;J

y (β))

be the realization of its nerve, and let β = nrvX;I;J
y (β) be the intermediate alge-

braic box in the equation. For any f = f2 ◦ f1 such that f1 ∈

ΩI
y,

β ′K(f) = Xf2(βf1) (definition of rlzX;I;J
y )

= Xf2(βK ′(f1)) (definition of nrvX;I;J
y )

= βK((tI;Jy )f2(f1)) (naturality of β)

= βK(f2 ◦ f1) (functorial action of tI;Jy )

= βK(f). (decomposition of f)

Therefore these two functions form a bijection.

Proposition 4. The bijections in Proposition 3 are natural in J.

Proof. Consider, as usual, the case of positive boxes; the negative boxes are
handled similarly. Let β : tX;IJ y→ X be a positive geometric box. It suffices to
show that, for any morphism h : J→ J ′ in �,

(XI;−y )h(nrvX;I;J
y (β)) = nrvX;I;J ′

y (β ◦ (tI;−y )h).

Focusing on the left hand side, for any face map (f : I, y, J ′′ → K, J ′′) ∈ ΩI
y that

is polymorphic in J ′′, we know

(XI;−y )h(nrvX;I;J
y (β))f = (X(K,−))h(nrvX;I;J

y (β)f) (functorial action of XI;−y )

= (X(K,−))h(βK,J(f)). (definition of nrvX;I;−
y )

As for the right hand side,

nrvX;I;J ′

y (β ◦ (tI;−y )h)f = (β ◦ (tI;−y )h)K,J ′(f) (definition of nrvX;I;−
y )

= βK,J ′(((tI;−y )h)K,J ′(f)) (composition of natural transformations)

= βK,J ′(f ◦ (I, y,−)h) (functorial action of tI;−y )

= βK,J ′((K,−)h ◦ f) (f is polymorphic in dimensions other than I, y)
= (X(K,−))h(βK,J(f)). (naturality of β)
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Proposition 5. The algebraic box projection of an algebraic cube corresponds
to the geometric box projection of the corresponding geometric cube.

Proof. As usual, consider the positive boxes, as the negatives are handled anal-
ogously. Suppose κ is an algebraic cube in XI,y,J and β be its algebraic box
projection to XI;Jy . Let the corresponding geometric cube be κ and its geometric
box projection be β. It suffices to show that nrvX;I;J

y (β) = β. For any morphism
(f : I, y, J→ K) ∈ ΩI

y,

nrvX;I;J
y (β)f = βK(f) (definition of nrvX;I;J

y )

= (κ ◦ ι0)K(f) (definition of geometric box projection)
= κK((ι0)K(f)) (composition of natural transformations)
= κK(f) (inclusion)
= Xf(κ) (Yoneda)
= βf. (definition of algebraic box projection)

Proposition 6. There is a bijection between the set of geometric uniform filling
operations and that of algebraic uniform filling operations.

Proof. We only show the case of positive boxes. Suppose we have a posi-
tive geometric filling operation liftI;Jy . nrvX;I;J

y ◦ liftI;Jy ◦ rlz
X;I;J
y is a valid pos-

itive algebraic uniform filling operation by the Yoneda Lemma and Proposi-
tions 3, 4 and 5. Similarly, suppose we have a positive algebraic filling operation
fillI;Jy . rlzX;I;J

y ◦ fillI;Jy ◦ nrvX;I;J
y is a valid geometric one.

By the Yoneda Lemma and Proposition 3, the above two constructions are
inverse to each other, which shows that there is a bijection between the sets of
algebraic and geometric uniform filling operations.

Williamson shows in detail that a Kan complex forms an ω-groupoid in
that reversion and concatenation of cubes may be defined in such a way that
the groupoid laws hold up to higher identifications given by cubes. Rather than
repeat the construction here, the reader is referred to Williamson [2012] for a
proof in the standard cubical setting that may be adapted to the present setting
using named, rather than numbered, dimensions.

