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Abstract. We describe the integration of MLRISC, a “generic” com-
piler back end, with TIL, a type-directed compiler for Standard ML. The
TIL run-time system uses a form of type information to enable partially
tag-free garbage collection. We show how we propagate this information
through the final phases of the compiler, even though the back end is
unaware of the existence of this information. Additionally, we identify
the characteristics of MLRISC that enable us to use it with TIL and
suggest ways in which it might better support our compiler. Preliminary
performance measurements show that we pay a significant cost for using
MLRISC, relative to a custom back end.

1 Introduction

We describe how we integrated MLRISC, a “generic” compiler back end, with
TIL, a type-directed compiler for the Standard ML (SML) programming lan-
guage. A type-directed compiler uses variable type information to guide succes-
sive translations between intermediate languages [13]. Type-directed compilers
rely on complete variable type information for most or all phases of compilation—
thus, types are preserved by intermediate code transformations during each
phase. A generic compiler back end translates a low-level intermediate language
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into machine code—the intention is that the back end does not depend on a
particular source language or front-end implementation technology. A compiler
back end could itself be type directed—both Typed Assembly Language [12] and
Proof-Carrying Code [14] [15] encode variable type information at the assembly-
language level—although this is not common practice, and, as a matter of fact,
MLRISC is not type directed.

TIL translates a source program through a succession of typed intermediate
languages until it arrives at conventional assembly code. The typed intermediate
languages used in TIL specify types explicitly at all variable binding sites. Thus,
TIL can always determine the type of a variable without having to resort to type
inference. The universal availability of type information permits TIL to check
types after any phase of compilation—this helps to ensure the correctness of
compiler optimizations during development. Type information also allows TIL to
perform additional optimizations that are not directly available to conventional
compilers [13] [10].

A principal benefit of type-directed compilation is that it facilitates sound
tag-free garbage collection [18]. Sound garbage collection requires that the heap
pointers used by an executing program be identified unambiguously. Tag-free
garbage collection permits these heap pointers to be identified without perturb-
ing the run-time representations of values.

In TIL’s run-time model, word-sized values (e.g., integers and heap point-
ers) are not tagged, whereas composite values contain tags for their constituent
locations. The location of a word-sized value is tagged instead of the value itself—
this “out-of-band” tagging scheme allows a single location tag, or trace value,
to identify many different run-time values. A trace table is a static encoding of
trace values either for a given procedure activation or for a set of static storage
locations. A procedure activation requires trace values for the machine registers
used by the procedure as well as its stack frame slots. A complete set of trace
tables can be synthesized at compile time for a program because all the possible
procedure activation shapes can be statically determined.

RTL (Register Transfer Language) is the lowest-level intermediate language
used in TIL. A back end for TIL thus translates RTL to assembly language. RTL
is an imperative language that resembles the instruction set of a RISC processor,
but it also provides complex primitives that are tailored to SML. An RTL pseudo
register identifies a procedure-local, word-sized storage location: pseudo registers
are mapped to machine registers and stack slots by the back end. RTL is not a
typed intermediate language, but RTL does annotate pseudo registers with trace
values; these are similar to, but distinct from, run-time trace values (the latter
are a translation of the former).

There are actually two versions of the TIL compiler: TILI [17] [13] is the
first-generation compiler; its successor is called TILT. We will refer to the TIL
compiler when the discussion applies to either compiler interchangeably. Both
compilers share a common RTL language: the back end of TIL1 translates RTL
directly to assembly language. This back end operates on RTL itself and explic-
itly propagates trace values through the spilling and register allocation phases.



As only the trace value component of this back end was customized for TIL1, it
largely duplicates other work.

MLRISC!, on the other hand, is a compiler back end implemented in SML
that transforms an abstract intermediate language into the assembly language
for a particular processor architecture. Taking RTL, MLRISC, and the TIL run-
time system as given, our task is to transformm RTL code into MLRISC code,
and to make the object code generated by MLRISC compatible with the TIL
run-time system. We impose an additional constraint on our implementation: we
may not customize the interface of MLRISC specifically for TIL, as this would
make it necessary to track such customizations across new versions of MLRISC.

As MLRISC does not propagate trace information, we cannot use it as a
“drop in” replacement for the TIL1 back end—we must have an additional mech-
anism that derives run-time trace values from RTL trace values. Run-time trace
values are encoded with references to machine register numbers and stack slots.
This means that our mechanism must operate in concert with MLRISC, because
the global register allocation and spilling phases of MLRISC assign these loca-
tions. This is the principal difficulty addressed by our work: how do we translate
abstract trace values to concrete trace values “in parallel” with the abstract-to-
concrete code translation performed by MLRISC?

Note that significant correctness questions are inevitably raised by the spec-
ification of such a translation, because trace values represent invariants—much
in the same way that types represent invariants—that may be perturbed by the
back end. Trace tables betray an implicit expectation by the run-time system
that the object code produced by the back end will (loosely) reflect the original
type structure of the program. As the back end is presented with no explicit
type structure, how can we expect its code transformations to respect such a
type structure? Another contribution of our work is that we describe the im-
plicit constraints that we expect MLRISC to satisfy to ensure the soundness of
the trace value translation.

In the remainder of this paper, we focus on how TIL communicates trace
information to the run-time system by way of MLRISC. In Section 2 we detail
the compiler and run-time system, whereas in Section 3 we present MLRISC. We
discuss in Section 4 the techniques we use to marry MLRISC to RTL and the TIL
run-time system, and Section 5 is an assessment of our experience. In Section 6
we propose improvements to the current implementation, and in Section 7 we
draw together summarizing conclusions.

2 TIL

The TIL compiler is characterized by its aggressive use of type information.
TIL compiles programs written in the Standard ML ’97 programming language
to DEC Alpha assembly language. All transformations (i.e., compiler phases)

! 'We chose to use MLRISC as a back end for our compiler because our research does
not directly address back end implementation technology. With MLRISC, we hope
to leverage the work of a larger group of researchers.



in TIL are based on explicitly typed intermediate languages. However, RTL,
the lowest-level intermediate language used in TIL, is not typed in the same
sense that the other intermediate languages are typed. RTL pseudo registers are
tagged with trace values that represent a degenerated form of type information
that is tailored to the run-time system. Figure 1 is a depiction of the intermediate
languages used in TILT; see Morrisett [13] for a description of the intermediate
languages used in TIL1.

