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Abstract

We present an extension to Standard ML, called SMLSC, to support
separate compilation. The system gives meaning to individual pro-
gram fragments, called units. Units may depend on one another in a
way specified by the programmer. A dependency may be mediated
by an interface (the type of a unit); if so, the units can be compiled
separately. Otherwise, they must be compiled in sequence. We also
propose a methodology for programming in SMLSC that reflects
code development practice and avoids syntactic repetition of inter-
faces. The language is given a formal semantics, and we argue that
this semantics is implementable in a variety of compilers.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Modules, pack-
ages; D.3.1 [Programming Languages]: Formal Definitions and
Theory—Syntax

General Terms Languages

Keywords  standard ml, separate compilation, incremental compi-
lation, types

Introduction

‘We propose an extension to Standard ML called SMLSC. SMLSC
supports separate compilation in the sense that it gives a static se-
mantics to individual program fragments, which we call units. A
unit may depend on other units, and can be type-checked indepen-
dently of those units by specifying what it expects of them. These
expectations are given in the form of interfaces for those other
units. When unit A is checked against another unit B via a medi-
ating interface, we need not have access to B at all. Therefore we
say that A is separately compiled (SC) against B.

It is also useful to allow unit A to depend on another unit
B without specifying an interface for B. In this case, the only
way to derive the context necessary to check A is to first check B
and read off its actual interface. In this scenario we say that A is
incrementally compiled (IC) against B.

Units may be compiled and then linked together to satisfy de-
pendencies. The compiled form of a unit or set of linked units is
called a linkset. A linkset may be further linked with other linksets.
If a linkset has no remaining dependencies, then it can be trans-
formed into an executable program.
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The goal of this work is to consolidate and synthesize previ-
ous work on compilation management for ML into a formally de-
fined extension to the Standard ML language. The extension itself
is syntactically and conceptually very simple. A unit is a series of
Standard ML top-level declarations, given a name. To the current
top-level declarations such as structure and functor we add an
import declaration that is to units what the open declaration is to
structures. An import declaration may optionally specify an inter-
face for the unit, in which case we are able to compile separately
against that dependency; with no interface we must compile incre-
mentally. Compatibility with existing compilers, including whole-
program compilers, is assured by making no commitment to the
precise meaning of “compile” and “link”—a compiler is free to
limit compilation to elaboration and type checking, and to perform
code generation as part of linking.

Sections 1 and 2 summarize our main design principles, and
provide an overview of the system. In Section 2 we give a small
example of its use. The semantics, formulated in the framework of
the Harper-Stone semantics of ML [12, 13], is given in Section 3.1
Some implementation issues are discussed in Section 4. We con-
clude with a discussion of related work in Section 6.

1. Design Principles

A language, not a tool. 'We propose an extension to the Standard
ML language to support separate compilation, rather than a tool to
implement it. The extension is defined by a semantics that extends
the semantics of Standard ML to provide a declarative description
of the meanings of the language constructs. The semantics provides
a clear correctness criterion for implementations to ensure source-
level compatibility among them.

Flexibility. A compilation unit consists of any sequence of top-
level declarations, including signature and functor declarations.’
However, since Standard ML lacks syntactically expressible signa-
tures, some units cannot be separately compiled from one another.
We therefore support incremental, as well as separate, compilation
for any unit. This means that the interface of a unit can either be in-
ferred from its source (incremental compilation) or explicitly spec-
ified (separate compilation) at the programmer’s discretion.

Simplicity. The design provides only the minimum functionality
of a separate compilation system. It omits any form of compilation
parameters, conditional compilation directives, or compiler direc-
tives. We leave for future work the specification of such additional
machinery.

Conservativity. The semantics of Standard ML should not be
changed by the introduction of separate compilation. In particu-
lar, we do not permit “circular dependencies” or similar concepts

!We give a semantics in the framework of The Definition of Stan-
dard ML [16] in the companion technical report [21].

2 Consequently, units cannot be identified with Standard ML structures.



srcunit = unit unitid = top topdec end
topdec = import impexrp

strdec

stgdec

fundec

local topdec, in topdec, end
topdec, topdec,

impexp = unitid (: intexp)
1MPETP | 1MPETP,

unit declaration

open units

structure-level declaration
signature declaration
functor declaration

local declaration

open unit unitid

intexp = intf topspec end interface expression
topspec = spec structure-level specification
functor funspec functor specification
topspec, topspec,
funspec = funid(strid : sigezp) : sigexp’ (and funspec)

Figure 1. SMLSC concrete syntax

that are not otherwise expressible in Standard ML. This ensures
that compilers should not be disturbed by the proposed extension
beyond what is required to implement the extension itself.

Explicit dependencies. The dependencies among units are ex-
plicitly specified, not inferred. The chief reason for this is that de-
pendencies among units may not be syntactically evident—for ex-
ample, the side effects of one unit may influence the behavior of
another. There are in general many ways to order effects consis-
tently with syntactic dependencies, and these orderings need not be
equivalent. A lesser reason is that supporting dependency inference
requires restrictions on compilation units that are not semantically
necessary, reducing flexibility.

Environment independence. The separate compilation system is
defined independently of any environment in which it might be
implemented. The design speaks in terms of linguistic and semantic
entities, rather than implementation-specific concepts such as files
or directories.

Separation of units from modules. The separate compilation sys-
tem is designed as a proper extension to Standard ML so as to en-
sure backward compatibility of source code. It is tempting to iden-
tify compilation units with modules, but to do so would require that
functors, signatures, and fixity declarations be permitted as com-
ponents of modules. Permitting such an extension is not entirely
straightforward; for example, permiting signature declarations in
modules and their types can lead to undecidability of type check-
ing [10].

2. Overview
Units and Interfaces

The SMLSC extension is organized around the concept of a unit. A
unit consists of top-level declarations, which include declarations
of signatures, structures, and functors. Each unit is given a name
by which the unit is known throughout the program. One unit may
refer to the components of another using an import declaration,
which records the dependency of the importing unit on the imported
unit, and opens it for use within the importing unit. This is the
only means by which one unit may refer to another; we do not
support “dot notation” for accessing the components of a unit. An
import declaration is a new form of top-level declaration. (This is
the only modification that we make to an existing syntactic category
of Standard ML.)

