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1 Introduction

We are investigating a new approach to compiling Standard
ML (SML) based on four key technologies: intensional poly-
morphism [23], nearly tag-free garbage collection[12, 46, 34],
conventional functional language optimization, and loop op-
timization. To explore the practicality of our approach, we
have constructed a compiler for SML called TIL, and are
thus far encouraged by the results: On DEC ALPHA work-
stations, programs compiled by TIL are roughly three times
faster, do one-fifth the total heap allocation, and use one-
half the physical memory of programs compiled by SML of
New Jersey (SML/NJ). However, our results are still pre-
liminary — we have not yet investigated how to improve
compile time; TIL takes about eight times longer to compile
programs than SML/NJ. Also, we have not yet implemented
the full module system of SML, although we do provide sup-
port for structures and separate compilation. Finally, we
expect the performance of programs compiled by TIL to im-
prove significantly as we tune the compiler and implement
more optimizations.

Two key issues in the compilation of advanced languages
such as SML are the presence of garbage collection and type
variables. Most compilers use a universal representation for
values of unknown or variable type. In particular, values are
forced to fit into a tagged machine word; values larger than
a machine word are represented as pointers to tagged, heap-
allocated objects. This approach supports fast garbage col-
lection and efficient polymorphic functions, but can result in
inefficient code when types are known at compile time. Even
with recent advances in SML compilation, such as Leroy’s
representation analysis [28], values must be placed in a uni-
versal representation before being stored in updateable data
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structures (e.g.7 arrays) or recursive data structures (e.g.7
lists).

Intensional polymorphism and tag-free garbage collection
eliminate the need to use a universal representation when
compiling polymorphic languages. TIL uses these technolo-
gies to represent many data values “naturally”. For ex-
ample, TIL provides tag-free, unallocated, word-sized in-
tegers; aligned, unboxed floating-point arrays; and unallo-
cated multi-argument functions. These natural representa-
tions and calling conventions not only improve the perfor-
mance of SML programs, but also allow them to interoperate
with legacy code written in languages such as C and Fortran.
When types are unknown at compile time, TIL may produce
machine code which is slower and bigger than conventional
approaches. This is because types must be constructed and
passed to polymorphic functions, and polymorphic functions
must examine the types at run-time to determine appropri-
ate execution paths. However, when types are known at
compile time, no overhead is incurred to support polymor-
phism or garbage collection.

Because these technologies make polymorphic functions
slower, it becomes important to eliminate as many polymor-
phic functions at compile time as is possible. Inlining and
uncurrying are well-known techniques for eliminating poly-
morphic and higher-order functions. We have found that
for the benchmarks used here, these techniques eliminate all
polymorphic functions and all but a few higher-order func-
tions when programs are compiled as a whole.

We have also found that applying traditional loop op-
timizations to recursive functions, such as common sub-
expression elimination and invariant removal, is important.
In fact, these optimization reduce execution time by a me-
dian of 39%.

An important property of TIL is that all optimizations
and the key transformations are performed on typed inter-
mediate languages (hence the name TIL). Maintaining cor-
rect type information throughout optimization is necessary
to support both intensional polymorphism and garbage col-
lection, both of which require type information at run time.
By using strongly-typed intermediate languages, we ensure
that type information is maintained in a principled fash-
ion, instead of relying upon ad hoc invariants. In fact, us-
ing the intermediate forms of TIL, an “untrusted” compiler
can produce fully optimized intermediate code, and a client
can automatically verify the type integrity of the code. We
have found that this ability has a strong engineering benefit:
type-checking the output of each optimization or transfor-
mation helps us identify and eliminate bugs in the compiler.



In the remainder of this paper, we describe the technolo-
gies used by TIL in detail, give an overview of the structure
of TIL, present a detailed example showing how TIL com-
piles ML code, and give performance results of code pro-

duced by TIL.

2 Overview of the Technologies

This section contains a high-level overview of the technolo-
gies we use in TIL.

2.1 Intensional Polymorphism

Intensional polymorphism [23] eliminates restrictions on data
representations due to polymorphism, separate compilation,
abstract datatypes, and garbage collection. It also supports
efficient calling conventions (multiple arguments passed in
registers) and tag-free polymorphic, structural equality.

With intensional polymorphism, types are constructed
and passed as values at run time to polymorphic functions,
and these functions can branch based on the types. For
example, when extracting a value from an array, T1L uses a
typecase expression to determine the type of the array and
to select the appropriate specialized subscript operation:

fun subla] (x:a array, i:int) =
typecase o of
int => intsub(x, i)
| float => floatsub(x, i)
| ptr(r) => ptrsub(x, i)

If the type of the array can be determined at compile-time,
then an optimizer can eliminate the typecase:

sub[float] (a, 5) < floatsub(a, 5)

However, intensional polymorphism comes with two costs.
First, we must construct and pass representations of types to
polymorphic functions at run time. Furthermore, we must
compile polymorphic functions to support any possible rep-
resentation and insert typecase constructs to select the ap-
propriate code paths. Hence, the code we generate for poly-
morphic functions is both bigger and slower, and minimizing
polymorphism becomes quite important.