SML > Abstract Syntax > HIL > MIL > RTL > MLRISC > Assembly Language

Fig. 1. Intermediate Languages in TILT

2.1 HIL and MIL

The TILT elaborator translates programs from abstract syntax to HIL (High-
level Intermediate Language). HIL is an explicitly-typed refinement of the SML
programming language, including the module system; a detailed discussion of
HIL is beyond the scope of this paper (see Harper and Stone [11] for further de-
tails). HIL is translated to MIL (Mid-level Intermediate Language) by the phase
splitter, which is responsible for eliminating modules and breaking abstraction
barriers. MIL is a lower-level, explicitly-typed, polymorphic intermediate lan-
guage that does not provide modules.

2.2 RTL

TILT translates MIL to RTL (Register Transfer Language) after performing clo-
sure conversion, determining data representations, and making heap allocation
explicit, among other things. RTL resembles an abstract assembly language in
which there are an unbounded supply of local pseudo registers for each proce-
dure. Pseudo registers are identified by positive integers and are automatically
mapped to machine registers and stack slots by the back end. Each pseudo reg-
ister is annotated with a trace value that classifies the kinds of values that the
register can contain—one can think of trace values as degenerated type infor-
mation that is present only for the benefit of the run-time system. RTL trace
values are derived directly from MIL variable types.

Figure 3 contains one possible RTL translation? of the SML function in Fig-
ure 23. Pseudo registers are given names (e.g., x) in this example to clarify

% This is not the actual RTL code currently produced by TILT for this function: it has
been simplified by hand to clarify its correspondence to the original SML code. This
correspondence is obscured by the poor RTL code that TILT currently generates.

3 This function was not written to compute anything interesting. Rather, the particular
intermediate code it translates to helps to illustrate points later in this paper.



the presentation; in an actual RTL program, pseudo registers are identified by
positive integers. Variables introduced by the compiler are prefixed by an un-
derscore. Pseudo register trace values are written following the pseudo-register
name in parentheses—trace values encode the “traceability” of a pseudo register,
perhaps by projecting the contents of another pseudo register (Table 1). Trace
values identify pointers into the heap to the run-time system—we explain the
role of run-time trace values in Section 2.3. Section 2.3 also contains a discussion
of type environments, of which _tenvl(trace) is one example.

fun f(x, n: int, 1: int list, 12: int list) =
g(x, n, if length 1>0 then hd 1 else 1)

Fig. 2. An SML Function to Take the Head of a List

trace A pointer into the heap

notrace_int An integer

notrace_code A pointer to machine code

notrace_real A floating-point number

label A pointer to data, but not into the heap

compute path May be a pointer into the heap: path is an expression that evaluates
(at run time) to the actual trace value

unset Uninitialized

locative A pointer into the middle of an item in the heap (cannot be traced)

Table 1. Trace Values for an RTL Pseudo Register

On entry to the body of the procedure, the argument pseudo registers listed
in the procedure header contain the values of the actual arguments passed to
the procedure. Similarly, on exit from the body, the result pseudo register listed
in the procedure header will be copied into the actual machine-level result reg-
ister, if necessary. The arguments and results of each procedure call are simply
listed in order, as RTL uses an implicit calling convention. When a given pseudo
register needs to be moved to/from a specific argument/result machine register
according to a particular calling convention, this code is generated as part of the
call/entry/exit sequence.

2.3 The Run-time System

Run-time Type Information Certain benefits arise from the use of typed
intermediate languages: for example, types can be checked after compiler passes
to help ensure correctness. Additionally, type-based information can be used at



procedure f:
arguments = [_tenvl(trace), ; arguments to f
x (compute _tenvl(trace).0),
n(notrace_int),

1(trace),
12(trace)]
results = [_t3(notrace_int)] ; result of f
{
call "length" ; _tl <- length(1)
arguments = [l(trace)] ; (call #1)
results = [_t1(notrace_int)]
bcndi2 1le, _til(motrace_int), 0, _L1 ; if _t1<=0 goto _L1
call "hd" ; _t2 <= hd(1)
arguments = [l(trace)] ; (call #2)
results = [_t2(notrace_int)]
br _L2 ; goto _L2
_L1:
mv 1, _t2(notrace_int) ; _t2 <=1
_L2:
call "g" ; _t3 <- g(x, n, _t2)
arguments = ; (call #3)

[_tenvil(trace),
x(compute _tenvl(trace).0),
n(notrace_int),
_t2(notrace_int)]

results = [_t3(notrace_int)]

Fig. 3. A Translation of the code in Figure 2 to RTL



run time for dynamic type dispatch and tag-free garbage collection[13]. In TIL,
the main ramification for the back end is that the run-time system uses a simple
form of type information to reclaim storage.

The TIL run-time system uses a tracing, copying garbage collector to reclaim
unused values in the heap. When the garbage collector is invoked, it must de-
termine the locations of all the heap pointers that are in use so that it does not
reclaim accessible memory. The garbage collector is said to trace these pointers
to determine the layout of the objects they address, and to copy these objects
to new locations. Traceable pointers may reside in registers, on the stack, in
the data segment, or in the heap. However, these locations may also contain a
variety of non-pointer values (e.g., word-sized integers) that cannot be safely
traced. The “traceability” of a given location is determined by its type: trace
values, which are derived directly from types, specify to the garbage collector
which locations should be traced. Machine registers and stack frame slots are
tagged with trace values according to a static table that is indexed by the return
address of an active procedure. Static (i.e., global) storage locations are tagged
by a corresponding set of static tables. The header of a heap value contains trace
values for its slots. Tagging locations is potentially more efficient than tagging
values because a single location tag can be shared for many values.

Note that the usual run-time model for garbage collection is not tag free. A
typical implementation of tagged garbage collection makes the representations
of heap pointers and non-heap pointers disjoint by encoding “tags” in the low-
order bits of each word. This approach introduces extra overhead, constrains
the range of representable values, and complicates interoperability with other
languages. Part of the purpose of TIL is to determine whether these pitfalls can
be avoided in a garbage-collected programming language implementation.