The compilation context for a unit is entirely determined by its
imports. That is, all dependencies of a unit on another unit must be
explicitly indicated using import declarations. The dependency of

one unit on another is mediated by an interface, the type of a unit.
The interface of an imported unit can be specified in one of two
ways, either implicitly or explicitly, corresponding to incremental
or separate compilation.

An import declaration of the form import unitid : intexp
specifies an explicit interface for the imported unit. This permits the
importing unit to be compiled independently of the implementation
of unitid, relying only on the specified interface. This is called
separate compilation, or SC for short. An import declaration of
the form import unitid specifies that the interface for unitid is
to be inferred from its source code. This is called incremental
compilation, or IC for short.

The concrete syntax for units and interfaces in SMLSC is given
in Figure 1. We extend topdecs to add import and local. The
import declaration (like open) allows multiple units to be simulta-
neously imported. Interfaces are topspecs; this is the syntactic class
spec of Standard ML, with the addition of a specification form for
functors. The local declaration limits the scope of imports, just
as the structure declaration of the same name.

Projects and Linksets

A linkset consists of several compiled units, called its exports,
together with the names and interfaces of its imports, the units
on which it depends (following Cardelli [S]). A project consists
of a linearly ordered sequence of source units and linksets. The
ordering of the components in a project is significant, both because
it specifies the order of identifier resolution, and because it specifies
the order of computational effects when executed. Compilation of
a project consists of processing the source units in the specified
order to obtain linksets, and then knitting them together to resolve
dependencies.

Linking consists of resolving inter-unit dependencies by bind-
ing exports to imports among linksets. When all references have
been resolved, the resulting linkset can be completed to form an
executable.

We do not give a concrete syntax for linksets, as we do not in-
tend for programmers to write them, nor do we expect compati-
bility of linksets across implementations. Rather, they are left as
implementation-specific concepts (such as object files), which are
modeled here by the abstract semantic objects described in Sec-
tion 3.

Examples

We begin with a few simple examples to illustrate the features of
the system.



Suppose that we have a library of data structures whose name
is Collections. It is natural to place this library in a unit. Let’s
assume it contains only the queue data structure:

unit Collections =

top
signature QUEUE =

sig
type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a
val pop : ’a queue -> ’a * ’a queue

end

structure Queue :> QUEUE =
struct (* --- *) end
end

A client of the Collections library can import it using IC easily:

unit Scheduler =
top
import Collections
structure Sched =
struct
type job = (* --- %)
val readyqueue =
ref Queue.empty :

end

job Queue.queue ref

end

In these examples we use link to stand for the semantic operation
of compiling and linking a list of source units and linksets. We can
compile and link this program as

L = link(Collections, Scheduler)
or we can compile the library and then the client

Lo =link(Collections)
Ly =link(Lo, Scheduler)

but the Scheduler unit may not be compiled on its own.

Incremental compilation is convenient when we have source or
a compiled linkset for the Collections unit. We may prefer to use
separate compilation, or may be forced to because the implementa-
tion for Collections is not available. A client with an SC import
looks like this:

unit Scheduler2 =

top
import Collections :
intf
structure Queue :
sig
type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a
val pop : ’a queue -> ’a * ’a queue
end
end

structure Sched =
struct
type job = (x --- %)
val readyqueue =
ref Queue.empty :

end

job Queue.queue ref

end

This allows Scheduler?2 and Collections to be compiled sepa-
rately:

Lo =link(Scheduler2)

Ly =link(Collections)

L2 = link(L1, Lo)
However, writing the SC import this way forces an undesirable
repetition of code. If more than one client uses Collections—
which we would expect—each client repeats the interface for its
import of the unit. A further problem is that this style asks the client
to supply the interface of the library, but the interface of a library is
usually provided by the library author, not the client. Fortunately,
a combination of SC and IC allows us to use the system in a much
cleaner way.

Handoff Units

A programmer who wishes his code to be available for separate
compilation can provide a handoff unit which supplies the interface.
Starting from scratch, the handoff unit contains an SC import:

unit Collections =

top
signature QUEUE =
sig
type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a
val pop : ’a queue -> ’a * ’a queue
end
import CollectionsImpl :
intf
structure Queue : QUEUE
end
end

The implementation of the collections library is moved to the
unit CollectionsImpl. Because the import declaration opens
the imported unit, all of the contents of CollectionsImpl are
available in the Collections unit. (Note that signature declara-
tions do not appear in interfaces, but we can write these before the
import declaration and then use the signature bindings in the inter-
face for the same effect.) Clients wishing to make use of the library
simply import the handoff unit using IC:

unit Scheduler3 =
top
import Collections
structure Sched = (* --. %)
end

This additionally has the benefit that the clients only need to
know the name of the handoff unit, not the implementation unit. A
few such clients can be linked with the handoff unit:

Lo = link(Collections, Scheduler3, OtherClient)

The result can later be linked with the implementation of the Col-
lections library:

Ly = link(CollectionsImpl, Lo)

Definite References

In the terminology of Harper and Pierce [11] an import of one unit
in another is interpreted as a definite reference—that is, as a free
variable that refers to single, specific unit through an interface for
it, either inferred or specified. This ensures that if two separate units
import a common unit, such as a well-known library, these units
share a common understanding of the abstract types exported by
that unit. No additional sharing specifications are required to use
the separate compilation system.



This is in sharp contrast to the so-called fully functorized style of
use of the ML modules system, in which a functor is A-abstracted
over the modules on which it depends. In this formulation refer-
ences are interpreted as indefinite, in that the functors involved may
be applied to any modules satisfying those interfaces, not necessar-
ily in a coherent manner. Different functors with a parameter refer-
ring to “the” shared library might be applied to different instances
of it. To ensure coherence in the presence of indefinite references,
one must resort to explicit type sharing specifications, which are
potentially burdensome.

