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Abstract

Work on the TILT compiler for Standard ML led us to study a language with singleton kinds: S(A) is the
kind of all types provably equivalent to the type A. Singletons are interesting because they provide a very
general form of definitions for type variables and allow fine-grained control of type computations.

Internally, TILT represents programs using a predicative variant of Girard’s F,, enriched with singleton
kinds, dependent product and function kinds (X and IT), and a sub-kinding relation. An important benefit
of using a typed language as the representation of programs is that typechecking can detect many common
compiler implementation errors. However, the decidability of typechecking for our particular representation
is not obvious. In order to typecheck a term, we must be able to determine whether two type constructors
are provably equivalent. But in the presence of singleton kinds, the equivalence of type constructors depends
both on the typing context in which they are compared and on the kind at which they are compared.

In this paper we concentrate on the key issue for decidability of typechecking: determining the equivalence
of well-formed type constructors. We show this problem decidable by presenting a sound, complete, and
terminating decision algorithm. These properties are established by a novel Kripke-style logical relations
argument inspired by Coquand’s result for type theory.

This research was sponsored in part by the Advanced Research Projects Agency CSTO under the title “The Fox
Project: Advanced Languages for Systems Software,” ARPA Order No. C533, issued by ESC/ENS under Contract
No. F19628-95-C-0050.
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1 Introduction

1.1 Motivation

The TIL compiler for core Standard ML [17] was structured as a series of translations between explicitly-
typed intermediate languages. Each pass of the compiler (e.g., common subexpression elimination or closure
conversion) transformed the program and its type, preserving well-typedness. One advantage of this frame-
work is that typechecking the intermediate representation can detect a wide variety of common compiler
implementation errors. The typing information on terms can also be used to support type-based optimiza-
tions and efficient data representations; TIL used a type-passing interpretation of polymorphism in which
types were passed and analyzed at run-time [12]. In the future, it should be possible to use such typing
information for annotating binaries with a certification of safety [13, 14].

The results from TIL were very encouraging, but the compiler implementation was inefficient and could
only handle complete programs written without use of modules. The Fox Project group at Carnegie Mellon
therefore decided to completely re-engineer TIL to produce TILT (TIL Two), a more practical compiler
which could handle separate compilation and the complete SML language.

One challenge in scaling up the compiler was properly handling the propagation of type information. For
example, in the Standard ML module language we can have a structure Set with the signature

sig
type item = int
type set
type setpair = set * set
val empty : set
val insert : set * item —> set
val member : set * item —> bool
val union : setpair -> set
val intersect : setpair -> set
end

From this interface it is apparent that the module Set has three type components: the type Set.item known
to be equal to int, the type Set.set about which nothing is known, and the type Set.set which is the type
of pairs of Set.set’s.

There are two important points to note about this example. First, equivalences such as the one between
Set.item and int are open-scope definitions available to “the rest of the program”, which may not even be
written when this module is compiled. Second, because of type-passing these type components really are
computed and stored by the run-time code. Although it is possible get rid of type definitions in signatures
by replacing all references to these components with their definitions [16] we do not wish to do so; such
substitutions could substantially increase the number of type computations performed at run-time.

The choice we made was to use an typed intermediate language based on F,, with the following kind
structure (recall that kinds classify type constructors):

e A kind T classifying ordinary types;
e Singleton kinds S(A) classifying all types of kind T provably equivalent to A;

e Dependent record kinds classifying records of type constructors and dependent function kinds classi-
fying functions mapping type constructors to type constructors';

e A sub-kinding relation induced by S(A) < T.

Modules are represented in this language using a phase-splitting interpretation [7, 16]. The main idea is
that modules can be split into type constructor and a term, while signatures split in a parallel way into a
kind and a type. Singleton kinds are used to model definitions and type sharing specifications in module

LA record of type constructors should not be confused with a record type, which would have kind 7. Similarly, functions of
type constructors are not function types, which would also have kind T'.



signatures, dependent record kinds model the type parts of structure signatures, dependent function kinds
model the type parts of functor signatures, and subkinding models (non-coercive) signature matching.

For example, the kind corresponding to the above signature is a dependent record kind saying that there
are three type components: the first component item has kind S(int) because its definition is known; the
second component sef has kind 7' because its definition is not known; finally the third component setpair
has kind S(set x set), which takes advantage of the record kind being dependent.

Singletons are used to describe and control the propagation of type definitions and sharing in the compiler.
The constructor A has kind S(B) if and only if the constructors A and B are provably equivalent. Thus,
the hypothesis that the variable a has type S(A) essentially says that « is a type variable with definition A.
This models open-scope definitions in the source language.

Furthermore, singletons provide “partial” definitions for variables. If « is a pair of types with kind
S(int)xT this tells us that the first component of this pair, me, is int. However, this kind tells us
nothing about the identity of the moa. As in the above example, partial definitions allow natural modeling
of definitions in a modular system, where some components of a module have known definitions and others
remain abstract.

Interestingly, in a language with singleton kinds we can additionally express with delimited scope (closed-
scope) definitions. The expression let &:T' = intx int in id[«](3, 4) end does not typecheck when expressed as
a function application (Aa:T.id[a](3,4))[intx int]; the application of id[a] to a pair of integers is only well-
formed if « is known to be intx int, which is not apparent while checking the abstraction. We can express
this information, however, by annotating the argument with a singleton kind to get the well-formed term
(Aa:S(int xint).id[a](3,4))[intxint]. Now let-bindings of types could be directly added to our calculus,
but the general ability to turn types into function arguments (particularly into new arguments of pre-existing
functions) is necessary for a low-level description of type-preserving closure-conversion in the type-passing
framework [11]. Tt also enables finer control of when type computations occur at run time, permitting
optimizations such as improved common subexpression elimination of types.

Given that we wish to typecheck our intermediate representation, the question that arises is whether
typechecking is decidable. This question reduces to the decidability of equivalence for well-formed type
constructors. This latter question is non-trivial because the equivalence of two constructors can depend both
on the singletons (definitions) in the context and — less obviously — on the kind at which the constructors
are being compared. (See Section 2.2.) The common method of implementing equivalence via context-
insensitive rewrite rules is thus completely inapplicable for our calculus. The goal of this paper is to show
that constructor equivalence is nevertheless decidable.

1.2 Outline

In Section 2 we introduce the /\EES calculus (a formalization of the key features of the type constructors
and kinds of the TILT intermediate representation). We explain some of the more interesting aspects of
this calculus, including the dependency of equivalence on the typing context and the classifying kind. We
show that singletons for constructors of higher kinds are definable, and show that every constructor has a
principal (most-specific) kind.