Representing Type Information At run time, vestigial type information is
represented as type environments and trace tables. Type environments supply
type information for variables whose types cannot be resolved at compile time
(e.g., polymorphic variables). For example, in Figure 2, the type of x is poly-
morphic and thus cannot be statically determined by the compiler—x could take
the value 3, "three", [1, 1, 1], or any of a number of values that have dis-
tinct representations at run time. A type environment for £ has the caller pass
an explicit representation of x’s type so that both the run-time system and f
can operate on it [18] [10]. Type environments are needed only for functions
such as f where complete type information is not available at compile time. A
type environment is a record of values that encode properties of types that are
important to the run-time system. Note that type environments are unlike the
explicit value descriptors used in many other language implementations, in that
type environments are constructed only in contexts where they are specifically
needed, as opposed to being an integral part of every value.

Trace tables map machine registers, stack slots, and static locations to trace
values. A trace table gives a value of yes to those locations that are known to
contain pointers into the heap. Other trace values allow the status of a location



to depend on a type environment or on the dynamic caller’s trace table: the trace
values that can be attached to a storage location by a trace table are documented
in Table 2. This table resembles Table 1 because run-time trace values are derived
from the corresponding RTL trace values. By contrast, objects in the heap have
special headers that specify trace values for locations in the object.

yes Contains a pointer into the heap
no Does not contain a pointer into the heap
callee id Contains the saved value of a callee-save register: id identifies a

machine register in the dynamic caller’s activation whose trace
value should be used for this location.

stack offset, index A polymorphic location: offset is the offset in the current stack
frame of a pointer to a type environment that contains the trace
value of this location at index indez.

global label, index A polymorphic location: label is the label of a type environment
in the data segment that contains the trace value of this location
at index indez.

unset Uninitialized

impossible Contains a heap pointer, but cannot be traced

Table 2. Trace Values for a Trace Table Storage Location

Locating Pointers Trace tables are consulted by the run-time system only
when the garbage collector is invoked. This invocation takes the form of a li-
brary call from an active procedure that is unable to allocate storage. At this
time, the collector must locate and trace all pointers into the heap: this pro-
cess is nontrivial because pointers can potentially reside in any machine register,
stack location, or static variable, and because the pointers themselves contain
no identifying information (e.g., tags). For static variables, we create a table in
a known location that points to the trace tables for all static regions. Tracing
the stack is more difficult because the stack depends on the dynamic behavior of
the program. However, there are only a statically computable number of distinct
activations, each of which can be determined by the compiler. Thus, we index
a static table for each activation record according to the return address of a
call site in the corresponding procedure. Because the collector is invoked via a
procedure call, we simply use the return address in its activation record to locate
the trace table of the most recent stack frame. Each trace table includes the size
of its stack frame, so we can use these offsets to “walk up” the stack. This means
that we need to generate a trace table for each direct call to the collector and
for each call to another procedure that might indirectly call the collector?.

At collection time, a callee-save register initialized by an active procedure
may have had its value saved on the stack by another procedure, or the original

* In practice, we simply assume that all procedures might indirectly call the collector.



value may be left intact. The trace table of the most recent procedure activation
holds the correct trace values for the machine register file at the time the collector
is invoked. If any callee-save registers are not allocated by the most recently
called procedure, then their trace values are determined according to the trace
table of the next most recently called procedure: this is the function of the callee
trace value. A callee trace value is also possible when a callee-save register is
saved to the stack (and the register is presumably overwritten)—in this case, the
proper stack location is given the callee trace value and the trace table of the
next most recent activation record is consulted to determine the status of the
stack location. This process can continue as long as the trace value of a location
is specified as callee.

Example In Figure 4, we show a possible DEC Alpha Assembly Language
translation of the example function of Figure 2, whereas in Figure 5 we document
the registers used in Figure 4. $_tenv, $x, $n, $1, and $12 are assigned to callee-
save temporaries in this procedure (e.g., $11, $12, etc. according to the standard
calling convention). $_tenvl contains the type environment for the function.
The procedure begins by allocating a stack frame of size 32 and saving the
return address and the callee-save registers on the stack. The arguments to the
procedure are then moved from registers defined by the calling convention into
the corresponding callee-save temporaries. Next, a call is made to length with
the value of 1 as an argument (the standard calling convention requires all calls
to jump through $pv). The result of the length call is then compared against zero
and a branch is taken to _L1 if it is not strictly positive. Assuming the branch is
not taken, a call is made to hd and the result is saved in $t2; otherwise $t2 gets
the value 1. The two control paths next converge at a call to g with arguments
x, n, and $t2—the result of this call becomes the result of £ after it restores the
caller’s register file from the stack frame. The 1dgp instructions are a peculiarity
of the Alpha standard calling convention.

The important things to notice in Figure 4 are the three call sites (commented
(call #n)) for which we must construct trace tables. These trace tables must
correctly identify the trace status of values in the register file and the local stack
frame at the time of the corresponding call. In Figure 6, we show a trace table for
call #2—notice that the trace values of stack slots saving callee-save registers
depend on the dynamic caller’s trace table (these slots are given trace status
callee n).

3 MLRISC

MLRISC [8] is a generic compiler back end developed by Lal George at Bell Lab-
oratories. MLRISC is “generic” in the sense that it can be used to compile many
different programming languages. The interface language to MLRISC, also called
“MLRISC”, is essentially an architecture-independent assembly language: ML-
RISC is thus suited to compiling programming languages for which a translation
to assembly language is feasible; to date, MLRISC has been used to compile SML



f:  ldgp $gp, 0($pv)
subl $sp, 32, $sp
stl $ra, 0($sp)
stl $_tenv, 8($sp)
stl $x, 12($sp)
stl $n, 16($sp)
stl $1, 20($sp)
stl $12, 24($sp)
mov $arg0, $_tenv
mov $argl, $x
mov $arg2, $n
mov $arg3, $1
mov $argd, $12
stl $_tenv, 28($sp)
mov $1, $argo0
lda $pv, length
jsr $ra, ($pv)
ldgp $gp, 0($ra)
cmple  $res, 0, $tO
bne $t0, _L1
mov $1, $argo0
lda $pv, hd
jsr $ra, ($pv)
ldgp $gp, 0($ra)
mov $res, $t2
br $zero, _L2