The handoff methodology in SMLSC facilitates programming
with definite references. Two pieces of code that SC import the
same unit may only be linked if they import that unit at equivalent
interfaces. The imports are then consolidated into a single import,
ensuring that type equations hold. When the same handoff unit
is used to create the two imports, these interfaces will always be
equivalent. In corner cases such as skew between versions of a
library’s handoff unit, the programmer may manually consolidate
two imports. We discuss this further in Section 5.

3. Semantics

We give a semantics to SMLSC by extending Harper and Stone’s
Typed Semantics (TS) for Standard ML [13]. Ata high level the
typed semantics consists of an elaboration relation from an exter-
nal language, called TSEL, into an internal language, called TSIL.
The external language is a slight extension of the abstract syntax of
Standard ML. The internal language is a typed A-calculus based on
the Harper-Lillibridge type theory for modules [10]. Elaboration
comprises type inference, pattern compilation, equality compila-
tion, identifier resolution, and insertions of coercions for signature
matching. The result of elaboration is a well-formed program in
the TSIL, to which a dynamic semantics is given to provide an ex-
ecution model. The semantics of SMLSC is an extension of the
Harper-Stone semantics that elaborates units into linksets that can
be completed for execution.

The TSIL. We begin with a brief review of the structure of the
TSIL. The TSIL consists of a core level and a module level. The
core level includes expressions exp, constructors con, and kinds
knd. Kinds classify constructors. Constructors of kind €2 are types;
they classify expressions. The module level includes modules mod
and signatures sig, which classify modules. We write {} to denote
the empty record, and mod.lab to denote the projection of a com-
ponent named lab from the structure mod. The semantics works
mainly with modules, ultimately elaborating units to TSIL struc-
tures.

Declaration lists serve as contexts in the TSIL static semantics.
A declaration list decs = deci, ..., dec, declares expression
(var:con), constructor (var:knd({=con)), and module (var:sig)
variables. A structure declaration list sdecs has the form

labit>deca, . . ., lab,>decy,

associating a label with each declaration. The structure declara-
tion list labr>dec, sdecs binds the variable declared by dec with
scope sdecs. We write [sdecs] to denote the signature of a structure
containing fields described by sdecs. Variables express dependen-
cies between components in a structure signature and may be freely
alpha-varied. Labels name components for external reference and
may not be renamed without changing the meaning of the signature.
Consider the declaration of a structure /m containing an opaque type
component 7" and value component X of that type:

m: [T>t:Q, X>a:t].

3In the companion technical report [21], we also give a semantics by
extending The Definition of Standard ML [16].

Judgement. ..

F decs ok

decs F sdecs ok

decs F sig : Sig

decs - sig = sig’ : Sig
decs = sbnds : sdecs
decs F mod : sig

Meaning. ..

decs is well-formed

sdecs is well-formed

sig is well-formed

signature equivalence

sbnds has declaration list sdecs
mod has signature sig

Figure 2. TSIL judgements (summary)

We can systematically rename the bound variables ¢ and x. A path
is a module variable followed by a list of labels, serving a role
similar to SML long identifiers. The paths m.T" (a constructor) and
m.X (an expression) refer to m’s components.

A bnd binds a variable to an expression (var=ezp), constructor
(var=con), or module (var=mod). A structure binding list sbnds
has the form

labi>bndy, . .., laby,>bnd,.
A structure is written [sbnds]. The module syntax is closed under
the formation of functors: dependently typed functions from mod-
ules to modules.

We shall use the TSIL judgements given in Figure 2. These
judgements have the following meaning.

® decs - sdecs ok. No label is used twice and every declaration
is well-formed. For example,

FT>t:Q, X>x:t ok.

decs | sig : Sig. The signature sig is well-formed.

e decs | sig = sig’ : Sig. The signatures sig and sig’ declare
the same components, in the same order, with the same labels,
and corresponding type components are equivalent.

® decs + sbnds sdecs. The structure binding list sbnds
matches the structure declaration list sdecs. Corresponding
labels must agree and each bound expression, constructor, or
module in sbnds must match its declaration in sdecs. For ex-
ample, the judgement

decs = (lab>var=mod, sbnds) : (labt>var:sig, sdecs)

holds if decs = mod : sig and decs, var:sig = sbnds : sdecs.

decs = mod : sig. The module mod has signature sig. The
signature sig may or may not be fully transparent. For example,
we may derive both

m: [T>t:Q, Xoat)| Fm: [T>6:Q=m.T, X>ux:t]
and
m: [T>t:Q, X>ait] b m: [T>4:Q, X>a:t].

The former signature is said to be selfified with respect to the
variable m.

TS elaboration. Harper and Stone give a semantics to Standard
ML by elaboration of TSEL into TSIL. Elaboration is performed
in a context I" consisting of a structure declaration list (sdecs) that,
due to shadowing, may have duplicate labels. We shall use the TS
elaboration judgements given in Figure 3. These judgements have
the following meaning:

e I' - strdec ~~ sbnds : sdecs. Elaborate the TSEL structure
declaration strdec to the structure binding list sbnds : sdecs.
Since the TSEL permits functors within structures, this includes
elaboration of functor declarations.

o' I sigexp ~» sig : Sig. Elaborate the TSEL signature
expression sigezp to the signature sig. The TSEL does not



Judgement. .. Meaning. ..

structure declaration elaboration
signature elaboration

'+ strdec ~~ sbnds : sdecs
T+ sigexp ~~ sig : Sig
I' - spec ~~ sdecs specification elaboration
I' Feex labs ~+ path : class context lookup
decs Feub path : sigy < sig ~ mod : sig’

coercion compilation

Figure 3. TS elaboration judgements (summary)

include signature declarations; we treat them as abbreviations
for TSIL signatures, recording them in linksets and expanding
them during elaboration.

e I' - spec ~~ sdecs. Elaborate the TSEL specification spec to
the structure declaration list sdecs. This includes elaboration of
functor specifications.