In Section 3 we present a sound algorithm for determining equivalence of well-formed constructors. We
were inspired by Coquand’s approach to 8n-equivalence for a type theory with II types and one universe [3].
Coquand worked with an algorithm which directly decides equivalence, rather than using a confluent and
strongly-normalizing reduction relation. However, in contrast to Coquand’s system we cannot compare
terms by their shape alone; we must take account of both the context and the classifier. Where Coquand
maintains a set of bound variables, we maintain a full typing context. Similarly, he uses shapes to guide
the algorithm where we maintain a classifying kind. (For example, when he would check whether either
constructor is a lambda-abstraction, we check whether the classifying kind is a function kind.) Although the
natural presentation of our algorithm defines a relation of the form I' - A; & A : K, we cannot analyze
the correctness of this algorithm directly. Asymmetries in the formulation preclude a direct proof of such
simple properties as symmetry and transitivity, both of which are immediately evident in Coquand’s case.
Instead we analyze a related algorithm which restores symmetry by maintaining two typing context and two
classifying kinds, with the form I'y F A, : K; © s F Ay @ K.



Contexts A= e Empty context

| T,a:K Context extension
Kinds K L:= T Kind of types

| S(A) Singleton kind

| Ta:K;. K2 Dependent function kind

| Xa:Ky.Ks Dependent product kind
Constructors A, B,C == Base types

| a,pf,... Variables

| Aa:K.A Function

| AA Application

| (A, A" Pair

| mA Projection

Figure 1: Syntax of /\225

Our main technical result is the proof in Section 4 that the algorithm of Section 3 is both complete and
terminating. Our proof of completeness is inspired by Coquand’s use of Kripke logical relations, but our
proof differs substantially from his. Our “worlds” are full contexts rather than sets of bound variables. More
importantly, we make use of a novel form of Kripke logical relations in which we employ two worlds, rather
than one.

In Section b we use this completeness result to show the correctness of the natural algorithm. This yields
the practical algorithm used in the TILT implementation.

Finally we discuss related work and conclude.

Appendix A contains the full set of rules for the /\EES calculus, and Appendix B contains a collection of
important but standard properties of the calculus.

2 The /\225 calculus

2.1 Overview
The syntax of /\EES is shown in Figure 1. The constants b; of kind 7" represent base types such as int. As
usual, we use the usual notation of K x Ky for Ya:K;.K5 and K;—K> for Ila:K;.K5 when « is not free in
K.

There is a natural notion of size for kinds where size(T) = 1, size(S(A)) = 2, and size(Tla: K.K') =
size(Lo: K. K') = size(K) + size(K') + 2. The size of a kind is preserved under substitution of terms for
variables.

The declarative rules defining the kinding and equivalence system of /\EES are given in Appendix A. For
the most part, these are the usual rules for a dependently-typed lambda calculus with 87 equivalence. We
concentrate here on presenting the less common rules.

Since we restrict constructors within singletons to be types (constructors of kind T'), we have the following
well-formedness rule for singleton kinds:

AT
'k S(4)”
However, Section 2.3 shows that singletons of constructors of higher kind are definable in this language.
There are two introduction rules for singletons:

I'A:T I'tA=B:T
I'EA:S(A) I'FA=B:5(A)




and a corresponding elimination rule:
I'FA:S(B)
r-A=B:T"

The calculus includes implicit subsumption, where the subkinding relation is generated by the rules

I'tA:T F"AlEAQZT
TFS(A)<T TFSA)<S(A)

and 1s lifted to subkinding at IT and ¥ kinds with the usual co- and contravariance rules. Under this ordering,
the singleton introduction rule above allows a constructor A of kind T" to be viewed as a constructor of the
subkind S(A4). Symmetrically, by subsumption any constructor of a singleton kind can be viewed as having
the superkind 7.

Constructor equivalence includes  and 7 rules for functions and pairs. We express the 7 rules as
extensionality principles:

I A KK 't Xa:K' . K"

'+ Ay : T K’ KY I'FmA =mAs K’
Iao:K'F Aja = Asa : K [k md) = mdy : {arsm A PR
A=A MK K" A =Ay: XK' K"

The constructor well-formedness rules may be seen as reflexive instances of equivalence rules. For example,
we have the following two non-standard kinding rules corresponding to the extensionality rules:

'k Xa:K'". K"

'+ A: oK' KY 'kmA: K’
oK'+ Aa: K I'FmA: {a—m ALK
'+ A:Ma:K' K" '-A:Ya:K' K"

Similar rules have previously appeared in the literature, including the non-standard structure-typing rule
of Harper, Mitchell, and Moggi [7], the “VALUE” rules of Harper and Lillibridge’s translucent sums [6],
the strengthening operation of Leroy’s manifest type system [8], and the “self” rule of Leroy’s applicative
functors [9]. In the presence of singletons, these rules give constructors more precise kinds than would
otherwise be possible. (See Section 2.3.)

A number of straightforward properties of the A!¥* calculus, used in the following proofs, are given in
Appendix B. B

2.2 Examples of Term Equivalence

As mentioned in the introduction, singletons in the context can act as definitions and partial definitions for
variables. So the provable judgments include:

Sy Fa=b T

S F o, b)) = (b, 0) : TXT
TxSi))Fma=b:T
(XBT.S(B) Fma=ma: T
(XBT.S(B) Fa=(ma,ma) : TxT.

e R L eer

In the last two of these equations, the assumption governing o gives a definition to maa (namely 71 «) without
specifying what the two equal components actually are.
Singletons behave like terminal types, so by extensionality we can prove equivalences such as:

a:Sb)=TFa=AG:S(b;).(abs) - S(by)=T
a:T—=SM;) Fa=AT0; : T>T

Notice that in the first of these equations, the right-hand side is not simply an n-expansion of the left-hand
side.



S(A:T) = S(A)

S(A: S(A") = S(A)

S(A MK .Ky) = Ta:Kp.(S(Aa : K3))

S(A :Ba:K1.Ka) = (S(mA: Kp))x(S(meA: {a—sm A} Ka))

Figure 2: Encodings of Labelled Singletons

Because of subkinding, constructors do not have unique kinds. The equivalence of two constructors
depends on the kind at which they are compared; they may be equivalent at one kind but not at another.
For example, one cannot prove

FAaT.o = AaTb; - T—T

as the 1dentity function and constant function have distinct behaviors. However, by subsumption these two
functions also have kind S(b;)—=7T and the judgment

FAaT.a = Aa:T.b; : S(by)—=T

is provable using extensionality.
The classifying kind at which constructors are compared depends on the context of their occurrence. For
example, from this last equation it follows that

B:(S(b)=T)=>TF fAaT.«) = f(AaT b)) : T

2.3 Labelled Singletons

In our calculus S(A) is well-formed if and only if A is of type T. Aspinall [1] has studied equivalence in a
lambda calculus with labelled singletons of the form S(A : K).? This represents the kind of all constructors
equivalent to A at kind K. Because equivalence depends on the classifier, the label K in these labelled
singletons does matter. Tt follows from the examples of the previous section that S(Aa:T.b; : Tle:S(6;).T)
and S(Aa:T.b; : T—=T) are not equivalent; only the former classifies the identity function Ac:T.ov.