Second, in order to use type information at run time, for
both intensional polymorphism and tag-free garbage collec-
tion, we must propagate types through each stage of compi-
lation. To address this second problem, almost all compila-
tion stages, including optimization and closure conversion,
are expressed as type-directed, type-preserving translations
to strongly-typed intermediate languages.

The key difficulty with using typed intermediate lan-
guages is formulating a type system that is expressive enough
to statically type check terms that branch on types at run
time, such as sub. The type system used in TIL is based
on the approach suggested by Harper and Morrisett [23, 33].
Types themselves are represented as expressions in a simply-
typed A-calculus extended with an inductively generated
base kind (the monotypes), and a corresponding induction
elimination form. The induction elimination form is es-
sentially a “Typecase” at the type level; this allows us to
write type expressions that track the run-time control flow
of term-level typecase expressions. Nevertheless, the type
system used by TIL remains both soundand decidable. This
implies that at any stage during optimization, we can auto-
matically verify the type integrity of the code.

2.2 Conventional and Loop-Oriented Opti-
mizations

Program optimization is crucial to reducing the cost of in-
tensional polymorphism,improving loops and recursive func-
tions, and eliminating higher-order and polymorphic func-
tions. TIL employs optimizations found in conventional
functional language compilers, including inlining, uncurry-
ing, dead-code elimination, and constant-folding. In addi-
tion, TIL does a set of generalized “loop-oriented” optimiza-
tions to improve recursive functions. These optimizations in-
clude common-subexpression elimination, invariant removal,
and array-bound check removal. In spite of the large num-
ber of different optimizations, each optimization produces
type-correct code.

TIL applies optimizations across entire compilation units.
This makes it more likely that inlining and uncurrying will
eliminate higher-order functions, which are likely to interfere
with the loop-oriented optimizations. Since the optimiza-
tions are applied to entire compilation units (which may be
whole programs), we paid close attention to algorithmic effi-
ciency of individual optimization passes. Most of the passes
have an O(N logN) worst-case asymptotic complexity (ex-
cluding checking types for equality), where N is program
size.

2.3 Nearly Tag-Free Garbage Collection

Nearly tag-free garbage collection uses type information to
eliminate data representation restrictions due to garbage
collection. The basic idea i1s to record enough represen-
tation information at compile time so that, at any point
where a garbage collection can occur, it is possible to deter-
mine whether or not values are pointers and hence must be
traced by the garbage collector. Recording the information
at compile time makes it possible for code to use untagged
representations. Unlike so-called conservative collectors (see
for example [10, 14]), the information recorded by TIL is
sufficient to collect all unreachable objects.

Collection is “nearly” tag-free because tags are placed
only on heap-allocated data structures (records and arrays);
values in registers, on the stack, and within data structures
remain tagless. We construct the tags for monomorphic
records and arrays at compile time. For records or arrays
with unknown component types, we may need to construct
tags partially at run time. As with other polymorphic oper-
ations, we use intensional polymorphism to construct these
tags.

Registers and components of stack frames are not tagged.
Instead, we generate tables at compile time that describe
the layout of registers and stack frames. We associate these
tables with the addresses of call sites within functions at
compile time. When garbage collection is invoked, the col-
lector scans the stack, using the return address of each frame
as an index into the table. The collector looks up the lay-
out of each stack-frame to determine which stack locations
to trace. We record additional liveness information for each
variable to avoid tracing pointers that are no longer needed.

This approach i1s well-understood for monomorphic lan-
guages requiring garbage collection [12]. Following Tolmach
[46], we extended it to a polymorphic language as follows:
when a variable whose type is unknown is saved in a stack
frame, the type of the variable is also saved in the stack
frame. However, unlike Tolmach, we evaluate substitutions



of ground types for type variables eagerly instead of lazily.
This is due in part for technical reasons (see [33, Chapter
7]), and in part to avoid a class of space leaks that might
result with lazy substitution.

3 Compilation Phases of TIL

Figure 1 shows the various compilation phases of TIL. The
phases through and including closure conversion use a typed
intermediate language. The phase after closure conversion
use an untyped language where variables are annotated with
garbage collection information. The low-level phases of the
compiler use languages where registers are annotated with
garbage collection information.

The following sections describe the phases of TIL and
the intermediate languages they use in more detail.

3.1 Front-end

The first phase of TIL uses the front-end of the ML Kit
compiler [8] to parse and elaborate (type check) SML source
code. The Kit produces annotated abstract syntax for all of
SML and then compiles a subset of this abstract syntax to
an explicitly-typed core language called Lambda. The com-
pilation to Lambda eliminates pattern matching and various
derived forms.