I' Fex labs ~~ path : class. Perform identifier resolution in
the context I'. The input is a list of labels, which is derived
from an SML long identifier; the output is a path classified by
the type, kind, or signature class. Some labels in the context
are annotated with a star, indicating that they are “open” (in
the sense of the SML open declaration). Identifier resolution
searches I' from right to left, descending into structures with
starred labels. For example, we may derive

Tot1:Q, Tt Q={} - T ~ t : Q={}
and
Xozy:{}, 'omTotQ, X>aot] F X ~ m.X :m.T.

o decs Fab path : sigy =< sig ~ mod : sig’. Perform
transparent signature ascription. The inputs are a signature sigo,
a path having that signature, and a target signature sig. The
output is a module mod : sig’, where sig’ has the same shape
as stg but is fully transparent relative to path.

Elaboration maps TSEL identifiers to TSIL labels using a func-
tion ~. To implement identifier “shadowing,” elaboration employs
a function sbnds+sbnds’ : sdecs+tsdecs’ that concatenates
sbnds : sdecs and sbnds’ : sdecs’, renaming labels in the left
hand sides that appear in the right hand sides. The function chooses
fresh labels that do not correspond to TSEL identifiers. For exam-
ple, if

sbnds : sdecs = Toti={}: Tot1:0={}
sbnds’ : sdecs’ = Ti>ta=Int: Ti>ty:Q=1Int,
then sbnds-+H-sbnds’ : sdecs+sdecs’ might be

(labl>t1:{},Tl>t2:Int) : (labl>t1:Q:{},T>t2:Q:Int)

where [ab is not in the range of the ~ function.

3.1 Linking

We define linking for the TSIL by giving rules for deriving the
linking judgements in Figure 4. A linkset

sdecsg — sbnds : sdecs; S

comprises imports sdecso, exports sbnds :
abbreviations S.

sdecs, and signature

e The imports sdecso describe the TSIL structures on which
the linkset depends; they must be well-formed in the ambient
context. For example, the imports

sdecsap = Apa:[Tt:Q, X>x:t],
Brb:[Y>y:a.T]

express dependency on structures labelled A and B.

Judgement. .. Meaning. ..

decs F L ok L is well-formed
decs - S ok S is well-formed
L~ exp:{} L completes to ezp

decs = L++L' ~ L"” L and L' merge to L"”

Figure 4. Linking judgements

L = sdecsg — sbnds : sdecs; S linkset
S - .
S, sigid = sig top-level
S, unitid = S’ declared by unitid

Figure 5. Linkset syntax

Imports specify assumptions to be satisfied by linking. A linkset
with imports sdecsap assumes structure B binds (at least) a
value Y : a.T but can be linked with (a linkset exporting) a
structure B providing more components.

The exports sbnds : sdecs are the TSIL code associated with
the linkset. They may make reference to the linkset’s imports.
Continuing our example, the exports

sbndszg : sdecszr = Z>2z=b.Y, R>r=a.T :
Zr>z:a. T, R>r:Q=a.T

reference the imports sdecs ap to bind an expression Z of the
imported type and an equivalent type R.

The signature abbreviations S are used during elaboration.
They may make reference to the linkset’s imports and exports.
Continuing our example, the signature abbreviations

Sste = SIG:[MDm:Q:r]

specify that elaboration should treat the signature identifier SIG
as an abbreviation for a TSIL signature referencing the exported
type R.

The dynamic semantics for SMLSC is very simple. The com-
pletion judgment L ~~ ezp : {} translates a linkset

- — sbnds : sdecs; S
with no imports to a TSIL expression
[sbnds, lab>var={}].lab : {}

where lab and var are fresh. Under the TSIL dynamic semantics,
the resulting expression evaluates the linkset’s exports from left to
right for their side-effects. Evaluation terminates when an uncaught
exception is raised or when every export has been evaluated.

We give the full syntax for linksets in Figure 5 and the rules in
Appendix A. The remainder of this section explains the rules for
linkset merge.

Notation. We write decs, sdecs to extend a context decs, implic-
itly dropping the labels in sdecs. We define the domain of a struc-
ture declaration list, dom(sdecs), by

dom(labi>decu, ..., labn>dec,) = {lab1, ..., labn}.

We write {var/var'} L for the capture-free substitution of var for
free occurrences of var’ in L.*

Linkset merge. The rules for linkset merge decs - Li4++La ~~
L3 combine Ly and L2 to produce L3. The rules presuppose that
Ly is well-formed with respect to decs but permit L2 to make

4 Linkset bound variables and scopes are discussed in Appendix A.



reference (via free TSIL variables) not only to decs but to the
imports and exports of L. Formally, the rules satisfy the following
property.’

If L1 = sdecs1 — sbnds : sdecs
and decs + L1 ok

and decs, sdecs1, sdecs = La ok,
and decs = L1++Ls ~~ L3,

then decs -+ L3 ok.

If a linkset is well-formed, then it neither imports nor exports
the same label twice (although it may both import and export a
particular label).

The rules process the imports in Lo from left to right. If L2 has
no imports, then the following rule applies.

L = sdecso — sbnds : sdecs

decs = L++(- — sbnds’ : sdecs’) ~
sdecsg — sbnds+sbnds’ : sdecs++sdecs’

L3 imports what L, does and exports what L, and L2 do. To
ensure that L3 is well-formed, the rule uses the TS function -+
to concatenate the exports in L; with the exports in Lo, renaming
labels exported by L that are also exported by Lo.

Otherwise, the rules examine the first import labl>var:sig in
L2 and distinguish three mutually exclusive cases:

e [ exports lab.

sdecs = sdecs” | labr>var':sig’, sdecs’’
decs, sdecso, sdecs Fsyp var':sig’ < sig ~ mod:sig”
sbnd := 1>var=mod sdec := 1>var:sig”
L := sdecsg — sbnds—++sbnd : sdecs++sdec
decs = L++(sdecs1 — sbnds’ : sdecs’) ~ L

decs = (sdecsg — sbnds : sdecs)+
(labr>var:sig, sdecsy — sbnds’ : sdecs’) ~ L"

The first premise picks out the L export labt>wvar':sig’ for
lab; there can be at most one since L is well-formed. The
second premise calls the TS coercion compiler to match the
export var’:sig’ to the import signature sig. Linking fails if
no match is possible; otherwise, sig’’ has the same “shape” as
sig, but is fully transparent relative to the variable var’. The
structure binding sbnd : sdec is constructed using the coercion
module mod at the signature sig”, maximizing type sharing.
The linkset L has the same imports as L1, and exports those of
L plus the result of the preceding coercion. To ensure that L
is well-formed—in particular, that it exports nothing more than
once—the rule uses H- to construct its exports.