_L1: lda $t2, 1

_L2: mov $_tenv, $arg0
mov $x, $argl
mov $n, $arg2
mov $t2, $arg3
lda $pv, g
jsr $ra, ($pv)
ldgp $gp, 0($ra)
1d1 $ra, 0($sp)
1dl $_tenv, 8($sp)
1d1 $x, 12($sp)
1d1 $n, 16($sp)
1d1 $1, 20($sp)
1d1 $12, 24($sp)
addl $sp, 32, $sp
jmp $zero, ($ra)

>

’

>

>

>
>

’

>

’

’

>

’

>

’

set global pointer
alloc frame
save return address

; save callee save

; get arguments

; save type environment

$t1 <- length(1)

(call #1)

; set global pointer
; if $t1<=0 goto _L1

$t2 <- hd(1)

(call #2)

; set global pointer

goto _L2
$t2 <- 1
$t3 <- g(x, n, $t2)

(call #3)
set global pointer
restore return address

; restore callee save

; dealloc frame
; return

Fig. 4. A Translation of the SML function in Figure 2 to DEC Alpha Assembly Lan-

guage



$argn Argument n

$res Result

$tn  Caller-save temporary n
$zero Always zero

$sp Stack pointer
$pv Call address
$ra Return address

Fig. 5. Registers Used in Figure 4

$_tenv yes Always trace
$x stack 28, 0 Trace according to $_tenv
$n no Never trace

8($sp) callee $_tenv Use dynamic caller’s trace value for $_tenv
12($sp) callee $x Use dynamic caller’s trace value for $x
16($sp) callee $n Use dynamic caller’s trace value for $n
20($sp) callee $1 Use dynamic caller’s trace value for $1
24($sp) callee $12  Use dynamic caller’s trace value for $12
28($sp) yes Always trace

Fig. 6. A Trace Table for Call #2 of Figure 4

and Tiger [3]. Our compiler differs from other compilers using MLRISC [4] [2] [3],
however, in that TIL does not use dynamic tag bits to distinguish heap pointers
from other word-sized values.

In MLRISC, as in RTL, local storage locations are identified by numbered
pseudo registers. Pseudo registers are transparently mapped to machine registers
or spilled to the stack by MLRISC. Pseudo registers in MLRISC, however, carry
no trace values or other type information; there are distinct classes of integer,
floating-point, and condition-code pseudo registers, but an integer pseudo regis-
ter that happens to be used as a heap pointer is not distinguished in any way.
The principal challenge in integrating MLRISC with TIL, then, is to propagate
pseudo-register trace values to the run-time system in the form of run-time trace
values. Because pseudo registers are transformed into machine registers and stack
slots, trace values for these locations will be based on the code transformations
performed by MLRISC (e.g., register allocation, spilling).

In Figure 7, we show the SML function in Figure 2 as it might be translated
to MLRISC. Pseudo registers are given names (e.g., x) in this example to clarify
the presentation; in an actual MLRISC program, pseudo registers are identified
by positive integers (e.g., 500). Machine registers are referred to by a small pos-
itive integer (e.g., 16) and can be used interchangeably with pseudo registers in
MLRISC code. Names generated by the compiler are prefixed by an underscore;
_tenv1l contains the type environment (see Section 2.3) for the function and cs1
through csb are used to hold the saved values of the callee-save registers. Fol-
lowing the Alpha standard calling convention, this code uses machine registers
16 through 20 to hold arguments and register 0 to hold the result; in MLRISC,
unlike RTL, calling conventions are explicitly specified in terms of primitive op-



erations. An MLRISC procedure is a sequence of imperative statements, each
of which may refer to applicative expressions; the terms “statement” and “ex-
pression” have the normal connotations of programming language terminology.
In Table 3 and Table 4, we document the MLRISC constructs used in this ex-
ample. Expressions can be nested to an arbitrary depth, so, in general, a single
statement can generate many assembly language instructions.

bee cexp, label Branch to label label if the result of evaluating conditional ex-
pression cezp is true.

call addr Call the procedure at the address formed by evaluating expres-
sion addr.

copy dst, src Copy the registers listed in src into the corresponding regis-

ters listed in dst; this is a “parallel” operation: no register can
appear more than once in the union of src and dst. copy state-
ments are coalesced [9] by MLRISC whenever possible.

mv dst, exp Move the result of evaluating expression ezp into register dst.

jmp addr Jump to the code at the address formed by evaluating expres-
sion addr.

ret Return from the current procedure.

store32 addr, exp Store the result of evaluating expression ezp as a 32-bit value
at the address formed by evaluating expression addr-

Table 3. Selected MLRISC Statements

4 Techniques

This section discusses the translation techniques we use to integrate MLRISC
with TIL. In Section 4.1 we touch on the technology that translates RTL code
to MLRISC code, whereas in Section 4.2 we outline how we construct trace
tables for MLRISC from RTL trace values. Finally, in Section 4.3 we justify the
correctness of trace values for translated code.

4.1 From RTL to MLRISC

Translating RTL “instructions” to MLRISC “statements” is relatively straight-
forward—the principal difficulty lies in generating efficient code for conditional
branches. RTL provides two forms of conditional branch instruction: one that
compares a pseudo register against zero, and one that compares two pseudo
registers. The current translation from MIL to RTL favors the former kind of
branch, even for comparisons between two pseudo registers. It does this by stor-
ing the boolean result of each comparison in a third pseudo register and then
testing the third pseudo register against zero. Although this idiom matches the
use of conditionals in certain RISC architectures (e.g., the Alpha), it cannot



mv
mv
store32

copy

copy

store32

copy
mv

call
mv

copy
bcc

copy
mv
call
mv

copy
jmp
_L1:

mv
_L2:

copy

mv
call
mv
copy
copy
mv

copy

mv
ret

Fig. 7. A Translation of the SML function in Figure 2 to MLRISC

gp, reg pv

sp, sub(reg sp, const frame)

add(reg sp, 1i 0), reg ra
[cs1, cs2, cs3, cs4, csb],
[11, 12, 13, 14, 15]
[_tenvl, x, n, 1, 12],
[16, 17, 18, 19, 20]
add (reg sp,

const _tenvl_offset),
reg _tenvl
(161, [1]
pv, label "length"
reg pv
gp, reg pv
[_t1], [o]

cmp(le, reg _t1, 1i 0), _L1

(161, [1]

pv, label

reg pv

gp, reg pv
[_t2], [o]
label _L2

"hd"