We extended Lambda to support signatures, structures
(modules), and separate compilation. Each source module
is compiled to a Lambda module with an explicit list of
imported modules and their signatures. Imported signa-
tures may include transparent definitions of types defined in
other modules; hence TIL supports a limited form of translu-
cent [22] or manifest types [29]. Currently, the mapping to
Lambda does not handle signatures, nested structures, or
functors. In principle, however, all of these constructs are
supported by TIL’s intermediate languages.

3.2 Lmli and Type-Directed Optimizations

Lmli, which stands for A\¥Z [23], is an intensionally polymor-
phic language that provides explicit support for construct-
ing, passing, and analyzing types at run-time. We use these
constructs in the translation of Lambda to Lmli to provide

efficient data representations for user-defined datatypes, multi-

argument functions, tag-free polymorphic equality, and spe-
cialized arrays.

After the conversion from Lambda to Lmli, TIL performs
a series of type-directed optimizations. SML provides only
single-argument functions; multiple arguments are passed in
a record. The first optimization, argument flattening, trans-
lates each function which takes a record as an argument to
a function which takes the components of the record as mul-
tiple arguments. These arguments are passed in registers,
avoiding allocation to create the record and memory op-
erations to access record components. If a function takes
an argument of variable type «, then we use typecase to
determine the proper calling convention, according to the
instantiation of a at run time.

As with functions, datatype constructors in SML take
a single argument. For example, the cons data construc-
tor (::) for an o list takes a single record, consisting of
an « value and an «a list value. Naively, such a construc-
tor is represented as a pair consisting of a tag (e.g., cons),

and a pointer to the record containing the o value and the
a list value. The tag is a small integer value used to distin-
guish among the constructors of a datatype (e.g., nil vs.
::). Constructor flattening rewrites all constructors that
take records as arguments so that the components of the
records are flattened. In addition, constructor flattening
eliminates tag components when they are unneeded. For
example, cons applied to (hd,t1) is simply represented as a
pointer to the pair (hd,t1), since such a pointer can always
be distinguished from nil. If the constructor takes an argu-
ment of unknown type, then we use typecase to determine
the proper representation, according to the instantiation of
« at run time.

Because lists are used often in SML, the SML/NJ com-
piler also flattens cons cells (and other constructors). How-
ever, in violation of the SML Definition [31], SML/NJ pre-
vents programmers from abstracting the type of these con-
structors, in order to prevent representation mismatches be-
tween definitions of abstract datatypes and their uses [3]. In
contrast, TIL supports fully abstract datatype components,
but uses intensional polymorphism to determine representa-
tions of abstract datatypes, potentially at run time.

In addition to specializing calling conventions and datatypes,

the conversion from Lambda to Lmli makes polymorphic
equality explicit as a term in the language. Also, arrays are
specialized into one of three cases: int arrays, float arrays,
and pointer arrays. Intensional polymorphism is used to
select the appropriate creation, subscript, and update oper-
ations for polymorphic arrays.

Finally, TIL boxes all floating point values, except for
values stored in floating-point arrays. We chose to box
floats to make record operations faster, since typical SML
code manipulates many records but few floats. The is-
sue is that floating-point values are 64 bits, while other
scalars and pointers are 32 bits. If floats were unboxed, then
record offset calculations could not always be done at com-
pile time. Fortunately, the optimizer later eliminates un-
ecessary box/unbox operations during the constant-folding
phase, so straight-line floating point code still runs fast.

In all, the combination of type-directed optimizations re-
duce running times by roughly 40% and allocation by 50%
[33, Chapter 8]. However, much of this improvement can
be realized by other techniques; For example, SML/NJ uses
Leroy’s unboxing technique to achieve comparable improve-
ments for calling conventions [42]. The advantage of our
approach is that we use a single mechanism (intensional
polymorphism) to specialize calling conventions, flatten con-
structors, unbox floating-point arrays, and eliminating tags
for both polymorphic equality and garbage collection.

3.3 Optimizations

TIL employs an extensive set of optimizations. The opti-
mizations include most of those typically done by compilers
for functional languages. They also include loop-oriented
optimizations, such as invariant removal, applied to recur-
sive functions.

TIL first translates L.mli to a subset of Lml called Bform.
Bform, based on A-Normal-Form [18], is a more regular in-
termediate language than Lmli that facilitates optimization.
The translation from Lmli names all intermediate computa-
tions and binds them to variables by a let-construct. It
also names all potentially heap-allocated values, including
strings, records and functions. Finally, it allows nested
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let expressions only within switches (branch expressions).
Hence, the translation from Lmli to Bform linearizes and
names nested computations and values.

After translation to Bform, TIL performs the following
conventional transformations:

e alpha-conversion: Bound variables are uniquely re-
named.

e dead-code elimination: unreferenced, pure expres-
sions and functions are eliminated.

e uncurrying: Curried functions are transformed to
multi-argument functions, when possible.

e constant folding: Arithmetic operations, switches,
and typecases on constant values are reduced, as well
as projections from known records.

e sinking: Pure expressions used in only one branch of
a switch are pushed into that branch. However, such
expressions are not pushed into function definitions.

e inlining: Non-escaping functions that are called only
once are always inlined. Small, non-recursive functions
are inlined in a bottom-up pass. Recursive functions
are never (directly) inlined.

e inlining switch continuations: The continuation of
a switch is inlined when all but one branch raises an
exception. For example, the expression

let x = if y then ex else raise es
in e4
end

is transformed to
if y then let x = e2 in e4 end else raise es3.