Our system does not contain such labelled singletons as a primitive notion because they are all definable;
Figure 2 gives an inductive definition.

For example, if 8 has kind T—7T', then S(8 : T—T) is defined to be lla:T'.S(Ba). This can be interpreted
as “the kind of all functions which, when applied, yield the same answer as 3 does”. The non-standard
kinding rules mentioned in Section 2.1 are vital in proving that £ has this kind.

The following proposition shows that the definitions of Figure 2 do have properties analogous to Aspinall’s
labelled singletons.

Proposition 2.1
1. Let v be a substitution mapping variables to terms, extended in the obvious way to constructors and

kinds. Then v(S(A : K)) = S(yA : vK).

IfTFA; K andTF Ay : S(A2: K) then TH A; = Ay K.
ITHFA =A;: K thenTH Ap = A2 S(A; - K).
IfTFA:K then THS(A:K)andTHA:S(A:K).
IfTHFA:K thenTHS(A:K)<K.

S sk N

IfT'+ A1 = A2 : [\71 and I' F [\71 S [\72 then I' - S(Al [{1) S S(Az [{2)

2 Aspinall’s notation for our S(A : K) is {A}x. Our S(A) is not the same as Aspinall’s unlabelled singleton {A}, but rather
would correspond to {A}r.




Proof:
1. By induction on K.

2. By induction on the size of K.
o Case K =T and S(A2 : K) = S(A2). Then '+ A; = A, : T by Rule 34.

o Case K = S(B) and S(A2 : K)=S5(A2). ThenT'F A=A :Tand ' A, =B: T, so
' A = A;:5(B).

o Case K =Tla:K,.K; and S(Az : K) =a:K;.5(Aza : K2). Then I', a: Ky F Aja: S(Az2a : K3). By the
inductive hypothesis, I', o: K1 F A1 = Azar @ K3, Therefore by Rule 30 we have
I'F A = As : Ha: K. Ko.

o K =Ya:K,.K; and S(Az : K) = (S(m1 A2 : K1))x(S(m2A2 : {a—7m1 A2} K?)). Then
I'tmA:S(mAz: Ky) and I' F w0 Ay S(m2 Az - {asm A1 }K). By the inductive hypothesis,
I'tmAr =mAx: Kiand T'F m A =m0 Az {am1 A1} K2, Therefore by Rule 31 we have
I'FA =As : Za: K. Ks.

3. By induction on the size of K.

o Case K =T and S(A; : K)=5(A1),and '+ A; = Ay : S(A1).

o Case K = S(B) and S(A: : K) = S(A2). Straightforward.

o Case K =Tla: K'.K" and S(A; : K) =Tla:K'.S(A1a: K"). Then T, a: K' F Ajor = Az : K. By the
inductive hypothesis, T, a:K' + Aja = Az : S(A1a @ K"). Therefore by Rule 30,

A = Ap M K".S(Ava 2 K).

o K =%a:K'"K"and S(A1 : K) = (S(m A1 : K'))x(S(m2 41 : {a—m1 A1 }K")). Then
FFmA =mAs: K'and T F me A; = m2 Ay : {a—m A1 }JK”. By the inductive hypothesis,

TFmA =mAz: S(mAr: K')and T+ mA; = moAs 1 S(m2Ar : {asm1 A1 }K"'). Therefore by Rule 31
we have T'F Ay = As 1 (S(m1 A1 - K'))x(S(m2 A1 : {a—m A1 }K"))

(Note the crucial use of extensionality in the IT and ¥ cases.)
4. By reflexivity of equivalence, Part 3, and Lemma B.1.
5. By induction on the size of K.
o Case K =T and S(A: K)=S5(A). Assume '+ A:T. By Rule 9 wehave I'F S(A:T) <T.
o Case K = S(B) and S(A: K)=S(A). Assume '+ A: S(B). Then '+ A= B: T so '+ S(A) < S(B).

o Case K =Tla: K. K7 and S(A : K) = Ma:K,.5(Aa : K3). Then I' + Ky and T', a: K1 F Aa: K3, By the
inductive hypothesis, I', a: /{1 F S(Aa : K2) < K». Therefore, I' F Ia: K .5 (Aa : Ko) < Ha: K. Ko.

o Case K =Za:K' K" and S(A: K)= (S(mA: K')x(S(m2A : {arsm A}K")). Then T F mA: K’ so
by the inductive hypothesis, I' - S(m1 A : K') < K'. Furthermore, I' F 72 A : {a—m1 A}K". By the
inductive hypothesis, ' F S(m2 A : {ar—sm A}K") < {a—sm A}YK". Also, by Lemma B.1 and Weakening,
Ta:S(mA: K'Y K" < K" and by Part 4 T, a:5(mA: K')Fa=mA: K'soby Lemma B.11
IaS(mA: K'Y F{amsm A}K"” < K". Therefore,

TE(S(mA: KN))x(S(mA: {a—m A}K')) < Sa:K'.K".

6. By induction on the size of K.

o Case K1 =T or S(A;1) and K> =T or S(Az). S(A1 : K1) = S(A1), S(A2 : K2) = S(Az), and the
desired conclusion follows by Rule 11.

o Case K1 = Ma:K{.K{ and K> = Tla: K3. K3, S(Ai : K;) = a:K{.S(Aia : K|'). By inversion
NFK)<K{and',a: K F K < KY. Now I", a: K} - Ao = Az : K. By the inductive hypothesis,
oKy F S(Ara: K{') < S(Aza : KY'). The conclusion follows by Rule 12.

o Case K1 = Sa:K{.K{ and K>, = Sa: K. KY. S(A1: K1) = Za:S(m A1 K1 )S(m2 Ar : {asm A FKT)
and S(Az : K3) = Za:S(m A2 K3 1 )S(m2 Az - {a—m1 A2}KY). Now I'F 71 A1 = m1 Az ¢ K] and
Tk m Al = m Az - {asm A1 }KY. By the inductive hypothesis, T+ S(m1 A : K1) < S(m1 Az @ K3}).
Since T’ F {a—m1 A1} K < {am1 A2 }KY | the inductive hypothesis applies yielding
I'E S(mAr: {a—m A1 }K]) < S(m2 Az : {a—m1 A2}KY). (Here it is important that the induction is on
the size of K and not by induction on the proof I' - K| < K3.) The desired result follows by
Weakening and Rule 13.



TF b S(b:)

I'FaqfSla:T(a)

't Xa:K' A la:K' K" where I'a: K'F Ay K

I'F AA" t {a—m A'Y K where T'F A TTa: K/ . K"

TE (A A" K'x K" where ' - A’ f K/ and ' A” { K.
F'tmAf K’ where I' - A f) [Ia: K’ . K"

I'Fm A {a—sm AR where T'F A TTa: K/ . K"

Figure 3: Algorithm for Principal Kind Synthesis

It is curious to note that in our system, as in Aspinall’s, §-rules become admissible in the presence of
singletons. This can be easily seen using Proposition 2.1; for example,

IaKsHA:K
INa:KyH A:S(A: K)
kXK. A Tla:K5.5(A : K)
'k (Aa:K2.A)Az : S{a— A} A {a— A2} K)
I'F (Aa:K2.A)As = {a— At A {a— ALK

F"Az:[(z

For convenience we have chosen to formulate the system with a stronger form of the g-rules (though we
conjecture this does not change the system) and we do not use this admissibility result in the remainder of
the paper.