3 Kan Fibrations
The uniform Kan condition ensures that a cubical set has sufficient structure
to be the interpretation of a closed type in which higher-dimensional cubes are
interpreted as identifications. Williamson shows, by explicit constructions, that
a Kan complex forms an ω-groupoid. More generally, it is necessary to consider
the conditions under which a cubical family may serve as the interpretation of
a family of types indexed by a type. Thinking informally of a family of types
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as a mapping sending each element of the index type to a type, one quickly
arrives at the requirement that this assignment should respect the identifications
expressed by the cubical structure of the indexing type—identified indices should
determine “equivalent” types. This means that if α0 and α1 are identified by
α in the index type, then there should be transport functions between the type
assigned to α0 and the type assigned to α1 that are mutually inverse in the
sense that the starting point should be identified with the ending point for both
composites. The purpose of this section is to make these intuitions precise.

As motivation, let us consider the concept of a family of sets { Yx }x∈X, where
X is a set of indices and, for each x ∈ X, Yx is a set. What, precisely, is such
a thing? One interpretation is that the family is a mapping Y : X → Set such
that for every x ∈ X, Y(x) = Yx. For this to make sense, X must be construed
as a category, the obvious choice being the discrete category on objects X; the
functoriality of Y is then trivial. One may worry that the codomain of Y is a
“large” category, but such worries may be allayed by recalling that the axioms
of replacement and union ensure that the direct image of X by Y must form
a set—we are only using a “small part” of the entire category Set. But this
observation leads immediately to an alternative, and in some ways technically
superior, formulation of a family of sets, called fibrations. According to this
view the family of sets is identified with a fibration p : Y → X, where Y, the
total space of p, is the amalgamation of all of the Yx’s, and p, the display map,
identifies, for each y ∈ Y the unique x ∈ X such that p(y) = x. The element
y ∈ Y is said to lie over the index p(y) ∈ X. The two views of families are
equivalent in that each can be recovered from the other. Given p : Y → X we
may define a family of sets { fib[p]x }x∈X as fib[p](x) , p−1(x), the preimage
of x under p; this always exists because Set has equalizers, and so every map
in Set is a fibration. Conversely, a family of sets Y = { Yx }x∈X determines a
fibration pY : (

∐
x∈X Yx)→ X given by the first projection; the fibers of pY are

isomorphic to the given Yi’s.
Cubical sets may themselves be thought of as families of sets, indexed by the

cube category, �, rather than another set. This sets up two ways for formulate
cubical sets, analogous to those just considered for plain sets:

1. As a covariant presheaf (i.e., a co-presheaf ), a functor X : �→ Set, that
sends dimension I to sets of I-cubes, and sends cubical morphisms f : I→ I ′

to functions Xf : XI → XI ′ , preserving identities and composition. (This
is the definition given in Section 1.)

2. As a discrete Grothendieck opfibration, a functor pX : X→ �, that sends
each object α of X to its dimension pX(α), an object of �, and each
morphism φ : α→ α ′ : X to a cubical morphism pX(φ) : pX(α)→ pX(α

′).
Moreover, the functor pX determines a cubical set in the sense of being a
covariant presheaf, fib[pX] : �→ Set, as follows:

(a) For each object I : �, the set of objects, the fiber of pX over I, is
defined to be the set fib[pX]I , { x ∈ X | pX(x) = I }.
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(b) For each cubical morphism f : I → I ′ : �, there must be a function
fib[pX]f : fib[pX]I → fib[pX]I ′ between the fibers of pX. The choice of
lifting must be functorial in f.

The critical point is that every morphism f : I → I ′ have a unique lifting
mapping elements of the fiber over I to elements of the fiber over I ′.

These two formulations are equivalent in that each can be constructed from the
other.

1. Given X : �→ Set one may form the (discrete) Grothendieck construction
to obtain a functor pX :

∫
X → � from the category of co-elements of X

to the cube category that is in fact a discrete Grothendieck fibration.

2. Given a discrete Grothendieck fibration p : X→ �, the lifting requirement
states exactly that p determine a cubical set consisting of the fibers of p
and functions between them.