This makes expressions in ez available within es for
optimizations like common sub-expression elimination.

e minimizing fix: Mutually-recursive functions are bro-
ken into sets of strongly connected components. This
improves inlining and dead code elimination, by sepa-
rating non-recursive and recursive functions.

In addition to these standard functional language trans-
formations, TIL also applies loop-oriented optimizations to
recursive functions:

¢ common subexpression elimination (CSE): Given
an expression

let x = e;
in es
end

if e; is pure or the only effect it may have is to raise an
exception, then all occurrences of e; in ey are replaced
with x. The only expressions that are excluded from
CSE are side-effecting expressions and function calls.

e eliminating redundant switches: Given an expres-

sion

let x = if z then
let y = if z then e; else eo
in ...

the nested if statement is replaced by ei, since z is
always true at that point.

e invariant removal: Using the call graph, we calcu-
late the nesting depth of each function. (Nesting-depth
is analogous to loop-nesting depth in languages like C.)
TIL assigns a let-bound variable and the expression
it binds a nesting depth equal to that of the nearest
enclosing function. For every pure expression e, if all
free variables of e have a nesting depth less than e, TIL
moves the definition of e right after the definition of
the free variable with the highest lexical nesting depth.

e hoisting: All constant expressions are hoisted to the
top of the program. An expression is a constant ex-
pression if it uses only constants or variables bound to
constant expressions.

e eliminating redundant comparisons: A set of sim-
ple arithmetic relations of the form # < y is propagated
top-down through the program. A “rule-of-signs” ab-
stract interpretation is used to determine signs of vari-
ables. This information is used to eliminate array-
bounds checks and other tests.

TIL applies the optimizations as follows: first, it per-
forms a round of reduction optimizations, including dead-
code elimination, constant folding, inlining functions called
once, CSE, eliminating redundant switches, and invariant
removal. These optimizations do not increase program size
and should result in faster code. It iterates these optimiza-
tions until no further reductions occur. Then it performs
switch-continuation inlining, sinking, uncurrying, compar-
ison elimination, fix minimizing, and inlining. The entire
process, starting with the reduction optimizations, is iter-
ated two or more times.

3.4 Closure conversion

TIL uses a type-directed, abstract closure conversion in the
style suggested by Minamide, Morrisett, and Harper [32] to
convert Lmli-Bform programs to to Lmli-Closure programs.
Lmli-Closure is an extension of Lmli-Bform that provides
constructs for explicitly constructing closures and their en-
vironments.

For each escaping Bform function, TIL generates a closed
piece of code, a type environment, and a value environment.
The code takes the free type variables and free value vari-
ables of the original function as extra arguments. The types
and values corresponding to these free variables are placed in
records. These records are paired with the code to form an
abstract closure. TIL uses a flat environment representation
for type and value environments [5].

For known functions, TIL generates closed code but avoids
creating environments or a closure. Following Kranz [27], we
modify the call sites of known functions to pass free variables
as additional arguments.

TIL closes over only variables which are function argu-
ments or are bound within functions. The locations of other
“top-level” variables are resolved at compile-time through
traditional linking, so their values do not need to be stored
in a closure.



3.5 Conversion to an untyped language

To simplify the conversion to low-level assembly code, TIL
translates Lmli-Closure programs to an untyped language
called Ubform. Ubform is a much simpler language than
Lmli, since similar type-level and term-level constructs are
collapsed to the same term-level constructor. For exam-
ple, in the translation from Lmli-Closure to Ubform, TIL
replaces typecase with a conventional switch expression.
This simplifies generation of low-level code, since there are
many fewer cases.

TIL annotates variables with representation information
that tells the garbage collector what kinds of values variables
must contain (e.g., pointers, integers, floats, or pointers to
code). The representation of a variable  may be unknown
at compile time, in which case the representation informa-
tion is the name of the variable y that will contain the type
of & at run time.

3.6 Conversion to RTL

Next TIL converts Ubform programs to RTL,a register-transfer

language similar to ALPHA or other RISC-style assembly
language. RTL provides an infinite number of pseudo-registers
each of which is annotated with representation informa-
tion. Representation information is extended to include
locatives, which are pointers into the middle of objects.
Pseudo-registers containing locatives are never live across a
point where garbage collection can occur. RTL also provides
heavy-weight function call and return mechanisms, and a
form of interprocedural goto for implementing exceptions.

The conversion of Ubform to RTL decides whether Ub-
form variables will be represented as constants, labels, or
pseudo-registers. It also eliminates exceptions, inserts tag-
ging operations for records and arrays, and inserts garbage
collection checks.