2.4 Principal Kinds

Figure 3 gives an algorithm for determining the principal kind of a well-formed constructor. Correctness is
shown by the following lemma:

Lemma 2.2
IFTHFA:LthenTHFANK, THFA:K,andTFK < S(A:L).
Proof: [By induction on the proof of the assumption.]

o Case: Rule 18.
I'+ ok

Thbi:T
Ik b 1 S(bs) and I+ b; = S(bi). S(bs : T) = S(bi). THb=b:T, so I'F S(b) < 5(b).

o Case: Rule 19.
I'+ ok

TreTE
1. T'Faf S(a: T'(a)) by definition.
2. By Proposition 2.1, I'F S(a : I'(a))
3. and 'k a: S(a: I'(a)).
4. Thus by reflexivity, I' - S(a : T'(a)) < S(a : T'(a)).

o Case: Rule 20.
INa:K'-A:L"

I'Fxa:K'A:la:K'.L"

1. By the inductive hypothesis I', a: K" - A {} K",
2. T oK' A: K",



and T a:K' = K" < S(A: L").

Then I' - da: K’ A ¢y [la: K. K"

and I'F da: K" A : Tla: K' K"

Now I' a: K' + (Aa: K. A)a = A : L,

soT,a:K'+ S(A: L") < S((Aa:K'.A)a : L") by Proposition 2.1.
Since S(Aa: K’ A : Ta:K'. L") = Tla: K'.S((Aa: K. A)a : L")

and '+ K' < K,

10. we have I' F Ta: K’ K" < S(Aa: K" A : Tla: K'.L").

© 0 N o W

o Case: Rule 21.
I'FA:a:L'.L" AL

'k AA": {asAYL"
By the inductive hypothesis I' - A {} K
TFA:K
and T+ K < S(A:Ta:L'.L").
Now S(A : Tla:L'. L") = Tla: L'.S(Ace : L").
By inversion K = [la:K'. K",
e L' <K',
and T a:L' b K" < S(Aa : L").
Then T'+ AA" t {as A’} K.
By subsumption, I' - A" : K, so
N+ AA : {as ALK,
. Finally, by Lemma B.4 and Proposition 2.1 we have T'F {a— A’} K" < S(AA": {asA'}L").
e Case: Rule 22

S N Al o e

— =
=

I'FA:Za:L'.L"
TFmA: L

By the inductive hypothesis, I' - A {} K,

'FA:K,

and T+ K < S(A: Za:L'.L").

Now S(A :Za:L'.L")y = S(mA: L)xS(m A : {a—sm A}L").
By inversion, K = Za:K'. K",

and T K' < S(mA: L.

Finally, '+ m A} K’

and T+ mA: K.

e T A oI o

o Case: Rule 23
I'FA:Za:L'.L"

Tk mA: {a—m AL
By the inductive hypothesis, I' - A {} K,
THFA:K,
and ' K < S(A: Za:L'.L").
Now S(A :Za:L'.L")y = S(mA: L)xS(m A : {a—sm A}L").
By inversion, K = Ya:K'. K",
K <S(mA:L"Y,
and T a:K' = K" < S(m A {asm A}L").
Then T+ 7 A : K.

e A AN -l I o



9. so by Lemma B.4 and Proposition 2.1, ' F {a—m A}K" < S(m A : {asm AYL").
10. Finally, T F m A fy {arsm A K"
11. and T'+ m A : {a—sm A}K".

o Case: Rule 24
'k Sa:L'.L"

AL
A" {fas A'}L"
(A A" Sa: ' L

1. By the inductive hypothesis, I' - A’ {} K,

2. -A K,

3.THK <S(A : LY,

4. TFHA" K",

5. THA": K",

6. and T+ K" < S(A" : {as A'}L").

7. Then T+ (A", A"yt K'x K",

8 and T'F (A", A"y : K'xK".

9. Now S((A', A"Y : Ta:L'. L") = S(mi (A, A") : L')yx S(ma(A", A"Y : {asmi (A, A"V,
10. By Proposition 2.1, 'F S(A’ : L") < S(m (A", A”) : L")
11. and T+ S(A" : {a'—A"}L") < S(m(A', A"y : {asmi (A', A"YIL).

12. Therefore, T' = K'x K" < S({A', A" : Sa: L' L").

o Case: Rule 25
I'A:T

TFA S
By the inductive hypothesis, noting that S(A : S(A)) = S(A).

e Case: Rule 27
I'FA:Ta:L'. LY
Ia:L'+ Aa: L"
'~ A:Ila:L'.L"

By the inductive hypothesis, I' - A {} K,

'FA:K,

and T+ K < S(A:Ta:L'.LY).

Now S(A : Tla:L'.LY) = Tla: L'.S(Acr : LY)

so by inversion K = [la:K'. K"

and '+ L' < K'.

Also by the inductive hypothesis I', a:L' - Aa {} K,

Ia:L' - Ao s KY,

and T a:L' + K3 < S(Aa: L").

© % N o ok W
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But since the principal kind synthesis algorithm is deterministic and clearly obeys weakening, we have
ai

K ={a—a}K" = K".
11. Now S(A : Tla:L'. L")y = Tla: L".S(Ace : L").
12. Therefore T+ Ta: K" K" < S(A : Ta:L'.L").

o Case: Rule 26.
'k Sa:L'.L"

TFmA: L
Tk mA: {a—m AL

I'FA:Za:L'.L"




1. First, note that principal kind synthesis never returns a dependent % type.
2. By Lemma B.17 and the inductive hypothesis ' A} K'xK" and ' A : K'xK".
3. Also, T Fm A K,

4. TFmA: K,

5. and TH K' < S(mA: L').

6. Also, ' F mA fy K",

7. TFmA: K",

8 and 'F K" < S(mA: {a—m A}L").

9. Since S(A : Za:L'.L"y = S(mA: LY xS(mA: {a—sm AIL"),
10. TH K'xK" < S(A: Za:L'.L").

e Rule 28

I'HA: L I'FL, <L
I'HA:L

The desired result follows from the inductive hypothesis and by Proposition 2.1 to get
'k SA:L)<S(A:L).

3 An Algorithm for Constructor Equivalence

Following Coquand, we present the equivalence test by defining a set of rules defining algorithmic relations,
shown in Figure 4. It 1s clear that these rules can be translate directly into a deterministic algorithm, since
for any goal there is at most one algorithmic rule which can apply. Then decidability of the algorithmic
relations corresponds to termination of the algorithm.