There are, as in the preceding examples, two ways to formulate the concept
of a family of cubical sets Y indexed by a cubical set X. It is worthwhile to take
a moment to consider what this should mean. Informally, at each dimension I,
there is associated to each I-cube x in X a set of I-cubes Yx. To be more precise,
a pointwise representation of a cubical family of sets is a functor Y :

∫
X→ Set

that directly specifies the I-cubes of Y for each I-cube x of X, and specifies how
to lift morphisms f : (I, x) → (I ′,Yf(x)) to functions YI(x) → YI ′(Xf(x)). It is
this formulation of cubical family of sets that is used in Bezem et al. [2014] to
represent families of types. A fibered representation of a cubical family of sets
is a cubical set X · Y together with a morphism of cubical sets pY : X · Y → X
from the total space to the base space of the fibration pY (or just p for short).
Thus, p is a family of functions pI : (X · Y)I → XI determining, for each I-cube
y of the total space, the I-cube of the base space over which it lies. Naturality
means that if f : I→ I ′ is a cubical morphism,

Xf(pI(y)) = pI ′(Yf(y)) (y ∈ YI). (23)

A cubical family of elements of p : X · Y → X is a section of p, which is a
morphism y : X → X · Y of cubical sets such that p ◦ y = id. This means not
only that pI(yI(x)) = x, but that the naturality condition holds as well:

(X · Y)I(yI(x)) = yI ′(Xf(x)).

Each fibration determines a pointwise cubical family of sets, fib[p] :
∫
X →

Set, called the fibers of p. It is defined by the following equations:

fib[p]I(x) , fib[pI](x) = {y ∈ YI | pI(y) = x } ⊆ YI (24)

fib[p]f(y) , Yf(y) (f : I→ I ′) (25)
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Naturality of p ensures that fib[p]f : fib[p]I → fib[p]I ′ . Conversely, each point-
wise cubical of family of sets Y :

∫
X→ Set determines a fibration:

(X · Y)I , { x · y | x ∈ XI y ∈ YI(x) } (26)

(X · Y)f(x · y) , Xf(x) · Yf(y) (27)

pY (x · y) , x (28)

Thus, the two formulations are essentially equivalent.
When considering cubes as identifications, it is natural to demand that iden-

tified indices determine equivalent fibers. At the very least this means that a
fibration of cubical sets should determine a transport function between the fibers
over identifications in the base space. If κ is a J, y-cube in X, then p : Y → X
should determine a function7

trans[p]Jy(κ) : fib[p]J(κ0)→ fib[p]J(κ1).

where κ0 = Xy7→0(κ) and κ1 = Xy 7→1(κ). Thus, viewing κ as an identification
between its two faces κ0 and κ1 induces an equivalence between the cubical sets
assigned to its left- and right faces. Moreover, the transport map should be a
homotopy equivalence between the fibers.8

The required transport map may be derived from a generalization of the
uniform Kan condition on cubical sets to the standard Kan condition on fibra-
tions. It is a generalization in that a cubical set X satisfies the UKC iff the
unique map ! : X → 1 is a standard Kan fibration. The main idea of the Kan
condition for fibrations is simply that the homotopy lifting property is required
to lift geometric boxes in Y over a index cube in X to a geometric cube over
the same index cube. This is enough to derive the required transport property
between fibers whose indices are identified by some cube. Just as before, the
standard Kan condition on fibrations extends to the uniform Kan condition on
fibrations given by Bezem et al.. A richer class of boxes, with omitted extra
dimensions, are permitted, and the fillings are required to be natural in the
extra dimensions. Finally, the equivalence between the geometric and algebraic
Kan conditions for cubical sets is extended to fibrations of cubical sets.

The standard formulation of the Kan condition for fibrations is geometric.
For a morphism p : Y → X of cubical sets to be a Kan fibration, it is enough
to satisfy the following fiberwise lifting property. Suppose that β : tI;∅y → Y is
a positive geometric box in Y and κ : �I,y → X is a geometric cube in X. Let
ι0 : tI;∅y ↪→ �I,y be the inclusion of the free-standing box into the free-standing
cube. We say the box β in Y lies over the geometric cube κ in X if this diagram

7The use of “J” here suggests that one way to implement trans[p]Jy(−) through the Kan
filler is to treat κ as a box with only one face, where all dimensions other than the filling
dimension are exactly the extra dimensions J.

8See The Univalent Foundations Program [2013] for a full discussion of equivalence of types.
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commutes:
tI;∅y Y

�I,y X

β

ι0 p

κ

The standard positive geometric Kan condition for p states that there is a
geometric cube liftI;∅y (κ;β) : �I,y → Y such that

1. The cube liftI;∅y (κ;β) is a lifting of the box β over the index cube κ in that
it restricts to β along the inclusion: liftI;∅y (κ;β) ◦ ι0 = β.