Ly imports lab but does not export it.

lab ¢ dom(sdecs)
sdecso = sdecs” , labr>var':sig’, sdecs’’
decs, sdecso, sdecs - sig = sig’ : Sig
L’ := {var’ /var}(sdecs1 — sbnds’ : sdecs’)
decs = (sdecso — sbnds : sdecs)++L' ~~ L”

decs = (sdecsg — sbnds : sdecs)+
(lab>wvar:sig, sdecs1 — sbnds’ : sdecs’) ~ L”

The first premise ensures L; does not export lab. The second
premise picks out the Ly import labt>wvar’:sig’. Linking fails if
sig and sig’ are not equivalent; otherwise, L’ is constructed by
changing references in the remainder of L2 to use the import in
L.

51In this description of linkset merge, we suppress all details related to
signature abbreviations.

Judgement. ..
project ~ L
I'F srcunit ~ L
'+ topdec ~~ L
I' - impexp ~» L
I'F sigbind ~~ S

Meaning. . .

project elaboration

unit elaboration

top-level declaration elaboration
import expression elaboration
signature binding elaboration

T' Fax sigid ~~ sig : Sig
I e unitid ~ S
I ok I is well-formed

signature lookup

Figure 6. Elaboration judgements

project = - empty
project, srcunit source unit

project, L compiled unit(s)
srcunit = unit unitid = topdec unit declaration
topdec = import impexp open units
strdec
signature sigbind
local topdec, in topdec, end
topdec, topdec,
imperp =  unitid (intf spec end) open unitid
1MPETP | TMPeTP,
sigbind = sigid = sigexp (and sigbind)

Figure 7. SMLSC abstract syntax

e [1 neither imports nor exports [ab.

lab & dom(sdecs) U dom(sdecso)
decs, sdecso, sdecs & sig = sig’ : Sig
decs, sdecso & sig’ : Sig
L := sdecso, lab>var:sig’ — sbnds : sdecs
decs = L++(sdecs1 — sbnds’ : sdecs’) ~ L"

decs = (sdecsg — sbnds : sdecs)+
(labr>var:sig, sdecsy — sbnds’ : sdecs’) ~ L"

The first premise ensures that L; neither imports nor exports
lab. The next two premises choose a signature sig’ equivalent
to sig but well-formed without reference to the exports of L.
Linking fails if no such signature exists—when opaque types
exported by Li occur in sig. Otherwise, L is constructed by
adding a new import to the imports in L.

3.2 Elaboration

We define a semantics for SMLSC by giving rules for the elab-
oration judgements in Figure 6. We give the abstract syntax for
SMLSC in Figure 7. The elaboration rules appear in Appendix B.
These judgements have the following meaning.

e project ~~ L. Elaborate project, using linkset merge to accu-
mulate a resulting linkset L. A source unit is elaborated in a
context I that declares the imports and exports in L.

e I'  srcunit ~» L. Elaborate the topdec in srcunit to the

linkset
sdecsg — sbnds : sdecs; S.

The imports sdecso arise from the import declarations in
topdec. The exports sbnds : sdecs arise from the structure dec-
larations in topdec. The signature abbreviations S arise from
the signature declarations in topdec. The result, L, exports a
single module

unitidt>var=[sbnds] : unitid>var:[sdecs].



e I' - topdec ~~ L. Elaborate topdec using linkset merge and
identifier resolution.

e ' - émpexp ~~ L. Elaborate impexp using identifier resolu-
tion and spec elaboration.

o I' - sighind ~» S. Elaborate sigbind using signature elabora-
tion.

4. Implementation

The semantics of SMLSC avoids commitment to the meaning of
“compilation,” “linking,” and “completion” to ensure compatibility
with various implementation strategies. These phases may be im-
plemented using classical methods (code generation during com-
pilation, object code weaving during linking, and writing an ex-
ecutable for completion), or in other, more novel, ways (such as
type checking during compilation, and code generation during link-
ing). The design is, as far as we know, implementable in all current
Standard ML compilers without requiring radical changes to their
infrastructure.

Parallel Build. The purpose of separate compilation is to permit
a client unit to be compiled independently of its implementation.
A compiler can exploit this by permitting clients of a separately
compiled unit to be compiled in parallel with one another in order
to speed up system build times. The TILT compiler, which imple-
ments an earlier version of the present extension, implements such
a strategy. Moreover, it also implements cut-off incremental recom-
pilation [1], where it is able to interrupt the normal cascade of re-
compilation when a source change does not cause a unit’s interface
to change.

Parsing. This presentation of SMLSC provides concrete and ab-
stract syntax, but does not formalize parsing. The only issue that
entangles separate compilation and parsing is fixity declarations.
To support fixity declarations at parse-time, we include a pars-
ing context in the concrete representation of linksets (object files).
A source unit that is incrementally compiled against a linkset is
parsed using that linkset’s included parsing context. We do not per-
mit fixity specifications in user-specified interfaces, and therefore
they do not affect interface matching or any other part of the se-
mantics.

Note that a library may specify fixity information by placing ap-
propriate declarations in the handoff unit. For example, to describe
a matrix library that supplies an infix ** operator for multiplication,
we may write the following handoft unit:

unit Matrices =
top
import MatricesImpl :
intf
type matrix
val ** : matrix * matrix -> matrix
CIRRRES!
end
infix **
end

5. Multiple Interfaces for the Same Import

In Section 2 we presented the programming methodology of hand-
off units. As long as two linksets that import the same unit identifier
do so by using the same handoff unit, they will always agree on the
interface for that unit and so can be linked together. However, in
some situations it may be useful to permit two clients to import the
same unit, each with a different interface. Since interface matching,
like signature matching, is coercive, this complicates the method-

ology of definite references by introducing “views” of the same
underlying unit.

