
The TIL/ML Compiler:

Performance and Safety through Types

G. Morrisett D. Tarditi P. Cheng C. Stone R. Harper P. Lee

jgm@cs.cornell.edu dtarditi|pscheng|cstone|rwh|petel@cs.cmu.edu

January 28, 1996

1 The Problem

Systems code requires both high performance and reliability. Usually, these two goals are at odds
with each other. For example, to prevent kernel data structures from being over-written or read,
either accidentally or maliciously, conventional systems use hardware-enforced protection or soft-
ware fault isolation (SFI) [18]. Unfortunately, both of these techniques exact a cost at run time:
Hardware protection requires expensive context switches and data copying to communicate with
the kernel or other processes, whereas SFI requires run-time checks for loads, stores and jumps.
Furthermore, these protection mechanisms only guarantee \read/write" safety and are often too
weak to guarantee the integrity of a system. For instance, systems code must still verify at run
time that a capability (i.e., a �le descriptor, port, message queue, etc.) is valid when using SFI or
hardware protection.

In contrast, systems designed around strong, statically-typed languages such as Modula-3 and
Standard ML (SML), provide abstraction mechanisms, including objects, abstract datatypes, poly-
morphism, and automatic memory management, that enforce read/write safety as well as capabili-
ties at compile-time. For instance, we can de�ne an abstract type message queue with appropriate
operations using the abstype mechanism of SML. The type system of SML prevents programmers
from forging message queue values either accidentally or intentionally. As a result, we need not
check at run time whether or not a message queue argument is valid. Thus, in principle, using
static type checking should provide superior performance to either hardware protection or SFI,
simply because checks are performed at compile or link time instead of run time.

Unfortunately, two impediments have kept the \programming language" approach to systems
software from becoming a reality. The �rst problem is that implementations of languages such
as Modula-3 and SML restrict representations of values to support features like polymorphism
and garbage collection. In particular, implementations tag values to support garbage collection
and run-time type dispatch (e.g., Modula-3's typecase or SML's polymorphic equality), and box
objects (i.e., force them into a machine word) to support polymorphism and abstract data types.

Systems code requires direct access to underlying hardware or subsystem data structures, and
thus cannot a�ord to tag or box objects. For instance, it is often necessary to read/write speci�c
32-bit (or 64-bit) integer values into device registers, frame bu�ers, DMA regions, or page tables.
As a result, implementations that tag integers by stealing a bit cannot directly access such devices.
Without direct access to the hardware or data structures, the performance bene�ts of static type
checking become irrelevant.

1

25%

50%

75%

100%

cksum FFT KB lexgen life Mmult PIA SIMPLE

Figure 1: TIL Execution Time Relative to SML/NJ

The second problem is that, whereas languages like SML provide a rich type system that elim-
inates more run-time checks than for example Modula-3, implementations of SML-like languages
produce code that performs poorly, especially when compared to imperative languages like C. For
instance, we have observed up to a 10-fold increase in running times for small benchmark programs
compiled under Standard ML of New Jersey (SML/NJ) when compared to C. We argue that part
of the performance problem of SML/NJ code is due to the need to tag and box objects to support
polymorphism and garbage collection. But another large part is due to implementors concentrat-
ing on making function calls fast, instead of concentrating on generating good code for loops and
recursive functions.

2 The Solution: TIL

Having identi�ed these key implementation problems, we have constructed a new compiler for SML
called TIL with the following desirable properties:

1. There are almost no restrictions on data representations. In particular, we support \nearly"
tag-free garbage collection and box-free polymorphism.

2. Code produced by TIL is e�cient: On a sample set of benchmarks, TIL code is roughly 3
times faster and allocates one-�fth the data compared to SML/NJ version 108.3, running on
a DEC Alpha 3000/300 LX. (See Figures 1 and 2 and Tables 2 and 3)

3. All but the last of the intermediate languages used by TIL are strongly typed.

We brie
y discuss each of these points below. Readers interested in more details regarding the
internals of TIL and its performance should see [16, 11, 15].

To eliminate restrictions on object representations, TIL uses a combination of intensional poly-
morphism [7] and \nearly" tag-free garbage collection [12]. Intensional polymorphism allows pro-
grams to perform dynamic type analysis, much like the typecase construct of Modula-3. However,
intensional polymorphism does not tag values with their types. Instead, representations of types
are passed as independent arguments to polymorphic functions so that values can have natural
representations. Since values are not tagged, type arguments among multiple values can often be
shared. For instance, a function that takes an array of values of uniform, but unknown type requires
only one type argument.