2. The cube liftI;∅y (κ;β) lies over the given cube κ: p ◦ liftI;∅y (κ;β) = κ.

(Of course, the same requirements are imposed on negative boxes as well.) See
Figure 5 for a diagrammatic formulation of the standard Kan conditions on
fibrations. In the standard case no “extra” dimensions are permitted in a box,
so the parameter J on the boxes involved is always ∅.

tI;∅y Y

�I,y X

β

ι0 p

κ

uI;∅y Y

�I,y X

β

ι1 p

κ

Figure 5: Standard Geometric Kan Conditions for Fibrations (Liftings Dashed)

The transport mapping between the fibers of a geometric Kan fibration are
readily derived from the geometric Kan condition. The identification, κ, in the
base space may be seen as a morphism κ : �{y} → X that draws a line in X.
The transport map may be oriented in either direction; let us consider here
the positive orientation. There is an inclusion ι0 : t∅;∅y ↪→ �{y} of the positive
free-standing box with filling direction y that specifies the left end-point of the
free-standing line as the starting face. The starting point of the transport,
y0 ∈ fib[p]∅(κ0), determines a box β0 : t∅;∅y → Y as the geometric realization of
the one-point complex {y0} in Y∅. The lifting property determines a geometric
line λ = lift∅;∅y (β0) in Y such that λy7→0 = y0 and λy 7→1 is its destination,
determined by κ, in the ∅-fiber of p over Xx 7→1(κ). That is,

trans[p]∅y(κ)(y0) = lift∅;∅y (rlz;∅;∅y ({y0}))∅(y 7→ 1) (29)

= Yy 7→1(fill∅;∅y ({y0})). (30)

The standard Kan condition for fibrations generalizes to the geometric uni-
form Kan condition for fibrations by admitting boxes that have additional di-
mensions whose opposing faces are omitted (and hence provided by a filling
cube). The required naturality conditions are illustrated in Figure 6 in their
geometric formulation for both positive and negative boxes.
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tI;J ′y tI;Jy Y

�I,y,J
′

�I,y,J X

(tI;−
y )h

ι0

β ′

β

ι0

p

(�I,y,−)h
κ

uI;J ′y uI;Jy Y

�I,y,J
′

�I,y,J X

(uI;−
y )h

ι1

β ′

β

ι1

p

(�I,y,−)h
κ

Figure 6: Uniform Geometric Kan Conditions for Fibrations (Liftings Dashed)

One can define cubes, boxes, and box projections for a fibration p : Y → X
and develop geometric and algebraic representations as in Section 2. A cube or
a box in the fibration p is naturally a cube or a box in Y lying over some index
cube in X. In case of cubes, the index cube in X can be recovered from the
geometric cube in Y by post-composition along with p; therefore a geometric
cube in p can simply be a geometric cube in Y . A positive geometric box in p,
written 〈κ ; β〉, consists of a geometric box β in Y and the index cube κ in X
such that p ◦ β = κ ◦ ι0, which is to say β lies over κ.

tI;Jy Y

�I,y,J X

β

ι0 p

κ

In other words, the set of positive geometric boxes in the fibration p, written
geobox[p]I;Jy , is the pullback of the cospan

hom(�I,y,J,X)
−◦ι0−−−→ hom(tI;Jy ,X)

p◦−←−−− hom(tI;Jy ,Y).

The set of negative geometric boxes, written geobox[p]I;Jy , is defined analogously.
The positive geometric box projection sends a geometric cube κ : �I,y,J → Y to
〈p ◦ κ ;κ ◦ ι0〉 as a positive geometric box. This gives well-defined positive boxes
because the box κ ◦ ι0 must lie over the cube p ◦ κ. The negative projection
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is defined analogously. A lifting operation, just as before, is a section of a box
projection and the uniformity means naturality in J.