For example, suppose that two linksets L1 and Lo import the
same unit MathLib at disparate interfaces /1 and I2. This may hap-
pen because the developers of L; and Lo compiled using different
versions of the handoff unit for MathLib, or because the developers
wrote their import interfaces by hand. The link

lznk(Ll, LQ)

fails because the linksets are required to agree on the interfaces of
their common imports. Aside from recompiling the two linksets
to use the same interface, the programmer has several options
for resolving this situation. First, she can satisfy the imports by
providing the implementation of MathLib:

Ly =link(MathLib, L)
L =link(L}, L»)

The first step satisfies the SC import of MathLib in L;, as
long as the actual interface of MathLib matches the import in-
terface I;. The result L; does not import MathLib, so it does
not conflict with the import of MathLib in La. L} does ex-
port MathLib, so if the actual interface of MathLib matches /2,
then the second link succeeds. Because linking is left-associative,
L = link(MathLib, L1, L2) accomplishes the same thing.

Any implementation of MathLib that satisfies both /1 and I
will suffice. Because we do not require unit names to be glob-
ally unique, this implementation of MathLib might even import
MathLib (again) and then contain some glue code to make it com-
patible with the two given interfaces I and I> (Figure 8). We ex-
pect such cases to be uncommon, the preferred methodology being
to use a single handoff unit for all clients.

6. Related Work

There are several closely related systems that influenced the design
of SMLSC.

The notion of linkset in SMLSC comes from Cardelli’s investi-
gation of separate compilation and type-safe linking in the simply-
typed A-calculus [5]. Our formalization of linking extends these
ideas to support the Standard ML module system including signa-
ture subtyping, abstract types, and module and type definitions in
structures.

Harper and Pierce [11] discuss language design for module sys-
tems, including separate compilation. Particularly relevant to the
current work is their discussion of sharing of abstract types. They
describe the use of definite references to avoid the coherence prob-
lems (and excess sharing specifications) that arise from aliasing.

The notion of a handoff unit bears some resemblance to the use
of .h files in C. The presence of function prototypes in a .h file
provides an interface for application code that includes that header
file. Code that references a prototyped function triggers a link-time
demand for that function. The degree of link-time type-checking
varies accross C implementations. Usually, type correctness is as-
sured by programming conventions.

export
O -1 MathLib .1,

import import import
MathLib Lglue MathLib Ll MathLib LZ

Figure 8. The linkset Lg1, imports MathLib at interface I and
then exports it to satisfy the imports in L; and Lo at disparate
interfaces /1 and 5.



Glew and Morrisett [8] describe separate compilation for Typed
Assembly Language [19]. Their language, MTAL, permits type
definitions, abstract types, and polymorphic types in interfaces and
supports recursive linking.

Jim [14] describes a A-calculus P2 with rank 2 intersection
types that has principal typings. The principal typings property
means that from a term M, one can infer both I" and 7 such that any
typing derivation I = M : 7’ is an instance of ' - M : 7. In a
system with principal typings, program fragments can be separately
compiled without context information, meaning that SC imports
need not even specify interfaces. Standard ML, however, does not
have principal typings. It remains an open problem to design a type
system that supports principal types for features such as abstract
and recursive types, and type definitions in modules.

Objective Caml. The separate compilation system of Objective
Caml (O’Caml) [15] is similar in many regards to SMLSC. The
declaration of a unit U is an O’Caml module stored within a file
called U.ml. The interface for U may optionally be given in a file
called U.mli. If the interface is present, other units depending on
U can compile even if the implementation is not available, just as
in SMLSC. Because the filename of an interface indicates the unit
that it describes, O’Caml interfaces play the role of handoff units
in SMLSC. Additionally, O’Caml’s use of the filesystem to provide
a canonical location for each unit and interface means that all unit
references are definite.

On the other hand, O’Caml’s dependence on the filesystem
means that the language is not independent from its environment.
For instance, unit names are limited to valid filenames on the host
system, and restructuring a project on disk may force changes to the
code. Another significant difference is that O’Caml conflates the
notions of units and modules. This earns O’Caml some conceptual
economy, but it makes it impossible to separate the notions of top-
level declarations and structure components. This makes it neces-
sary to support signature and functor definitions within structures,
so such a choice would not be compatible with our design princi-
ple of conservativity over Standard ML. Finally, unlike SMLSC,
O’Caml and its separate compilation system are defined informally
in terms of their implementation.

Moscow ML. The Moscow ML [20] compiler for Standard ML
supports a separate compilation system nearly identical to Objec-
tive Caml’s. Moscow ML extends the Standard ML module system
to allow (among other things) functor and signature declara-
tions in structures and specifications for them in signatures. Then,
like O’Caml, units are structures. In contrast, SMLSC does not re-
quire any changes to the Standard ML module language.

Other Standard ML implementations include mechanisms for
breaking programs up into compilation units. None support sepa-
rate compilation in the sense we use it here; they use the term to
mean cut-off incremental recompilation (recall Section 4).

SML/NJ CM. The Compilation Manager for Standard ML of
New Jersey (CM) [3] is a tool for compiling Standard ML pro-
grams spread across many source files. CM permits a program to
be divided into a hierarchy of libraries [4]. A library comprises a
list of imported libraries, Standard ML source files, and a list of
symbols exported by the library. Dependencies between libraries
are explicit but dependencies among the source files in a library are
inferred [2, 9]. CM provides control over the identifiers visible to
a source file, and supports conditional compilation, parallel compi-
lation, and cut-off incremental recompilation. CM provides no way
for the programmer to write interfaces nor to compile against unim-
plemented units. SMLSC is not a replacement for CM; we believe
that dependency analysis and recompilation tools are useful, and
that SMLSC provides a good linguistic target for such tools.