2

Program lines Description

Checksum 241 Checksum fragment from the Foxnet [2], doing 5000 checksums on a
4096-byte array.

FFT 246 Fast fourier transform, multiplying polynomials up to degree
1,000,000.

Knuth-Bendix 618 An implementation of the Knuth-Bendix completion algorithm.

Lexgen 1123 A lexical-analyzer generator [1], processing the lexical description of
Standard ML.

Life 146 The game of Life implemented using lists [13].

Matmult 62 Integer matrix multiply, on 100x100 integer arrays.

PIA 2065 The Perspective Inversion Algorithm [19] deciding the location of an
object in a perspective video image.

Simple 870 A spherical
uid-dynamics program [4], run for 4 iterations with grid
size of 100.

Table 1: Benchmark Programs

25%

50%

75%

100%

cksum FFT KB Lexgen life Mmult PIA SIMPLE

Figure 2: TIL Heap Allocation Relative to SML/NJ

3

Our approach to tag-free garbage collection is to keep integers,
oating point numbers, other
values that �t into registers (e.g., bools), and values allocated on the stack tag-free. Instead, we
associate type information with code points at compile time and use this information during garbage
collection to locate live, traceable values that reside in either registers or on the stack. In particular,
we use the return addresses in stack frames to locate type information so that we can determine
which registers and which stack slots contain pointers to heap-allocated values. We use the type
arguments of functions to determine whether or not values of unknown type are pointers. Values
allocated on the heap are tagged with a header word (or words) describing which components of
the value are pointers. This approach is similar to languages like C and C++ where heap-allocated
data structures (i.e., malloced values) are tagged with header words. However, unlike so-called
\conservative" collectors (e.g., [3]), our approach always collects unreachable objects. Note that
our approach does not preclude mapping tag-free values outside the heap (such as a page table or
frame bu�er) into our address space. Furthermore, our approach easily extends to fully tag-free
collection in the style of Tolmach [17].

We use a combination of standard functional language optimizations such as inlining, uncur-
rying, constant typecase-elimination to eliminate polymorphic and higher-order functions without
blowing up code size. We also apply conventional loop optimizations, including common sub-
expression elimination and loop-invariant removal, to recursive functions. These loop optimizations
are quite important and provide roughly a factor of 2 speed improvement for most benchmarks.

Because the intermediate forms of TIL are strongly typed, we can verify the type safety of the
output of all but the very last phases of the compiler. This has helped to identify and eliminate
various bugs in the compiler itself. But having strongly-typed intermediate forms has an additional
bene�t: Since the output of the optimizer is type-safe, and because the bulk of compile time in TIL
is spent in optimization, we can ship this optimized code to untrusting sites (e.g., a web-browser
or kernel). These sites can verify the type safety of the low-level, optimized code and then locally
perform only the last few stages of compilation.

Using typed intermediate languages forced us to push the frontier of type systems in order to
support static checking of lower-level C-like languages instead of higher-level SML-like languages.
The key di�culty is that much of the type safety in a language like SML is provided by the
high-level constructs, including closures and abstract datatypes. We must expose the underlying
representations of these constructs to an optimizer in order to get good code. But as we expose the
representations, we need more powerful type systems to track the invariants that were guaranteed
at the source level.

For example, an important phase in TIL eliminates closures (higher-order functions) by repre-
senting them as records consisting of code and an environment. After this phase, the optimizer
can eliminate redundant environment operations or redundant closure constructions. These opti-
mizations are not possible before the representations of closures are made explicit. But exposing
the representations of closures requires additional support from the type system. To ensure type
safety, we must guarantee that only the environment of a given closure is passed to the code of that
closure.

We addressed this closure issue by using a combination of existential types [10] together with
translucent types [6, 8] to support safe, explicit representations of closures [9]. Simply-typed inter-
mediate forms, like the ones used in the Java Virtual Machine [5] and the SML/NJ compiler [14],
cannot ensure these properties at compile time. As a result, these systems must sacri�ce either
safety or performance.

4

3 Summary and Conclusions

We view the application of advanced type theory in compilers as one of the most promising means for
achieving both performance and safety in systems code. The TIL compiler shows that languages like
SML can provide safety through types without restricting data representations. Furthermore, TIL
demonstrates that striking improvements in SML code performance can be achieved through the
combination of intensional polymorphism, nearly tag-free garbage collection, and fairly conventional
optimizations. We have found that much of the needed type theory is available \o� the shelf", but
compiler writers have yet to take advantage of it. Conversely, much of the research in type theory
is oriented towards high-level languages, whereas the application of types to low-level intermediate
languages seems to hold the most promise.