_t2, 1i 1

[16, 17, 18, 19],
[_tenvl, x, n, _t2]

pv, label "g"

reg pv

gp, reg pv

[_t3], [0]

(o], [_t3]

ra, add(reg sp, 1li 0),
[11, 12, 13, 14, 15],
[csl, cs2, cs3, cs4, csb]

sp, add(reg sp, const frame)

’

s

set global pointer
alloc frame

save return address
save callee save

get arguments

save type environment

_tl <- length(1l)

(call #1)
set global pointer

if _t1<=0 goto _L1
_t2 <- hd(1)

(call #2)
set global pointer

goto _L2

_t2 <-1

_t3 <- g(x, n, _t2)

(call #3)

set global pointer
restore return address
restore callee save

dealloc frame
return



add (ezpl, ezp?2) Evaluates to the result of adding the results of evaluating ezp!
and ezp2.

cmp (cmp, expl, exp2) Evaluates to true if the result of evaluating exp! and ezp2
are ordered according to comparison cmp. This expression
evaluates to a condition code, as opposed to an integer.

const fn Evaluates to the result of calling the function frn during the
final code generation phase. const allows constants in the
final assembly language program to depend on the results of
earlier phases (e.g., spilling).

label string Evaluates to the address of label string.

lin Evaluates to the integer n.

load32 addr Evaluates to the result of loading a 32-bit value from the
address formed by evaluating expression addr.

reg id Evaluates to the contents of pseudo register id.

sub (expl, exp2) Evaluates to the result of subtracting the result of evaluating

ezp2 from the result of evaluating ezpl.

Table 4. Selected MLRISC Expressions

be expressed efficiently in MLRISC, because there is no statement to move the
result of a comparison directly into an integer pseudo register. We address this
problem by “preprocessing” the RTL code into two-operand conditional branch
form whenever the result of a compare instruction is used by an immediately
following branch instruction, and the boolean result is not used anywhere else
in the procedure.

Although RTL and MLRISC treat pseudo registers in much the same way
(i.e., as local storage locations for a procedure), one cannot interchange the
two notions. For example, the MLRISC translation of an RTL instruction that
refers to pseudo register 500 cannot simply refer to pseudo register 500, because
pseudo registers in MLRISC code must be allocated explicitly through MLRISC.
To overcome this difficulty, we maintain a mapping from RTL pseudo registers
to MLRISC pseudo registers and allocate a new pseudo register from MLRISC
whenever we see an RTL pseudo register that does not have an existing mapping.
As MLRISC pseudo registers, unlike RTL pseudo registers, carry no explicit trace
values, we construct a separate mapping from MLRISC pseudo registers to run-
time trace values. Storing the trace values “off to the side” allows us to forget
about RTL pseudo registers entirely for the later phases of the translation.

Our translation “forces” certain pseudo registers to spill by manually re-
placing them with memory accesses; this transformation is accomplished as a
separate pass over the MLRISC code just before we pass it to MLRISC. Pseudo
registers that are forced to spill include those holding type environments referred
to by trace values, those saving callee-save registers in the presence of exception
handlers, as well as any global registers that do not fit in the machine register
file. Because the trace value of a given pseudo register can refer to a type environ-
ment on the stack to resolve its status (e.g., stack in Table 2), we must ensure



that these type environments are in fact on the stack and not being held in a
machine register. The callee-save registers must be restored to their former val-
ues at the end of an exception handler, so we force the pseudo registers that are
used to save these registers to be spilled to the stack so that we can later restore
them. Finally, for performance, TIL reserves a small number of machine registers
to hold global values that are used by most procedures (e.g., the current heap
and limit pointers). Unfortunately, certain machine architectures (most notably,
the Intel x86) do not have enough registers for this scheme to be feasible, so we
rewrite code using these registers with references to global memory locations.

4.2 Constructing Trace Tables

The most interesting part of the translation from RTL to MLRISC is construct-
ing trace tables for call sites. As MLRISC does not explicitly propagate type
information, we construct trace tables by passing trace values “around” ML-
RISC’s code generator. Trace tables are represented as data pseudo operations
that are compiled into the data segment of the program.

Because trace tables are encoded in terms of machine register numbers and
stack offsets, and because trace values are attached indirectly to pseudo registers,
we must account for the results of spilling and register allocation during trace
table generation. For example, if pseudo register 500 has the run-time trace value
yes and is mapped to machine register 12, then a trace table should contain a yes
entry for machine register 12. This implies that we must generate code and trace
table data in separate phases—first we translate the code to obtain a pseudo-
register mapping, then we generate trace table data based on this mapping. We
must also generate a single trace table for all the static locations in a module:
this is accomplished by mapping the RTL label for each static location to a
corresponding MLRISC label. In Figure 8 we illustrate how an RTL module
containing procedures and static variables is transformed into MLRISC code
statements and data directives. Note that for reasons of expediency, trace tables
are generated first in terms of RTL data directives which are then translated to
MLRISC data directives. This allows us to reuse the trace table module from
the TIL1 back end.