ML Basis. The MLton compiler [18] and ML Kit [17] implement
a language called ML Basis. A “basis” in their terminology is what
we call a unit. An ML Basis program is a series of declarations,
including a binding construct for bases and an open construct for
basis identifiers. These are analogous to SMLSC’s unit declaration
and IC import declaration. Like SMLSC, the order of compila-
tion entities is explicit, and thus each program has unambiguous
meaning. ML Basis is given a formal semantics [6] in terms of The
Definition of Standard ML. The implementation of ML Basis in the
ML Kit supports cut-off incremental recompilation based on Els-
man’s thesis work [7]. Like CM, ML Basis does not provide a way
for programmers to write down interfaces or separately compile
against unimplemented bases.

7. Conclusion

We have presented an extension to Standard ML for separate com-
pilation called SMLSC. Its focus is the unit, a program fragment
that can depend on other program fragments through either separate
or incremental compilation. Via the programming idiom of handoff
units—that uses both separate and incremental compilation—we
limit the number and complexity of linguistic mechanisms while
supporting a convenient programming style. Our formal and ab-
stract definition of the language ensures that it is unambiguously
specified, and admits a variety of implementation strategies.
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A. Linking Rules

The typed semantics defines a closed structure 1mod pasis 519 pysis
serving as an initial basis for the TSIL. The elaborator assumes I
declares basis:sig,,,;s» which includes components such as the
built-in Match exception. This basis structure is introduced in
Rule 6 for completion and Rule 12 for elaboration of source units
in projects.

We use the following definitions and notation.

e Writing BV (dec) for the variable declared by dec, we define
the bound variables of a structure declaration list, BV (sdecs),
by

BV(labi>deci, ..., laby>decy,) = {BV(dec1), ...,
BV(decn)}.

A linkset

L = sdecsg — sbnds : sdecs; S

binds variables BV (sdecso) with scope sbnds : sdecs; S
and variables BV (sdecs) with scope S. We write BV (L) for
BV (sdecso) UBV (sdecs).

For readability, we sometimes elide variables in structure bind-
ings and declarations. It should be immediately obvious how to
consistently restore these with fresh variables.

We assume that unit identifiers are disjoint from all other iden-
tifier classes.

e We assume that the TS overbar injection -~ maps identifiers of
different classes to different labels and that there are infinitely
many labels not in its range.

We assume that its range includes neither the distinguished
label basis, nor the labels chosen fresh in the rules.

e Structure declaration lists sdecs, signature abbreviations S, and
so on specify lists of elements. We adopt the following notation
for lists.

» We denote by (-, -) the operation of syntactic concatenation;
for example, S, S’.

» We sometimes use pattern matching at the left end of a list,
writing sigid=sig, S to match the first binding in the list.
= We usually omit the initial -; for example,
sigid,=stgq, - . . , Sigid,;=sig; -

e We define the domain of a signature abbreviation, dom(.S), by

dom(-) = 0
dom(S, sigid=sig) = dom(S) U {sigid}
dom(S, unitid=S,) = dom(S)U {unitid}.

e We define the function S-+S5’ by
(++8) = §'
((sigid=sig, S)++S') =
sigid=sig, S"”  if sigid & dom(S"")
S otherwise
where " = S++5’
((unitid=S,, S)+HS") =
unitid=S,, "  if unitid ¢ dom(S")
S” otherwise
where " = S++5".

It concatenates S and S’, making the result well-formed by
dropping signature abbreviations if dom(S) N dom(S’) # 0.

e We write both “=""and “:=" in side-conditions. Interpreting the
rules algorithmically, the former pattern-matches inputs, and
the latter specifies an output.

decs - L ok

decs F sdecsg ok
decs, sdecsg F sbnds : sdecs
decs, sdecso, sdecs = S ok 1
sdecsg = labi>wvary:[sdecs1], . .., labn>var,:[sdecs,]

decs = sdecsg — sbnds : sdecs; S ok

Rule 1: Imports are restricted to structures. The elaborator in Ap-
pendix B needs nothing else.

F decs ok
BT E—— (2
decs | - ok
decs & sig : Sig decs - S ok sigid & dom(S) 3

decs & sigid=sig, S ok
decs = S' ok decs - S ok unitid € dom(S)
S' = (sigid,=sig,, - . ., sigid,,=sig,,) )
decs F unitid=S’, S ok

L~ exp:{}

lab ¢ dom(sdecs)
- — sbnds : sdecs; S ~~ [sbnds, lab={}].lab : {}

(&)



Lpasis := - — basis=mod yasis : basis:sig, ;-
- Lbasist+L ~> L' L'~ exp : {} (6)
L~ exp:{}

decs - L++L' ~ L"

L = sdecsog — sbnds : sdecs; S

decs = L++(- — sbnds’ : sdecs’; S") ~ @)
sdecso — sbnds++sbnds’ : sdecs-+Hsdecs’; SH++S’

sdecs = sdecs” | lab>var':sig’, sdecs’’
decs, sdecsg, sdecs Fsup var':sig’ < sig ~ mod:sig”
sbnd := 1>var=mod sdec := 1>var:sig”
L := sdecsg — sbnds+sbnd : sdecs++sdec; S ®)
decs & L+ (sdecsy — sbnds’ : sdecs’; S") ~ L"

decs F (sdecso — sbnds : sdecs; S)+
(labr>wvar:sig, sdecs1 — sbnds’ : sdecs’; S') ~ L"

lab ¢ dom(sdecs)
sdecsg = sdecs” , labr>var’:sig’, sdecs’’
decs, sdecsg, sdecs & sig = sig’ : Sig
L' := {var' /var}(sdecsi — sbnds’ : sdecs’; S") )
decs & (sdecso — sbnds : sdecs; S)+L' ~ L"

decs \= (sdecso — sbnds : sdecs; S)++
(labr>wvar:sig, sdecs1 — sbnds’ : sdecs’; S') ~ L"”

lab ¢ dom(sdecs) U dom(sdecso)
decs, sdecsg, sdecs & sig = sig’ : Sig
decs, sdecso & sig’ : Sig
L := sdecso, lab>var:sig’ — sbnds : sdecs; S 10
decs & L++(sdecs1 — sbnds’ : sdecs’; S") ~ L"”

decs = (sdecsg — sbnds : sdecs; S)+
(lab>wvar:sig, sdecs1 — sbnds’ : sdecs’; S') ~ L”