Our algorithm is somewhat more involved than that of Coquand because of the context and kind-
dependence of equivalence. We divide the algorithmic constructor equivalence rules into a kind-directed
part and a structure-directed part, while Coquand needs only structural comparison. Our weak head nor-
malization includes looking for definitions in the context. We have also extended the algorithm in the natural
fashion to handle ¥ types, pairing, and projection.

Define an elimination context to be a series of applications to and projections from “o”, which we call

the context’s hole. If E is such a context, then E[A] represents the constructor resulting by replacing the
hole in E with A. If a constructor is either of the form E[a] or of the form E[b;] then we will call this a path
and denote it by p.

B o
EA
T F
7T2E

The kind extraction relation I' = p + K attempts to determine a kind for a path by taking the kind of
the head variable or constant and doing appropriate substitutions and projections. A path is said to have a
definition if its extracted kind is a singleton kind S(B); in this case we say B is the definition of the path.

The extracted kind is not always the most precise kind. For example, a:T"+ o T T but the principal type
of « in this context would be S(«). We must show that given a well-formed path, kind extraction succeeds
and returns a valid kind for this path using induction on the well-formedness proof for the path (with a
strengthened induction hypothesis).

Lemma 3.1

IfTFp: K thenTkFpt L, TEp:LiandTHFS(p:L)<K.

Proof: By induction on the proof of the hypothesis.

10



Kind Extraction
Lo 1T
I'FatT(a)

I't+ mp T [\71

I'E mop t {B—=mip} Ko
Tk pA 1 {BsA) K>

Weak head reduction
'k E[(Aa:K.A)A'] ~ E[{a—A'}A]
I't+ E[7T1<A1,A2>] ~r E[Al]
I't+ E[7T2<A1,A2>] ~r E[Az]
'+ E[p] ~ E[B]

Weak head normalization
r-AlB
r-AJA

Algorithmic constructor equivalence
WA Ty AT
I'iHA: S(Bl) S ToF Ay S(Bz)
WFA oK Ly T b Ay s Tl Ky . Ls
WA YK Ly T b Ay s Yo Ks. Lo

Algorithmic path equivalence
FEoi 1T &b 1T
Fl F OzTFl(Oé) — Fz Fa TFQ(O[)
I+ p1A1 T {Oﬂ—)Al}Ll —

Fz F p2A2 T {Oﬂ—)Az}Lz
IiEmpr T Ky & Do b mps T Ko
I+ TPl T {Oﬂ—)ﬂ'lpl}[zl —

Ty b mops t {a—mipat Ly

Algorithmic kind equivalence
LW Tel,HT
I+ S(Al) <y F S(Az)
Iy Fllo:K. Ly © Ty Flla:Ky. Ls
W FYaK Ly Tk Xa:Ks. Ly

T Fpt YK K,
T Fpt YK K,
T FptIBK Ko

if T'Fpt S(B)

fTFA~ A" andTHA | B

otherwise

U EAUp, Dok AsUpe, i Epi P T & Tabpa 10T
always
Iy, K1 FAa: L1 &y, a:Ko b Asar Lo
i kFmA K elybkmAds: Ko, and
Ik mA; {Oﬂ—)ﬂ'lAl}Ll S A DV D {Oﬂ—)ﬂ'lAz}Lz

ifi=y

always

if Fl F P T Ha:Kl.Ll — Fz "pz T HO[ZI(Q.LQ,
and ' A : Ky Ty F Ay - K.

if Fl F P T Eoz:Kl.Ll — Fz F P2 T EO{:[(Z.LQ.

if Fl F P T Eoz:Kl.Ll — Fz F P2 T EO[ZI(Q.LQ

always

I FA Tl AT

ifI' - Ky Ty B Ky and Iy, a:K4 FL e Iy, a: K5 F L,
ifI' - Ky Ty B Ky and Iy, a:K4 FL e Iy, a: K5 F L,

Figure 4: Algorithmic Relations

e Case: Rule 18. p =b;.

1. Then T' kb T and S(b; : T) = S(bi).

2. By Rule 18, ' +b; : T

3. and by Rule 9, T' + S(b;) < T
e Case: Rule 19. p = a.

1. Then '+ a 1 I'(a).

2. By Rule 19T F a : I'(«),

3. and by Proposition 2.1 Part 5, I' F S(a : I'(a)) < T'(a).

o Case: Rule 21.

Dkp:Ha:K' K"

r=A:K'

I'tpA : {a— AYK"

11



By the inductive hypothesis, I' - p 1 Ia:L'.L",

I'kp:Ila:L'.L", and

Tk S(p: Mo L' L")y < Tla: K' K",

Then T' F pA’ t {a—A'}L".

Since S(p : Ha:L'.L") = Ma:L'.S(par : L"),

we have by inversion of Rule 12 that TF K’ < L' and T, a:K' + S(pa : L") < K.
By subsumption, '+ A’ : L'

and hence T' - pA’ : {a— A"} L" by Rule 21.

Finally, by Lemma B.4 we have '+ S(pA’ : {a— A" L") < {a— A"} K",

© e N o W

o Case: Rule 22.
Pkp:Sa:K' K"

I'tmp: K’
By the inductive hypothesis, I' - p 1+ Sa:L'.L",
I'kp:Ya:L'.L", and
MESp:Xa:l/. L") < Ba:K' K.
Then I' - mp 1t L7,
and by Rule 22, ' mp: L'.
Since S(p: Ta:L'.L") = S(mip: L'YxS(map : {asmip} L"),
by inversion of rule 13 we have T'+ S(mp: L") < K.

No ok Wy =

o Case: Rule 23.
Pkp:Sa:K' K"

't mp: {a—smp}K!

1. By the inductive hypothesis, I' - p + Sa:L'.L",
2. Tkp:Ta:L'.L", and
3.TFS(p: Za:L' L") < Ta: K" K",
4. Then T+ mop t {arsmip}L”,
5. and T'F map : {arsmip}L” by Rule 23.
6. Since S(p: Za:L'.L")y = S(mip: L'YxS(m2p : {asmip}L"),
7. by inversion of Rule 13 I', a:S(mip: L") b S(map : {a—smip}l”) < K.
8 Then T+ mp: S(mp' : L")
9. so by the Substitution Lemma B.4 we have T+ S(m2p : {amip}tL"”) < {asmp}K".
e Case: Rule 25
I'kp:T
I'tp:S(p)

1. By the inductive hypothesis, ' p 1 L,

2. 'kFp: L,

3.and'F S(p: L)< T.

4. Thus L is either T or a singleton, and S(p : L) = S(p).
5. and by reflexivity, I' - S(p) < S(p).

o Case: Rule 26.
'k Ya: K" K"
I'kFmp: K’
Tk mp: {a—smptK”

Pkp:Sa:K' K"

1. By Lemma B.17 and the inductive hypothesis, I' - p 1+ Sa:L'.L",
2. T'Fp:Sa:L’.L",

12



P'Fmpt L,

P'Fmp: L,

'k S(mp: L") <K',

'k mpt {a—mp}l”,

'k mp: {asmp}l”,

and T+ S(map : {asmip}Ll”) < {asmip}K".