Procedures Text
(RTL Code) (MLRISC Code)
Trace Tables
Register Map” (RTL Data)

(MLRISC)
Globals ata
(RTL Data) (MLRISC Data)

Fig. 8. Generating MLRISC Code and Trace Tables from RTL



The results of register allocation and spilling are not difficult to obtain from
MLRISC. The mapping from pseudo registers to machine registers is exported as
a data structure by the MLRISC interface. We can construct the mapping from
spilled pseudo registers to stack offsets because MLRISC spills pseudo registers
via a “call back” to our code. It is important to understand that the mappings
used by these phases must be accessible for our technique to work—for a back
end that does not export this information, we cannot determine how the pseudo
registers are represented at run time, and therefore cannot construct trace tables
from pseudo-register trace values. This problem is explored further in Section 5.2

4.3 Register Allocation

Suppose that in Figure 7, pseudo-registers 12 (trace value yes) and _t2 (trace
value no) have both been mapped to machine register 4 by MLRISC’s register
allocator. Which trace value should we give machine register 4 when constructing
a trace table? Obviously, we cannot resolve this conflict with just the pseudo-
register mapping—we should look at the code to determine which pseudo register
was defined most recently on the control path to the call site in question. How-
ever, because the code may contain arbitrary branches and loops, a linear scan
will not resolve this ambiguity in general. Notice that pseudo registers can be
mapped to the same machine register only if they have non-overlapping live
ranges: otherwise, definitions of the pseudo registers would interfere with each
other. Thus, for a given call site we can resolve a conflicting register assignment
by choosing the trace value of the pseudo register that is live across the call
site [7], as there can be only one.

Figure 7 additionally illustrates a deeper problem, in that the correct trace
value for machine register 4 at call #3 depends on the run-time contents of
pseudo-register _t1: if _t1 is greater than zero, then machine register 4 will
be overwritten by the result of call #2. This example suggests that there are
cases where the code generation transformations induced by the back end will
make it impossible to give a fixed trace value to a particular machine register.
Fortunately, such unpredictable trace values can only arise when none of the
pseudo registers in question are live across the call site—otherwise, the generated
code would be incorrect, because the definition of one pseudo register could
interfere with the later use of another.

Returning to our example, we know that neither 12 nor _t2 can be used after
call #3, because such a use might read the value of the wrong pseudo register.
This observation suggests that we must take into account the next use of a
pseudo register after the call site as well as its definition before the call site—it
is not sufficient to simply note the trace value at the most recent definition. We
can give a machine register the trace value no if the contents of that register
will not be used after the corresponding call site: because the register will not
be used, its contents need not be retained by the garbage collector. This happy
coincidence allows us to give the trace value no to machine register 4 for our
example.



Thus, to construct a trace table for a given call site, we map the pseudo
registers live across the site through the pseudo-register mapping and pair the
resulting machine registers with the trace values for the corresponding pseudo
registers. All other machine registers are given the trace value no. Liveness anal-
ysis has the added benefit of minimizing storage retained during garbage collec-
tion. This, in turn, enhances performance by reducing the load on the collector
and also enables certain programs to terminate that would not otherwise [16].
Our liveness analysis is based on well-understood data-flow techniques [1]. Note
that the call-site liveness analysis must be at least as precise as the register-
allocation liveness analysis for this technique to work.

We give trace values to stack slots holding spilled pseudo registers with an
analogous technique—in Figure 9 we show the construction of a trace table for
call #2 of Figure 7 from the live pseudo-register set, a run-time trace value
mapping, and a sample MLRISC register mapping.

Live Set MLRISC Register Map RTL Trace Map
_tenvl — 11 _tenvl — yes
_tenvl
X = 12 X — compute _tenvl.O
x n — 13 n — no
n
!
Trace Table
11 — yes
12 — stack 12, 0
13 — no

Fig. 9. Constructing a Trace Table

5 Assessment

5.1 TIL

RTL is not well-suited as a source language for MLRISC because the languages
are similar enough that the translation between them is essentially wasted work.
The principal difference between RTL and MLRISC is that RTL pseudo registers
are annotated with trace information; as we describe in Section 4.1, it is not
difficult to simulate this capability for MLRISC pseudo registers, so there is
no compelling reason to use RTL as a separate translation step. We thus see
the use of RTL as an intermediate language as vestigial: we plan to translate
directly from the MIL intermediate language in the future. We originally decided
to translate from RTL to expedite development of the compiler, as MIL was in
a fluid state of development at the time.



5.2 MLRISC

This section seeks to identify the specific features of MLRISC that made it
possible for us to integrate it with TIL. We also suggest additional features not
found in MLRISC that would have made our job easier, or would have resulted
in more efficient code generation. We speculate that our experience may be of
use to designers of other generic back-ends [5] [6].

We divide the relevant features into two classes: those that are essential to
the propagation of type information, and those that can enhance performance or
simplify translation when using type-directed techniques. An underlying theme
of our characterization is that the back end needs to do more than simply emit
assembly code on behalf of the client—it should also return information about
how the translation was accomplished.

We first present a brief summary of our conclusions. These are the key fea-
tures of MLRISC that enable the type-directed translation techniques of our
compiler:

A visible pseudo-register-to-machine-register mapping

— A machine-register mapping that is unique for a given pseudo register
— A visible pseudo-register-to-stack-slot mapping

— A spilled pseudo register will not also be mapped to a machine register

These are features not found in MLRISC that might enhance the performance
of our translation:

— Visible liveness information
— An extensible spill mechanism

Essential Features As the TIL run-time system uses trace tables that contain
machine register numbers, a client-accessible pseudo-register mapping is needed
to propagate trace values. Input trace values are attached to pseudo registers,
so we must be able to uncover which pseudo registers are mapped to which
machine registers if we are to encode trace value mappings for the latter. Al-
though it might be possible to deduce the pseudo-register mapping by comparing
the output object code with the input pseudo code, this is likely to be difficult
for a back end that performs aggressive optimizations (e.g., global instruction
scheduling).

The shape of the mapping to machine registers can also present problems to
the implementor. MLRISC maps each pseudo register to at most one machine
register [9]; thus, when an unspilled pseudo register is live across a call site, we
can always precisely identify which machine register it is mapped to. If a single
pseudo register might be mapped to one of several machine registers at different
points in the code, then MLRISC would need to tell us the mapping ranges for
each register. Again, it might be possible to deduce this information from the
object code—or even from the pseudo code, if we know the back end’s register
allocation algorithm—but such a deduction algorithm is likely to be complex
and correspondingly inefficient.



Given the mapping to machine registers, we must have a similar mapping to
stack slots for pseudo registers that have been spilled transparently by the back
end. For MLRISC, there is no special interface to this information, but because
we implement the spill mechanism ourselves®, we can easily reconstruct it. If a
back end does not provide a customizable spill mechanism, it must allow the
client to query the spill status and location of a given pseudo register so that
trace value mappings can be constructed for the stack.