B. Elaboration Rules

We change the TS elaborator to expand signature abbreviations.
First, we modify every TS elaboration judgement and rule us-
ing a TS elaboration context sdecs to use sdecs;S. A context
sdec, sdecs; S binds the variable BV (sdec) with scope sdecs; S
and a context sdecs; S binds variables BV (sdecs) with scope S.
We define BV(I") by BV (sdecs). Second, we extend the syntax
for TSEL signature expressions:

sigexp = ...
sitgid  signature identifier

Finally, we extend the TS judgement I' - sigexp ~~ sig : Sig,
adding the rule

T b sigid ~~ sig : Sig

I'F sigid ~ sig : Sig
to elaborate signature identifiers.
We use the following definitions and notation.
e To extend an elaboration context I' = sdecs; S, we write

T, dec for sdecs, 11> dec; S,
T, sdecs’ for sdecs, sdecs’; S, and
I, S’ for sdecs; S, S’.

We also define a function R(sdecs) that renames the labels in
sdecs to make them inaccessible to identifier resolution:

R(labi>decy, . .., labs>decn,) = 1>dect,. .., 1>decy.

e We define a function U (sdecs) that drops the labels in sdecs:
U(labi>decq, . .., labn>decy) = deci, . .., decy.

e When an elaboration context I' = sdecs; S appears in a judge-
ment requiring an IL context decs, we implicitly coerce I' to
U (sdecs).

e We define the substitution function o (var, sdecs, S) by

o(var,-,S8) =S
o(var, (labt>dec, sdecs), S) =
{var.lab/BV (dec)}o(var, sdecs, S)

where {path/var}S denotes the capture-free substitution of
path for free occurrences of var in S. Rule 14 uses o to
elaborate source units.

project ~> L

R ) (11)

project ~ L basis ¢ BV (L)
L = sdecsg — sbnds : sdecs; S
I := basis:sig,,s, R(sdecso), sdecs; S
I+ srcunit ~ L' var ¢ BV(L")
sdecs] — sbnds' : sdecs’; 8" := {var/basis} L' (12)
sdecsy := basisl>var:sig,,,;,, sdecsy
b L++(sdecs1 — sbnds’ : sdecs’; S') ~ L”

project, srcunit ~ L

Rule 12: The side-condition basis ¢ BV(L) can always be
achieved by renaming bound variables in L.

project ~> L
BV(L)NBV(L')=0 L' ok

project, L' ~ L"

FL+HL ~ L" (13)

’F F srcunit ~~ L‘

'+ topdec ~ L
L = sdecsy — sbnds : sdecs; S
var ¢ BV(I') UBV(L)
sbnds’ := unitidi>var=[sbnds]
sdecs’ 1= unitidr>var:[sdecs]
S’ := unitid=o(var, sdecs, S)

(14)

I' - unit unitid = topdec ~
sdecsg — sbnds’ : sdecs’; S’

I' - topdec ~~ L

I' F import impexp ~» L

'+ impexp ~~ L

5)

I' + strdec ~~ sbnds : sdecs
(16)

I' + strdec ~ - — sbnds : sdecs; -
I' F sigbind ~~ S

— a7
I' - signature sigbind ~» - — - : ;S

I' F topdec ~ sdecso — sbnds : sdecs; S
var ¢ BV(T") UBV (sdecso)
T, R(sdecso), 1*>var:[sdecs], S - topdec’ ~ L'
L := sdecso — 1>wvar=[sbnds] : 1>>var:[sdecs]; - (18)
' L4-L ~ L

I' - 1ocal topdec in topdec’ end ~~ L”




I' - topdec ~ L
L = sdecsog — sbnds : sdecs; S
T, R(sdecso), sdecs, S  topdec’ ~ L' (19)
' L4++L' ~ L

I' - topdec topdec’ ~ L

T+ impexp ~~ L‘

I' Fex unitid ~» var : sig
[ Fox unitid ~ S var’ € BV(T)
L := unitid>var’:sig — 1*=var’ : 1*:sig; S
I' + unitid ~ L

Rule 20: Rules 12, 18, and 19 use R(-) to hide imported units from
IR imports. The signature sig should be fully selfified.

(20)

T+ spec ~ sdecs war’ ¢ BV(T)
T, var’ : [sdecs] & var’ : sig
L := unitidi>var’:[sdecs] — 1*=wvar' : 1*:sig; -

@n

I' F unitid : intf spec end ~~» L
Rule 21: The signature sig should be fully selfified.

I+ impexp ~ L T F impexp’ ~ L’
BV(L)NBV(L')=0 T+ LHL ~L" (22)

I' - impexp impexp’ ~ L

T - sigbind ~ S\

'k sigexp ~ sig : Sig S := sigid=sig
(T F sigbind ~ S"  sigid & dom(S")) (23)
T+ sigid = sigezp (and sighind) ~ S{,S’)
Rule 23: Either all optional elements or none must be present.

T Fax sigid ~ sig : Sig‘

sdecs; S, sigid=sig - sigid ~ sig : Sig 24
sigid’ # sigid
sdecs; S = sigid ~ sig : Sig (25)
sdecs; S, sigid' =sig’ - sigid ~ sig : Sig
sdecs; S F sigid ~ sig : Si
0TI 26)
sdecs; S, unitid=S" & sigid ~ sig : Sig
I' Few unitid ~» S
sdecs; S, unitid=S" + unitid ~ S’ @7

unitid’ # unitid
sdecs; S b unitid ~~ S” 28)
sdecs; S, unitid’'=S" - unitid ~ S”
sdecs; S = unitid ~ S’
sdecs; S, sigid=sig I unitid ~ S’

(29)

F U(sdecs) ok

30
sdecs; - ok 30

sdecs; S ok sdecs & sig : Sig

sdecs; S, sigid=sig ok

sdecs; S ok sdecs - S’ ok
S' = (sigid,=sig,, - . ., sigid,,=sig,,)

sdecs; S, unitid=S" ok

(31

(32)