P N e oW

9. Now to show that T+ S(p: Sa:L'.L") < Sa:K'. K"

10. it remains to show that T',a:S(mp: L') F S(mop : {asmip}Ll") < K.
11. But T, a:S(mip: L') F {a—smp}K" = K",

12. so the desired result follows from Line 8 and transitivity.

e Case: Rule 27.
Dkp: oK' K/
I oK' Fpa: K"

Dkp:Ha:K' K"

By the inductive hypothesis, I' - p 1 Ia:L'.L",
I'kp:la:L'.L",

and T+ (TMa:L'.S(pa : L)) < Te: K'. K7

By inversion, I' - K’ < L.

A

By the inductive hypothesis, and determinacy and weakening of the kind extraction algorithm,

Ia:K'Fpat L'
and T, a:K'+ S(pa : L") < K".
7. Therefore, T+ Ia:L'.S(pa : L") < Tla: K. K.

o

o Case: Rule 28.
I'kp: Ky 't Ky < K>

I'kp: K,

By the inductive hypothesis, I' - p 1 L,
I'tkp:L,

and T'F S(p: L) < K.

By transitivity, ['F S(p: L) < K.

=R =

Corollary 3.2
IfTFEp): K andT Fpt S(A) then T F Elp] = F[A]: K.
Proof:
1. By Lemma 3.1, T'+ E[p] 1 L,
2. TF E[p]: L,
3. and T+ S(E[] : L) < K.
4. By the determinacy of kind extraction, this can be reconciled with I' - p 1 S(A) only if £ = and L = S(A).
5. Thus by Rule 34, 'Fp=A:T.
6. Now S(E[p]: L) = S(p).
7. By inversion of subkinding, either K =7 or K = S(A") withT'Fp=A":T.
8. In either case, 'Fp=A: K.
9. That is, I' b E[p] = E[A] : K as desired.

13



|
The weak head reduction relation I' - A ~» B contracts the head f-redex of A, if such a redex exists.
Otherwise, when the head of A is a path with a definition reduction replaces the head with the definition.
Weak head normalization I' = A | B repeatedly applies weak head reduction to A until a weak head
normal form is found. Weak head reduction and weak head normalization are deterministic, since the head
[-redex is always unique if one exists, and a path can have at most one prefix with a definition.
The algorithmic term equivalence relation

WA K el F Ay Ky

is intended to model the declarative equivalence I'y - Ay = A5 : Ky, when F 'y =T's and I'y - K1 = Ks.
The algorithmic path equivalence relation

ibEprt Ky & Tk pst Ko

will be shown to implement constructor equality for head normal paths when - I'y = I's. As a notational
convenience, this relation explicitly includes the extracted kinds of the two paths being compared.

Lemma 3.3

IfF1 F A1 T[{1 — Fz F A2 TI{Z then Fl F A1 T[{1 and Fz F A2 TI{Z
Finally, the algorithmic kind equivalence relation
WK el K,

determines whether two kinds are equivalent given - 'y = I's. This easily reduces to checking the equivalence
of constructors appearing within singleton kinds.

To prove soundness of this equivalence algorithm, we first prove that weak-head normalization preserves
equivalence.

Proposition 3.4
IfTF E[(Aa:L.A)A] : K then T'F E[(Aa:L.A)A'] = E[{a—A'}A] 1 K
Proof: By induction on the given derivation.

o Case:

T'FXa:L' A:Tla:K' . K" A K’
't (Aol A" {fasr AYK"

where F = o.

Using Proposition B.16 and the correctness of principal kind synthesis we have I',a:L' - A fy L"),
Doa:L'+A:L",

'k Xa:L". Ay Ia:L'.L",

'k Xa:L'A:Ta:L'.L",

and (using Proposition 2.1) T+ Tla:L'.L" < TTa: K. K".

By inversion, ' - K' < L'

and I',a:K'F L" < K".

By subsumption, ' A’ : L'

Thus T+ (Aa:L.A)A' = {as A'}A : {asr A'}L"

By Substitution T' F {a—A'}L" < {asA'}K".

11. Therefore by subsumption we have T' F (Aa:L.A)A' = {a— A" A : {as A'}K"

© 0 N o W =

H
e

e All other cases follow by structural rules and reflexivity of declarative equivalence.
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Proposition 3.5
1. IfT F E[m (A, A")] : K then T F E[m (A", A")] = F[A] : K.

2. IfT F E[may{A', A")] : K then T F E[my(A!, A"Y] = E[A"] : K.
3. T H(A A" XK' K" then TH A" : K and T F A" : {a— A"} K".

Proof:
1. o Case:
T'H{AA"Y : DoK' K"
TEm(A A" K’
where F = o.
(a) Inductively by Part 3, T+ A’ : K’
(b) and T+ A" : {ars A"}K".
(c) The desired result follows by Rule 32.
e The remaining cases follow by structural rules and reflexivity.
2. o Case:
T'H{AA"Y : DoK' K"
T Fm (A A"y {asm (A, A K
where F = o.
(a) Inductively by Part 3, T+ A’ : K’
(b) and T+ A" : {ars A"}K".
(c) By Rule 33, T+ m(A’, A") : {as A"} K.
(d) Asin Part 1, T+ E[m{A’, A"Y) = E[A"]: K.
(e) So by Lemma B.11 I' + {arsm1 (A", AV K" = {ars A'}K".
(f) Thus by subsumption we have T mo(A’, A") : {arsm (A", A"V}K".
e The remaining cases follow by structural rules and reflexivity.
3. o Case:

I't Sa:K' K"
'k Ay K
I'k Ay {as K'Y K

I'F (A1, As) : Sk K"

Obvious.

o Case:

TFXa:K' K"
Tk m(A A" K
T Fm (A A"y {asm (A, A K
TF (A, A" : Sa:k K"

1

(a) Inductively by Part 1, T F m (A", A"y = A" K.

)
)
(c) By Lemma B.11, T + {a—m (A", A"V} K" = {a—s A"} K.
) Thus by subsumption and Lemma B.1, T+ A’ : K’
)

I'F (A, A" : K,
I'F K, < Sa:K' K"
I'F (A A" Sa: K K"

U

) By inversion, K1 = Ya:K{. K7,
yTH K] <K',

y and T, K| F K < K",

) By the inductive hypothesis, T'+ A’ : K]
(e) and T+ A" : {as A'}KTY'.

15



(f) By Lemma B.4, T+ {a— A"} K| < {a— A'}K".
(g) Then the desired results follow by subsumption.

Corollary 3.6
IfT+rA.KandTHFAy Bthenl'FA=B: K.