A more algebraic, combinatorial description may be obtained as well. Let
the fibration in question again be p : Y → X. The collection of algebraic I-cubes
in the fibration p is just YI because geometric cubes in the fibration p are simply
geometric cubes in Y . A positive algebraic box in the fibration p is then a pair
〈κ ; β〉 of an algebraic box β in YI;Jy and an algebraic (index) cube κ in XI,y,J
such that β lies over κ, or equivalently, every face of β lies over the matching
aspect of κ. Formally speaking, it requires that for any face map f ∈ ΩI

y,

pcod(f)(βf) = Xf(κ). (31)

The collection of such positive boxes is written as pI;J
y
, and the negative coun-

terpart is pI;Jy . Finally, the algebraic box projection is the combination of the
fibrations p (for the index cube) and the box projection in Y as follows.

projI;J
y

: YI,y,J → pI;J
y

projI;J
y
(κ) , 〈pI,y,J(κ) ; {Yf(κ)}f∈ ΩI

y
〉

proj
I;J

y : YI,y,J → pI;Jy

proj
I;J

y (κ) , 〈pI,y,J(κ) ; {Yf(κ)}f∈ΩI
y
〉

Proposition 7. projI;J
y

and proj
I;J

y for fibrations give well-defined algebraic boxes
in p in the sense that Equation (31) holds.

Proof. For any f ∈ ΩI
y,

pcod(f)(proj
I;J

y
(κ)f) = pcod(f)(Yf(κ)) (by definition)

= Xf(pI,y,J(κ)). (by naturality of p)

The same argument works for negative boxes.

The geometric and algebraic descriptions enjoy the same equivalence in Sec-
tion 2, which is to say that there are natural bijections or identities for cubes,
boxes, box projections and uniform filling operations between the two presen-
tations, as shown in Figure 7.

4 Discussion and Conclusion
The uniform Kan condition is a central notion in the model of higher-dimensional
type theory in the category of cubical sets given by Bezem et al. [2014]. Inspired
by their work, we relate a geometric formulation of the UKC, which is expressed
in terms of fibrations and lifting properties, to an algebraic formulation that is
closer to the one given by Bezem et al. [2014], but which also provides another
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pI;J
y

pI;J
′

y

geobox[p]I;Jy geobox[p]I;J
′

y

YI,y,J YI,y,J ′

homcSet(�I,y,J,Y) homcSet(�I,y,J
′
,Y)

(pI;−

y
)h

fillI;JyprojI;J
y

fillI;J
′

y

projI;J
′

y

〈y;h〉

(geobox[p]I;−y )h

liftI;Jy

〈p◦−;−◦ι0〉

〈y;h〉

(Y(I,y,−))h

y

homcSet(�
I,y,−,Y)h

y

liftI;Jy

〈p◦−;−◦ι0〉

Elements Geometric Algebraic Theorem

Cubes �I → Y YI Natural Bijection
Positive Boxes geobox[p]I;Jy pI;J

y
Natural Bijection

Negative Boxes geobox[p]I;Jy pI;Jy Natural Bijection
Pos. Box Projection 〈p ◦− ; − ◦ ι0〉 projI;J

y
Identity

Neg. Box Projection 〈p ◦− ; − ◦ ι1〉 proj
I;J

y Identity
Pos. Uniform Filling liftI;Jy fillI;Jy Type Equivalence
Neg. Uniform Filling lift

I;J

y fill
I;J

y Type Equivalence

Figure 7: Algebraic and Geometric Kan Structures for a Fibration p : Y → X

characterization of open boxes. Geometric and algebraic open boxes are re-
lated by a Yoneda-like correspondence between the morphisms from co-sieves
and the algebraic definition given here. The uniformity condition on box-filling
given by Bezem et al. [2014] may be seen via the geometric characterization as
naturality in the extra dimensions of an open box.

Bezem et al. [2014] avoid using Kan fibrations in the form considered here to
model families of types, because to do so would incur the well-known coherence
problems arising from modeling exact conditions on substitution in type theory
by universal conditions that do not meet these exactness requirements. On the
other hand, several authors [Kapulkin et al., 2012, Awodey, 2014, Hofmann,
1995, Lumsdaine and Warren, 2014, Curien et al., 2014] have proposed ways to
overcome the coherence problems by constructing refined fibration-based models
that validate the required exactness properties of type theory. It is conceivable
that one can build a model of type theory in terms of uniform Kan fibrations
by applying these ideas.
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