3.7 Register allocation and assembly

Before doing register allocation, TIL converts RTL programs
to ALPHA assembly language with extensions similar to
those for RTL. Then TIL uses conventional graph-coloring
register allocation to allocate physical registers for the pseudo-
registers. [t also generates tables describing layout and
garbage collection information for each stack frame, as de-
scribed in Section 2.3. Finally, TIL generates actual ALPHA
assembly language and invokes the system assembler, which
does instruction scheduling and creates a standard object

file.

4 An example

This section shows an ML function as it passes through the
various stages of TIL. The following SML code defines a dot
product function that is the inner loop of the integer matrix
multiply benchmark:

val sub2 : ’a array2 * int * int -> ’a
fun dot(cnt,sum) =
if cnt<bound then
let val sum’=sum+sub2(A,i,cnt)*sub2(B,cnt,j)
in dot(cnt+1,sum’)
end
else sum

The function sub?2 is a built-in 2-d array subscript function
which the front end expands to

fun sub2 ({columns,rows,v}, s :int, t:int) =
if 8 <0 orelse s>=rows orelse t<0 orelse
t>=columns then raise Subscript
else unsafe subl(v,s * columns + t)

Figures 2 through 7 show the actual intermediate code
created as dot and sub2 pass through the various stages
of TIL. For readability, we have renamed variables, erased
type information, and performed some minor optimizations,
such as eliminating selections of fields from known records.

Figure 2 shows the functions after they have been con-
verted to Lmli. The sub2 function takes a type as an ar-
gument. A function parameterized by a type is written as
At., while a function parameterized by a value is written as
Ai. In the dot function, the sub2 function is first applied to
a type and then applied to its actual values. Each function
takes only one argument, often a record, from which fields
are selected. The quality of code at this level is quite poor:
there are eight function applications, four record construc-
tions, and numerous checks for array bounds.

Figure 3 shows the Lmli fragment after it has been con-
verted to Lmli-Bform. Functions have been transformed to
take multiple arguments instead of records and every inter-
mediate compuation is named.

Figure 4 shows the Lmli-Bform fragment after it has been
optimized. All the function applications in the body of the
loop have been eliminated. psub_ai(av,a) is an applica-
tion of the (unsafe) integer array subscript primitive. All of
the comparisons for array bounds checking have been safely
eliminated, and the body of the loop consists of 9 expres-
sions. This loop could be improved even further; we have yet
to implement any form of strength reduction and induction
variable elimination.

Figure 5 shows the Lmli-Bform fragment after it has been
converted to Ubform. Each variable is now annotated with
representation information, to be used by the garbage col-
lector. INT denotes integers and TRACE denotes pointers to
tagged objects. The function is now closed, since it was
closure converted before converting to Ubform.

Figure 6 shows the Ubform fragment after it has been
converted to RTL. Every pseudo-register is now annotated
with precise representation information for the collector.
The representation information has been extended to in-
clude LOCATIVE, which denotes pointers into the middle of
tagged objects. Locatives cannot be live across garbage-
collection points. The (*) indicates points where the psub_ai
primitive has been expanded to two RTL instructions. This
indicates that induction-variable elimination would also be
profitable at the RTL level. The returninstruction’s operand
is a pseudo-register containing the return address.

Figure 7 shows the actual DEC ALPHA assembly lan-
guage generated for the dot function. The code between
L1 and L3 corresponds to the RTL code. The other code
is epilogue and prologue code for entering and exiting the
function. Note that no tagging operations occur anywhere
in this function.

5 Performance

In this section, we compare the performance of programs
compiled by TIL against programs compiled by the SML/NJ



sub2 =
let fix £ = Aty.

let fix g = Aarg.
let a = (#0 arg)

s = (#1 arg)
t = (#2 arg)
columns = (#0 a)
rows = (#1 a)
v = (#2 a)
check =

let testl = plst_i(s,0)
in Switch_enum test of
1 => M.enum(1)
| 0 =>A.
let test2 = pgte_i(s,rows)
in Switch_enum test2 of
1 => M.enum(1)
| 0 =>A.
let test3 = plst_i(t,0)

in Switch_enum test3 of
1 => A.enum(1)
| 0 => X.pgte_i(t,columns)
end

end
end
in Switch_enum check of
1 => MA.raise Subscript
| 0 => XA.unsafesubl [ty] {v,t + s * columns}

end
in g
in f
end
fix dot=
Ai.let cnt = (#0 i)
sum = (#1 i)
d = plst_i(cnt,bound)
in Switch_enum d
of 1 => A.let sum’ = sum +
((sub2 [int]) {A,i,cnt}) *
((sub2 [int]l) {B,cnt,j})
in dot{cnt+1l,sum’}
end
| 0 => A.sum
end
Figure 2: After conversion to Lmh
sub2 =
fix dot = Acnt,sum.
let test = plst_i(cnt, bound)
r =
Switch_enum test of
1 => A,
let a = sub2[int]
b = a(A,i,cnt)
¢ = sub2[int]
d = c(B,cnt,j)
e = b*xd
f = sumte
g = cnt+l
h = dot(g,f)
in h
end
| 0 => A.sum
in r
end