Proof: By transitivity and reflexivity of declarative equivalence, it suffices to show that if ' A: KandT'F A~+ B

then I' F A = B : K. But all possibilities for the reduction step are covered by Lemma 3.1, Proposition 3.4, and

Proposition 3.5.

Theorem 3.7 (Soundness)

1.

3.

If+ Fl = Fz, Fl F [\71 = [(2, Fl "Al 11(1, Fz F A2 : [(2, and Fl F A1 11(1 C}Fz F A2 : [\72 then
Fl "Al EAQ 11(1.

If+ Fl = Fz, Fl F [(1, Fz F [(2, and Fl F [\71 <~ Fz F [\72 then Fl F [\71 = [\72

IfFFlEFQ,Fll_plZLl,le_pziLz, andFll—plTKlezl—pzTKz thenFll—Klsz and
Fl '_pl Epzi[(l.

Proof: Parts 1 and 2 follow by simultaneous induction on the algorithmic judgments and by cases on the last step
in the algorithmic derivation. We omit the proof of Part 3, which follows directly by Part 1 and induction.

1.

o Case: ' F A : T & T2 F Ay

(a) By Corollary 3.6, 1 - Ay =p1 : T
(b) and T2 - Ay =p2 : T

) By Corolllary B3 Ty F Ay =po : T

) By Lemma B.1, Ty b p, : T
e) and o Fpo : T

) By the inductive hypothesis, I'y + p; =p2 : T.

(g) By symmetry and transitivity of equivalence therefore, I't F A; = Az : T
Case: I'' F Ay : S(B1) & T2 F Az 1 S(Bo).

(a) By Rule 34, " F A, =B, : T
(b) and T2 - A = B, : T.
) By inversion of Rule 15, 'y + By = B> : 7.
) By symmetry, transitivity, and Corollary B.13, I'1 F A; = A, : T
e) By Rule 35 T'1 F A; = Az : S(A1).

) But I' - S(A;) < S(B1)
(g) so by subsumption I'y F A; = A, : S(By).

Case: I F Ay (Mo K. Ly & T'a b Az [la: K. Ly because I'1,a: K1 F Ao : [ & T, o Ko B Az

(a) Since FTI'y,a: K1 =T, a:Ko>,
(b) Th,a:K1 F Ara: Ly,
) To,a:Ko b Azar: Lo,
(d) and I'y,a: K + Ly = Lo,
) the inductive hypothesis applies, yielding I'y, a: K1 F Aja = Asa: Ly.
) Thus by Rule 30, I't F Ay = Ay : Ila: K. L.
A Yok Ly & T2 F Ay : Yo K. Lo because I't Fmi Ay - Ky © T b m Ay 0 Ko, and
Tk mAr s {a—smAi}a ©To b mAs: {ami A2} Lo

(a) Since I'y F m Ay : K

(b) Ty F mAs : s,

(c) and by inversion I'1 + K = K>,

(d) by the inductive hypothesis we have I'y F 71 A; = m1 A2 @ K.
(e) By Lemma B.11, I'y F {arsm A1 }Ly ={a—~m1 Az} Lo,

16
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(f) Then I'y F m2 Ay : {a—sm AL}y
(g) and I's F w2 Az s {am Az} L.
(h) By the inductive hypothesis, I'y F 72 A1 = 72 Az : {a—m A1 }Ly.
(i) By Corollary B.13 and Rule 31, 'y - A; = As : Ya:K,.L;.
2. o Case: 1 Fb;t T < T2 b+ T.
By Lemma B.1, I'; F ok. Thus by Rule 38, I'y b, =b; : T.
o Case: T FatTi(a) T2 Fatla).
By Lemma B.1 and Rule 39, I'y Fa = a : I'1 ().
o Case: Ty Fp1 A t {as A1 }LY & Ta b pa As + {a— A2} LY because
Dy Fpy t oLy LY & Ta b pe t oL LY and Ty F Ay L) & Ta F As ¢ L.
(a) By Lemma B.17, Ty F p; : a:K{. K7,

(b) Ty F A, : K1,

(c) T2k p2: Mo K5. K3,

(d) and T» F Ay : K3,

(e) By the inductive hypothesis, T'y &+ Ta:L]. LY = Ta:L5. LY.
(f) and Ty F py =p» : Tla: L. LY.

By Lemma 3.1, I'; - S(p1 : Ha:L). LY) < Ta:K{. KY'

g

(h) and T F S(p2 : Ma:L5.LY) < Ta: K. K4

(i) Thus T F K! < L}

(i) and Ty + K} < Lb.

(k) By subsumption then, Ty F A; : L}

(1) and T2 + Ay @ L5.
(m) The induction hypothesis applies, and so I'1 - A; = A, : L.
(n) Thus Ty F p1 A1 = pp Az : {asr Ay LY

(o) and by Lemma B.11, Ty F {a— A1 }LY = {a— A2} LY.
o Case: ' Fmip1t 1 K1 & I'a b mipe T Ko because I'y Fp1 T 2 K. Ly & T b pe 1 2 Ks. Lo
(a) By Lemma B.17 the inductive hypothesis applies,
(b) soT'1 F Xa:K,.L1 = Za:Ks. Lo
(c) and 'y b p1 =po : K. Ly
(d) Thus I'1 b mip1 = mipe : K,
(e) and by inversion, I'1 + K1 = K>.
o Case: 't F mopr Tt {a—>mipi}a & T2 b mepe 1 {ar>m1p2} L2 because
I'ibprt 2K Ly & T b pet Za:Ks. L.
) By Lemma B.17 the inductive hypothesis applies,
) sol'y F Sa:Ki. Ly = Za:Ks. Lo
) and I'y F p1 =po : a:Ki. L.
(d) Thus I'y & mep1 = mope : {a—mip1 }L1.
) W Fmipr = mipe : K
) So by Lemma B.11, I'1 F {arsmip1} L1 = {asmip2}Lle
|

A key aspect of this algorithm is that it can easily be shown to obey symmetry and transitivity properties
necessary for the decidability proof. It is for this purpose that the algorithm maintains two contexts and
two classifiers. (Section 5 shows that this redundancy can be eliminated in an actual implementation.)

Lemma 3.8 (Algorithmic PER Properties)
1. IfATFA Ky Ayb Ayt Ko then AvF Ay Ko & A1 F A Ky

2. IFAMFA Ky Ask Ay Ky and As H Ay - Ky & Az b+ A3 . K3 then
A FA K& As - Az K3,
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3. IfAll_AleleAzl_AzT[{Q theﬂAzl_AzT[(zHAll_AlT[(l.

4. IfAll_AleleAzl_AzT[{Q aHdAzl_AzT[(zHAgl_Ag,T[(g then
All_AleleAgl_AgT[\rg

5 A FKi < Aok Ky then Ao Ko & A F K.
6. fATFKi < AsF Ky and Aok Ky & Azk K3 then A1 F K1 & Az F Ks.

Proof Sketch: By induction on execution of the algorithm.