Note that to simplify trace table generation, we ensure that a spilled pseudo
register will never be mapped to a machine register (i.e., a spilled pseudo register
is always on the stack for its entire lifetime). This is accomplished by allocating
a new temporary and rewriting the instruction referring to the spilled pseudo
register with a reference to the temporary instead; a store instruction (or load
in the case of a reload) is then appended (or prepended) to the rewritten in-
struction. Because the lifetime of the temporary is only between the rewritten
instruction and the store (or load), we can assume that it will never be live
across a call site [7], and thus need not be traced. Although such a temporary
will never be traced, the stack slot containing the original value still might be
traced if it is live across the call site in question. Making the “spilled to the
stack” and “mapped to a machine register” states exclusive for a given pseudo
register simplifies the process of constructing trace tables—if we could not as-
sume this, then we would have to track where the pseudo register is moved to
or from the stack and which location(s) (stack slot or register) its next use(s)
expect it to be in. As this information is not exported by MLRISC, it is not
clear how we would recover it.

Our assumption about the lifetimes of spill temporaries may not hold in the
presence of global instruction scheduling, but as MLRISC does not currently per-
form global instruction scheduling, our implementation is sound for the moment.
To implement our translation in the presence of global instruction scheduling, we
would need access to the liveness analysis of the back end, or we would need to
be able to constrain the scheduling of instructions referring to potentially trace-
able values. Note that the former solution has the added benefit of reducing the
overhead incurred by our translation.

Desirable Features It is unfortunate that we must perform a data-flow analysis
to determine liveness across call sites, because this work will be largely duplicated
by MLRISC'’s register allocator. It would be more efficient if we could derive call
site liveness from the register allocator’s own liveness information. This might
be accomplished in a hypothetical version of MLRISC by returning the pseudo
registers that are live into and out of each basic block as part of the translation
to assembly language. Additionally, each call site must be isolated in its own
basic block: this could be done by TIL if MLRISC were to provide a way to
explicitly delimit basic blocks. Note that because spilling is performed in a pass
prior to register allocation, liveness information may be lost for spilled pseudo

® When MLRISC decides to spill a pseudo register, it calls a client-supplied function
to return an architecture-specific code sequence for the spill.



registers when they are replaced by memory accesses—unless MLRISC retains
information showing that they cannot be aliased, it will have to assume that
they are always live after the first definition. It might be possible to deduce the
liveness of spilled pseudo registers by analyzing the spill and reload patterns via
another data-flow analysis, but this seems counterproductive. It is not correct to
simply assume that spilled pseudo registers are always live, because the contents
of a given stack slot may not be initialized until after the first call site.

Our translation to MLRISC includes a “forced spill” pass (see Section 4.1)
that replaces certain pseudo registers with memory accesses. As MLRISC im-
plements a similar spilling pass, it would save implementation time if MLRISC
were to allow the client to provide an additional spill set as a part of code gen-
eration. This would avoid the extra spill pass that currently handles our special
spill cases.

5.3 Performance

Benchmarks Because the optimizer in the TILT compiler is still under con-
struction, we cannot yet take meaningful performance measurements of the ob-
ject code produced by MLRISC in conjunction with TILT. However, because
TILT and TIL1 use the same RTL intermediate language, we can use MLRISC
as a back end for the TIL1 compiler: in Table 5, we present the relative execu-
tion times of some of the benchmark programs from Tarditi et al. [17]. These
measurements show that by using MLRISC as a back end for TIL1, we introduce
a significant amount of overhead into the generated code. We believe that this
overhead is due to complications in the translation of RTL code to MLRISC
code, and is not due to MLRISC itself.

|Pr0gram | TIL1 | TILl-MLRISC|TIL1-MLRISC/TIL1 |
FFT 2.02 2.49 1.23
Knuth-Bendix| 2.28 2.70 1.18
Lexgen 2.66 3.09 1.16
Life 2.07 2.51 1.21
Matmult 2.66 2.61 0.98
Simple 11.91 14.03 1.18

Table 5. TIL1I-MLRISC Execution Time Relative to TIL1

The execution times in Table 5 are the time in seconds required to execute
the programs on a DEC Alpha 3000/600 workstation with 96mb of RAM. This
workstation has a 175MHz Alpha 21064 processor with 8k primary instruction
and data caches and a 2mb unified secondary cache. Each figure is the arithmetic
mean of ten consecutive runs of the corresponding program. See Tarditi et al. [17]
for descriptions of the benchmark programs.



We made one change to MLRISC for the purpose of benchmarking: MLRISC
ordinarily generates floating-point arithmetic instructions with the sud flags set
in the instruction word. Because these instructions are emulated in software
on our workstation, we replaced them with the equivalent “garden-variety” in-
structions (e.g. addt instead of addt/sud). The sud flags control the precise
semantics of floating-point operations—see the Alpha Architecture Handbook for
more information. As use of the sud flags makes the FFT benchmark about
300 times slower on our workstation, it is not meaningful to take performance
measurements with them set.

We used a calling convention without integer callee-save registers for these
benchmarks because, when used with TIL1, MLRISC often allocates pseudo
registers to callee-save registers in such a way that violates the constraints of
our trace table encoding. In particular, our encoding requires that the contents
of a callee-save register either be saved on the stack or be left in the original
machine register during the activation of a procedure. When used with TIL1,
however, MLRISC often allocates the pseudo registers used to save the callee-save
registers to other (different) callee-save registers—this is not expressible in our
trace table encoding. We have encountered this problem with much less frequency
when using MLRISC as a back end for TILT, but it remains unresolved.

Target Code The principal techniques outlined in this paper for interfacing
MLRISC to TIL operate only on type information, and therefore should not have
a direct effect on object code quality. However, there are sources of inefficiency in
the code transformations performed by our translation. Additionally, the limita-
tions of these techniques may introduce performance-limiting constraints when
used with other back ends.

To elaborate on the former point, the details of the translation from RTL to
MLRISC has a significant effect on the ultimate quality of the object code, as
is indicated by the discussion of conditional branch translation in Section 4.1.
It is clear, however, that this particular difficulty arises as an artifact of an
unfortunate mismatch between the semantics of conditional values in RTL and
MLRISC, and does not represent a general problem with the interaction between
TIL and MLRISC.