Figure 3: Lmli-Bform before optimization

fix dot =
Acnt ,sum.
let test = plst_i(cnt,bound)
r = Switch_enum test of

1 =
A
let a = t1 + cnt
b = psub.ai(av,a)
¢ = columns * cnt
d=j+c
e = psub.ai(bv,d)
f = bx*e
g = sumtf
h = 1+cnt
i = dot(h,g)
in i
end
| 0 => A.sum
in r
end

Figure 4: Lmli-Bform after optimization

fix dot =
Abound:INT,columns:INT,bv:TRACE,av:TRACE,t1:INT,
j:INT,cnt:INT,sum:INT.
let test:INT = pgtt_i(bound,cnt)

r:INT =
Switchint test of
1 =>
let a:INT = t1 + cnt
b:INT = psub_ai(av,a)
c:INT = columns * cnt
d:INT = j + ¢
e:INT = psub_ai(bv,d)
T:INT = b*e
g:INT = sum+f
h:INT = 1+cnt
i:INT = dot(bound,columns,bv,
av,tl,j,h,g
in i
end
| 0 => sum
in r
end : INT

Figure 5: After conversion to Ubform



dot (([bound(INT),columns(INT) ,bv(TRACE),
av(TRACE) ,t1(INT),j(INT),cnt(INT),
sum(INT)]1,[1))
{ LO: pgt bound (INT) , cnt(INT) , test(INT)
bne test(INT),L1
mv sum(INT) ,result (INT)

br L2
Li: addl ti(INT) , cnt(INT) , a(INT)
(*) s4add a(INT) , av(TRACE) , t2(LOCATIVE)
(*) 1d1 b(INT) , O(t2(LOCATIVE))

mull columns(INT) , cnt(INT) , c (INT)
addl jCINT) , c(INT) , d (INT)

(x) sd4add d (INT) , bv(TRACE) , t3(LOCATIVE)

(*) 1d1 e (INT) , 0(+3 (LOCATIVE))
mull/v b (INT) , e (INT) , £(INT)
addl/v sum(INT) , £ (INT) , g (INT)
addl/v cnt(INT) , 1 , h (INT)
trapb
mv h (INT),cnt(INT)
mv g (INT),sum(INT)
br LO

L2: return retreg(LABEL) }

Figure 6: After conversion to RTL

compiler. We measure execution time, heap allocation, phys-
ical memory requirements, executable size, and compile time.
We also measure the effect of loop optimizations. Further
performance analysis of TIL appears in Morrisett’s [33] and
Tarditi’s theses [45].

5.1 Benchmarks

Table 1 describes the benchmark programs, which range in
size from 62 lines to about 2000 lines of code. Some of these
programs have been used previously for measuring ML per-
formance [5, 16]. The benchmarks cover a range of appli-
cation areas including scientific computing, list-processing,
systems programming, and compilers.

We compiled the programs as single closed modules. For
Lexgen and Simple, which are standard benchmarks [5], we
eliminated functors by hand because TIL does not yet sup-
port the full SML module language. Because whole pro-
grams were given to the compiler, we found that the opti-
mizer naturally eliminated all polymorphic functions. Con-
sequently, for this benchmark suite, there was no run-time
cost to support intensional polymorphism.

We extended the built-in ML types with safe 2-dimensional
arrays. The 2-d array operations do bounds checking on each
dimension and then use unsafe 1-d array operations. Arrays
are stored in column-major order.

5.2 Comparison against SML/NJ

We compared the performance of TIL against SML/NJ in
several dimensions: execution time, total heap allocation,
physical memory footprint, the size of the executable, and
compilation time.

For TIL, we compiled programs with all optimizations
enabled. For SML/NJ, we compiled programs using the de-
fault optimization settings. We used a recent internal release
of SML/NJ (a variant of version 1.08), since it produces code
that is about 35% faster than the current standard release

(0.93) of SML/NJ [41].

#
#
#
#
#

H

.ent Lv2851 _dot_205955
arguments : [$bound,$0] [$columns,$1] [$bv,$2]
[$av,$3] [$t1,$4] [$j,$5]
[$cnt,$6] [$sum,$7]

results : [$result,$0]
return addr : [$retreg,$26]
destroys : $0 $1 $2 $3 $4 $5 $6 $7 $27

Lv2851_dot_205955:

L1i:

L2:

L3:

.mask (1 << 26), -32
.frame $sp, 32, $26

.prologue 1

ldgp $gp, ($27)
lda $sp, -32($sp)
stq $26, ($sp)
stq $8, 8($sp)
stq $9, 16($sp)
mov $26, $27
cmplt $6, $0, $8
bne $8, L2

mov $7, $1

br $31, L3

addl $4, 36, $8
s4addl $8, $3, $8
1d1 $8, ($8)

mull $1, $6, $9
addl $5, $9, $9
s4addl $9, $2, $9
1d1 $9, ($9)
mullv $8, $9, $8
addlv $7, $8, $7
addlv $6, 1, $6
trapb

br $31, L1

mov $1, $0

mov $27, $26

1dq $8, 8($sp)
1dq $9, 16($sp)
lda $sp, 32($sp)
ret $31, ($26), 1

.end Lv2851_dot_205955

Figure 7: Actual DEC ALPHA assembly language



[ Program [ lines | Description |

Checksum 241 | Checksum fragment from the Foxnet [7], doing 5000 checksums on a 4096-byte
array.