References

[1] A. W. Appel, J. S. Mattson, and D. Tarditi. A lexical analyzer generator for Standard ML. Distributed
with Standard ML of New Jersey, 1989.

[2] E. Biagioni, R. Harper, P. Lee, and B. Milnes. Signatures for a network protocol stack: A systems
application of Standard ML. In Proceedings of the 1994 ACM Conference on Lisp and Functional
Programming, pages 55{64, Orlando, Florida, June 1994. ACM.

[3] H.-J. Boehm. Space-e�cient conservative garbage collection. In Proceedings of the SIGPLAN '93
Conference on Programming Language Design and Implementation, pages 197{206, Albuquerque, June
1993.

[4] K. Ekanadham and Arvind. SIMPLE: An exercise in future scienti�c programming. Technical Report
Computation Structures Group Memo 273, MIT, Cambridge, MA, July 1987. Simultaneously published
as IBM/T. J. Watson Research Center Research Report 12686, Yorktown Heights, NY.

[5] J. Gosling. Java intermediate bytecodes. In ACM SIGPLAN Workshop on Intermediate Representations
(IR'95), Jan. 1995.

[6] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with sharing. In
Proceedings of the 21st Annual ACM Symposium on Principles of Programming Languages, pages 123{
137, Portland, OR, Jan. 1994. ACM.

[7] R. Harper and G. Morrisett. Compiling polymorphism using intensional type analysis. In Proceedings
of the 22nd Annual ACM Symposium on Principles of Programming Languages, pages 130{141. ACM,
Jan. 1995.

[8] X. Leroy. Manifest types, modules, and separate compilation. In Proceedings of the 21st Annual ACM
Symposium on Principles of Programming Languages, pages 109{122. ACM, Jan. 1994.

[9] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In Proceedings of the 23rd Annual
ACM Symposium on Principles of Programming Languages. ACM, Jan. 1996. To appear.

[10] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type. ACM Trans. Prog. Lang. Syst.,
10(3), 1988.

[11] G. Morrisett. Compiling with Types. PhD thesis, School of Computer Science, Carnegie Mellon Univer-
sity, Dec. 1995. Technical Report No. CMU-CS-95-226.

[12] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory management. In ACM Confer-
ence on Functional Programming and Computer Architecture, pages 66{77, La Jolla, June 1995.

[13] C. Reade. Elements of Functional Programming. Addison-Wesley, Reading, Massachusetts, 1989.

5

[14] Z. Shao and A. W. Appel. A type-based compiler for Standard ML. In Proceedings of the ACM
SIGPLAN '9Language Design and Implementation, pages 116{129, La Jolla, California, June 1994.
ACM.

[15] D. Tarditi. Optimizing ML. PhD thesis, School of Computer Science, Carnegie Mellon University. In
preparation.

[16] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizing
compiler for ml. In Proceedings of the SIGPLAN '96 Conference on Programming Language Design and
Implementation, May 1996. To appear.

[17] A. Tolmach. Tag-free garbage collection using explicit type parameters. In Proceedings of the 1994
ACM Conference on Lisp and Functional Programming, pages 1{11, Orlando, FL, June 1994.

[18] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. E�cient software-based fault isolation. In 14th
ACM Symposium on Operating Systems Principles, Dec. 1993.

[19] K. G. Waugh, P. McAndrew, and G. Michaelson. Parallel implementations from function prototypes:
a case study. Technical Report Computer Science 90/4, Heriot-Watt University, Edinburgh, Aug. 1990.

6

Program Exec. time (s) TIL/NJ
TIL NJ

Checksum 11.81 57.89 0.20
FFT 5.45 43.97 0.12
Knuth-Bendix 7.47 7.42 1.01
Lexgen 3.50 10.32 0.34
Life 0.67 0.76 0.88
Matmult 0.48 3.22 0.15
PIA 1.23 4.79 0.26
SIMPLE 37.39 86.07 0.43

Geo. mean 0.32

Table 2: Comparison of running times

Program Heap alloc. (Kbytes) TIL/NJ
TIL NJ

Checksum 143,898 984,775 0.15
FFT 9,107 214,855 0.04
Knuth-Bendix 36,942 94,493 0.39
Lexgen 11,919 111,252 0.11
Life 3,563 6,096 0.58
Matmult 0 30,990 -
PIA 4,089 53,850 0.09
SIMPLE 265,212 803,119 0.33

Geo. mean (excluding Matmult) 0.17

Table 3: Comparison of heap allocation

7