Another valid question might arise about whether the “forced spill” phase
outlined in Section 5.2 will introduce so many new spills as to significantly de-
grade performance. Although it seems unlikely that the indiscriminate spilling
of type environments will have a measurable effect on performance, one cannot
so easily dismiss the spilling of the callee-save registers and the pervasive global
registers. Note, however, that in each of these cases, spilling is introduced as a
consequence of constraints imposed by the run-time system, and not as a conse-
quence of a poor interaction between the compiler and the back end. Thus, the
forced spill phase is really a function of the run-time architecture used with TIL
and will be required in some form whether or not the object code is generated
by MLRISC. A general discussion of the performance of type-directed run-time



architectures is beyond the scope of this paper, but see Tarditi et al. [17] and
Morrisett [13].

A potential performance problem that is directly related to the use of ML-
RISC as a back end for TIL concerns the constraints that our techniques impose
on a back end to simplify trace table generation. These restrictions are discussed
in Section 5.2, and although none of them appear to be especially restrictive,
it will be difficult to demonstrate this without measurements. Unfortunately,
this is particularly awkward to do for our technology, as only one of these con-
straints (spilled pseudo registers) can be alleviated in MLRISC. Even if we were
to remove this limitation, however, we would not be able to execute the result-
ing code because of the absence of trace tables. It might be more productive
to examine individual measurements of these code generation features on other
compiler platforms and then use the results as a guide to forming conclusions
about the potential drawbacks of our techniques.

Compilation Speed A final performance consideration relates to how the use
of our techniques affects the speed of compilation. Because we perform an extra
liveness analysis before code generation (see Section 4.3), there is a potential
for inefficiency here. Preliminary measurements show that our use of MLRISC
has a significant performance cost: the combined RTL-to-MLRISC translation
and the subsequent MLRISC code generation phases together perform at less
than half the speed of the TIL1 back end when used with TILT. These same
measurements also indicate that the bulk of the time is being spent in translation
code external to MLRISC; MLRISC on its own is usually faster than the TIL1
back end. Unfortunately, we have not yet isolated the source of this inefficiency:
the extra liveness analysis by itself only accounts for a fraction of the translation
overhead—it typically consumes less than 5 percent of the total compilation
time. It is certainly possible that most of the translation overhead is caused by
unoptimized code on our end. In our opinion, it is too early to draw meaningful
conclusions about the performance of the translation itself, as there may still be
room for substantial optimization.

6 Future Work

In this section, we discuss features of MLRISC that are currently underutilized.

MLRISC is able to perform inter-procedural register allocation on procedures
in the same call graph. We do not currently take advantage of this feature, but
hope to utilize it once we fully understand the complications with regard to
trace table construction. Because ML programs typically use function calls for
looping, the performance benefits of this optimization may be significant when
the compiler has not entirely optimized away procedure calls.

MLRISC does not currently perform any global instruction scheduling, but
we expect that it will eventually do so. We anticipate that this optimization
will introduce complications into our call-site liveness analysis because the live
ranges of pseudo registers will be perturbed across basic blocks. For example,



if the first definition of a traceable pseudo register is moved forward past a call
site, then the garbage collector will trace an uninitialized value at that call site
if no corrective action is taken. Because basic blocks in ML programs tend to be
so small that local instruction scheduling has little benefit, we think it will be
important to find a solution to this problem that does not unduly constrain the
back end. This topic is also discussed in Section 5.2

MLRISC provides condition-code pseudo registers in addition to integer and
floating-point pseudo registers. We currently do not use these pseudo registers
because RTL does not distinguish condition codes from integers. A direct trans-
lation from MIL might make it easier to take advantage of these registers and
also to correct some additional inefficiencies in the translation of conditional
branches.

Finally, we hope to isolate the source of the current translation inefficiency
so that using MLRISC with TILT is not significantly slower than using the TIL1
back end. We also hope to improve the performance of the object code generated
by MLRISC once implementation of the TILT optimizer is complete.

7 Conclusion

We have presented our approach to integrating MLRISC, a generic back end,
with TIL, a type-directed compiler. Our work is a solution to a specific instance
of a more general problem: how can abstract trace information be mapped to
concrete trace information, given that the correct mapping is a function of a
parallel code translation performed by the back end? Register allocation and
spilling are the critical code translations that must be reproduced to translate
trace information. MLRISC exports its register and spill mappings: it is this
property of MLRISC that makes it possible to use it with our compiler.

As important parts of TILT are still being developed, we cannot draw defini-
tive conclusions yet about the merits of our approach. It is currently unclear if
the use of MLRISC will give us a significant improvement in object code quality.
It is also unclear whether the “scaffolding” we have constructed around MLRISC
can be made efficient enough not to seriously degrade compilation time.

It is reasonable to object to our use of RTL as an intermediate language
between MIL and MLRISC, because RTL serves essentially the same purpose as
MLRISC. We chose to retain RTL from TIL1 only to better compartmentalize
our development effort. One could argue that some of the problems we have
encountered are due more to the use of RTL than to the use of MLRISC. In
particular, we expect that in a hypothetical translation from MIL to MLRISC,
a redundant liveness analysis on MIL code would be less onerous due to its more
structured control flow. This would appear to undermine our contention that
the back end should export the results of its liveness analysis for use by the rest
of the compiler. However, we do not believe that simply performing the call-site
liveness analysis on MIL code is an adequate long-term solution, because it is not
clear that liveness of variables in MIL code necessarily corresponds to liveness
of machine registers and stack slots in machine code—we even know that this



correspondence will not hold in the presence of global instruction scheduling. For
this reason, we think that the availability of liveness information from MLRISC
will be crucial to the long-term success of this effort.

Our work attests that MLRISC is “generic enough” to be reused as the back
end of our compiler, even though TIL is substantially different from Standard
ML of New Jersey [4], the compiler for which MLRISC was originally developed.
Reuse has attendant costs, however, and the most significant of these appear to
be related to the speed of compilation. We suggest that generic compiler technol-
ogy is a valuable asset, but that more developers will benefit from it if interfaces
are made flexible enough to encompass dissimilar compilation strategies.
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