FFT 246 Fast fourier transform, multiplying polynomials up to degree 65,536

Knuth-Bendix | 618 An implementation of the Knuth-Bendix completion algorithm.

Lexgen 1123 | A lexical-analyzer generator [6], processing the lexical description of Standard
MI

Life 146 | The game of Life implemented using lists [39].

Matmult 62 Integer matrix multiply, on 200x200 integer arrays.

PIA 2065 | The Perspective Inversion Algorithm [47] deciding the location of an object in a
perspective video image.

Simple 870 A spherical fluid-dynamics program [17], run for 4 iterations with grid size of 100.

Table 1: Benchmark Programs

TIL always prefixes a set of operations on to each mod-
ule that it compiles, in order to facilitate optimization. This
“inline” prelude contains 2-d array operations, commonly-
used list functions, and so forth. To avoid handicapping
SML/NJ, we created separate copies of the benchmark pro-
grams for SML/NJ, and placed equivalent “prelude” code
at the beginning of each program by hand.

Since TIL creates stand-alone executables, we used the
exportFnfacility of SML/NJ to create stand-alone programs.
The exportFn function of SML/NJ dumps part of the heap
to disk and throws away the interactive system.

We measured execution time on DEC ALPHA AXP 3000/-
300X workstations, running OSF/1, version 2.0, using the
UNIX getrusage function. For SML/NJ, we started timing
after the heap had been reloaded. For TIL, we measured the
entire execution time of the process, including load time. We
made 5 runs of each program on an unloaded workstation
and chose the lowest execution time. Each workstation had
96MBytes of physical memory, so paging was not a factor in
the measurements.

We measured total heap allocation by instrumenting the
TIL run-time system to count the bytes allocated. We used
existing instrumentation in the SML/NJ run-time system.
We measured the maximum amount of physical memory
during execution using getrusage. We used the size pro-
gram to measure the size of executables for TIL. For SML/NJ,
we used the size program to measure the size of the run-
time system and then added the size of the heap created
by exportFn. Finally, we measured end-to-end compilation
time, including time to assemble files produced by TIL.

Figures 8 through 11 present the measurements (the raw
numbers are in Appendix ?7). For each benchmark, mea-
surements for TIL. were normalized to those for SML/NJ
and then graphed. SML/NJ performance is the 100% mark
on all the graphs.

Figure 8 presents relative running times. On average,
programs compiled by TIL run 3.3 times faster than pro-
grams compiled by SML/NJ. In fact, all programs except
Knuth-Bendix and Life are substantially faster when com-
piled by TIL. We speculate that less of a speed-up is seen
for Knuth-Bendix and Life because they make heavy use of
list-processing, which SML/NJ does a good job of compiling.

Figure 9 compares the relative amounts of heap alloca-
tion. On average, the amount of data heap-allocated by the
TIL program is about 17% of the amount allocated by the
SML/NJ program. This is not surprising, because TIL uses
a stack while SML/NJ allocates frames on the heap.

125%T

100%

75% 1

50% 1

25%

Cksum FFT KB lexgen Life Mmult PIA SIMPLE

Figure 8: TIL Execution Time Relative to SML/NJ

Figure 10 presents the relative maximum amounts of
physical memory used. On average, TIL programs use half
the memory used by SML/NJ programs. We see that floating-
point programs use the least amount of memory relative to
comparable SMIL/NJ programs. We speculate that this is
due to TIL’s ability to keep floating values unboxed when
stored in arrays.

T1L stand-alone programs are about half the size of stand-
alone heaps and the runtime system of SML/NJ. The differ-
ence in size is mostly due to the different sizes of the runtime
systems and standard libraries for the two compilers. (TIL’s
runtime system is about 100K, while SML/NJ’s runtime is
about 425K.) The program sizes for TIL confirm that gener-
ating tables for nearly tag-free garbage collection consumes
a modest amount of space, and that the inlining strategy
used by TIL produces code of reasonable size.

Figure 11 compares compilation times for TIL and SMTL/NJ.
SML/NJ does much better than TIL when it comes to com-
pilation time, compiling about eight times faster. However,
we have yet to tune TIL for compilation speed.

5.3 Loop-Oriented Optimizations

We also investigated the effect of the loop-oriented optimiza-
tions (CSE, invariant removal, hoisting, comparison elimi-
nation, and redundant switch elimination). For each bench-
mark, we compared performance with the loop optimiza-
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Figure 9: TIL Heap Allocation Relative to SML/NJ
Figure 12: Effects of Loop Optimizations

tions against performance without the loop optimizations.
Figure 12 presents the ratios of execution time with the loop
optimizations to execution time without the loop optimiza-
tions, and similar ratios for total heap allocation. The loop
optimizations reduce execution time by 0 to 83%, with a
median reduction of 39%. The effect on heap allocation
ranges from an increase of 20% to a decrease of 96.5%, with
75%+ a median decrease of 10%.

For matmult, the matrix multiplication function is small
enough that the optimizer inlines it, making the array di-
mensions known. If the array dimensions are held unknown,
then the loop optimizations speed up matmult by a factor of
25%+ 2.5.

100%

50%T

6 Related Work
Cksum FFT KB Lexgen Life Mmult PIA ESIMPLE
Morrison et al. used an “ad-hoc” approach to implement
polymorphism in their implementation of Napier ’88 [35]. In
particular, they passed representations of types to polymor-
phic routines at run-time to determine behavior. However,
to our knowledge, Napier ’88 did not use types to implement
tag-free garbage collection. Also, there is no description of
the internals of the Napier ’88 compiler, nor is there an ac-
count of the performance of code generated by the compiler.
Peyton Jones and Launchbury suggested that types could
be used to unbox values in a polymorphic language [26].
2000%4- However, they only supported a limited set of “unboxed
types” (ints and floats) and restricted these types from in-
stantiating type variables. Later, Leroy suggested a gen-
eral approach for unboxing values based on the ML type
system [28]. Leroy’s approach has been extended and
1000%4 implemented elsewhere [38, 24, 42], including the SML/NJ
compiler. It does not support unboxed array components
nor flattened, recursive datatypes. Tolmach [46] combined
Leroy’s approach with tag-free garbage collection. However,
he used an ad hoc approach to propagate type information
to the collector.
Cksum FFT KB Lexgen Life Mmult PIA SIMPLE Other researchers have suggested that polymorphism should
be eliminated entirely at compile time [9, 25, 21], in the style
Figure 11: Til Compilation Time Relative to SML/NJ of C++ templates [44]. This prevents separate compilation
of a polymorphic definition from its uses. In contrast, in-
tensional polymorphism, and in particular the intermediate

Figure 10: TIL Physical Memory Used Relative to SML/NJ
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forms of TIL, support separate compilation of polymorphic
definitions, though we have yet to take advantage of this.

Tag-free garbage collection was originally proposed for
monomorphic languages like Pascal, but has been used else-
where [12, 11, 48, 15]. Britton suggested associating type
information with return addresses on the stack [12]. Appel
suggested extending this technique to ML by using unifica-
tion [4]. Goldberg and Gloger improved Appel’s algorithm
[20, 19]. None of the unification-based algorithms were im-
plemented due to the complexity of the algorithms and the
overhead of performing unification during garbage collec-
tion.

Aditya, Flood, and Hicks used type-passing to support
fully tag-free garbage collection for Id [1]. Independently,
Tolmach [46] implemented a type-passing garbage collec-
tion algorithm for ML. Our approach differs from others
by using “nearly” tag-free collection. In particular, records
and arrays on the heap are tagged. Another difference is
that we calculate type environments eagerly, while the other
implementations construct type environments lazily during
garbage collection.

Loop-oriented optimizations are well-known for imper-
ative languages [2]. However, few results are reported for
Lisp, Scheme, and ML. Appel [5] and Serrano [40] report
common-subexpression elimination optimizations similar to
ours. Appel found that CSE was not useful in the SML/NJ
compiler. Serrano restricted CSE to pure expressions, while
our CSE handles expressions which may raise exceptions.

7 Conclusions and future work

Our results show that for core-SML programs compiled as
a whole, intensional polymorphism can remove restrictions
on data representation, yet cost literally nothing due to the
effectiveness of optimization. They also show that loop op-
timizations can improve program performance significantly.

These results suggest that ML can be compiled as well as
conventional languages such as Pascal. TIL produces code
that is similar in many important respects to code produced
by Pascal and C compilers. For example, most function calls
are known, since few higher-order functions are left, integers
are untagged, and most code is monomorphic.

There are numerous areas that we would like to investi-
gate further. We would like to explore the effect of separate
compilation. With separate compilation, polymorphic func-
tions may be compiled separately from their uses, leading to
some cost for intensional polymorphism. We would like to
measure this cost and explore what kinds of optimizations
can reduce it.

Another direction we would like to investigate is how this
approach performs for larger programs. We would like to
add support for more of the ML, module system, since large
ML programs make extensive use of the module system. We
would also like to improve TIL’s compile times, so that large
programs can also be compiled as a whole.

Finally, we would like to continue improving the per-
formance of ML programs. We would like to extend our
register allocation strategy along the lines of Chow [13] or
Steenkiste [43]. We would also like to investigate more
loop optimizations, such as strength-reduction, induction-
variable elimination, and loop unrolling. On a more specu-
lative note, we would like to explore stack allocation of data
structures.
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