4 Completeness and Termination

To show the completeness and termination for the algorithm we define a collection of Kripke-style logical
relations, shown in Figures 5, 6, and 7. The strategy for proving completeness of the algorithm is to define the
logical relations, show that logically-related constructors are related by the algorithm, and finally show that
provably-equivalent constructors are logically related. Using completeness we can then show the algorithm
terminates for all well-formed inputs.

We use the notation A to denote a Kripke world. Worlds are restricted to contexts containing no duplicate
bound variables; the partial order < on worlds is simply the prefix ordering.

The logical kind validity relation (A; K) valid is indexed by the world A and is well-defined by induction
on the size of kinds. Similarly, the logical constructor validity relation (A; A; K) valid is indexed by a A
and defined by induction on the size of K| which must itself be logically valid.

In addition to validity relations, we have logically-defined binary equivalence relations between (logically
valid) types and terms. The unusual part of these relations is that rather than being a binary relation indexed
by a world, they are relations between two kinds or constructors which have been determined to be logically
valid under potentially different worlds. Thus the form of the equivalence of kinds is (A1; K1) is (Ag; K2)
and the form of the equivalence on constructors is (Aq; Ay; K1) is (Ag; Ag; Ko). With this modification,
the logical relations are otherwise defined in a reasonably familiar manner. At the base and singleton kinds
we impose the algorithmic equivalence as the definition of the logical relation. At higher kinds we use a
Kripke-style logical relations interpretation of IT and 3.

With these definitions in hand we construct some derived relations. The relation (A3 Ky < Lp) is
(Ag; Ko < L) is defined to satisfy the following “subsumption-like” behavior:

(A A Ky ds (Ag; Ao Ko)
(A Ky < Ly) dis (Ag; Ky < Lo)
(A5 A5 Ly) is (Ag; Ag; Lo)

Finally, we have validity and equivalence relations on environments (substitutions mapping variables to
constructors) which are defined by pointwise validity and pointwise equivalence.

We first give some basic properties of the algorithm and logical relations.

Lemma 4.1 (Weakening)
1. T, T” F A~ B and dom(I”) Ndom(T', ") = @ then [', T, T" + A~ B

2. IfT, 17"+ A} p and dom(I") Ndom(T', T”) = § then T, T', T F A | p.
3. IfT, T+ A1 K and dom(I”) Ndom(T', ") = §§ then T', I, T" + At K.
4

DT, TR Ay f Ky & T, T4 F Ay 0 Ky, dom(T')) Ndom(Ty, ') = 6, and dom(T'%) Ndom(T's, T%) = 0
then Fl,F’l,F’l’ FA K& FQ,F’z,F’z’ F Ay K.

5. IfT,TYF ALt Ky < To, T4 F Ay 1 Ko, dom(T}) Ndom(T'1, TY) = 0, and dom(T'5) Ndom(T'2, T5) =0
then Fl,F’l,F’l’ F A1 T [\71 — FQ,F’Z,F’Z’ F A2 T [\72
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o (Ay; Ky)valid iff
1. - K1 =T
— Or, K1 = S(A1) and (Ay; Ay; T) valid
— Or, K; = Tla:K1.K{" and (Aq; K{) valid and YA] = Ay, AY = Ay if (Al Ay K1) s (A Az K1)
then (A}; {a—A1}K7) is (AY;{a—A2}KT)
— Or, Ki = Za:K{.K{ and (Aq; K1) valid and VAL = A, A = Ay if (A]; A K7) s (A7 A K7)
then (A}; {a—A1}K7) is (AY;{a—A2}KT)
[ (Al;l(l) is (AQ;I(Q) if
1. (Ay; Ky) valid and (Ag; K7) valid.
2. And,
— Ki=Tand K, =T
— Or, K1 = 5(A1) and K> = S(Az) and (A1; A T) is (Az; Ag;T)
— Or, Ki = Tla: K. K{" and K3 = Tla: K3 . K3 and (A1; K1) is (Ag; K3) and VAL = Aq, Ay = Ay if
(AL A K1) is (AL; A2; K3) then (Al {a— A1 }KY) is (AL {a— A2 }KY)
— Or, ki =Za:K{.K{ and K> = Sa: K. K and (Aq; K1) is (A2; K3) and VAL = Ay, AL = Ay if
(AL A K1) is (AL; A2; K3) then (Al {a— A1 }KY) is (AL {a— A2 }KY)
[ (Al;l(l < Ll) is (AQ;I(Q < L2) if
L VAL = A ALz Ag i (AL Ay Ky T (Al Ag; K) then (A% Ay L) s (Ab; As; La).

Figure 5: Logical Relations on Kinds

o (A; A; Ky) valid iff
1. (A; Kp)valid
2. And,
—Ki=Tand A+ A: TS AFA:T.
— Or, K1 = S(B) and (A; A;T) is (A; B T).
- Or, K; = Na:K.L, and VA" = AA" = A if (A;B;K) is (A”;B";K) then
(A AB'; {a—B'}L) is (A"; AB";{a—B"}L).
— Or, K1 = Xa:K.L, (A;mA; K)valid and (A; mA; {av—sm A} L) valid
o (Ay; A1 Ky) is (Ag; Ag; Ko) iff
1. (Aq; Kq) is (Ag; Ka)
2. And, (A1; Ay; Ky) valid and (Ag; Ag; Ko) valid
3. And,
-~ Ki=Ky=Tand AjFA : T A F Ay T
— Or, K1 = S(B1), Ko = S(Ba), and (Ay; A1 T) is (Ag; Agy T
— Or, K1 = Ma: K. Ky, Ko = Mo K. KY ) and YA] = Ay, AL = Ay if
(AL; Bi; K1) is (AY; By; K5) then (Af; AuBy; {a—=Bi}KY) is (Ah; A2 Ba; {a— By} KY).
— Or, K1 = XK. K, Ko = S K4 KY, (Ar;m A Ky) is (Ag;mpAg; Kb) and
(Ar;maAr; {am AL FKY) is (Ag; mada; {a—sm Aa L KY)

Figure 6: Logical Relations on Constructors
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o (A;5;T)valid iff
1. Va € dom(T). (A;ya;v(T'(a))) valid.
o (Ap;y13T) is (Agyrya; To) iff
1. (Aq;v1; 1) valid and (As;y2; T'2) valid
2. And, Yo € dom(Ty) = dom(L's). (Ar;y10;571(T1a)) is (Ao yaas72(T20)).

Figure 7: Logical Relations on Substitutions

6. IfT1,T{ F Ky © 9,4+ Ky, dom(['}) Ndom(T'y,TY) = §, and dom(Ty) Ndom(T's, T'5) = § then
Dy, T T b Ky e Ty, T T F K.

Lemma 4.2 (Monotonicity)
1. If (Aq; Kyp) valid and A} = Ay then (A]; K,) valid.

2. If (A1; Ky) is (Ag; Ka), A = Ay, and A, = Ay then (A]; K7) is (AL; Ka).

3. If (Aq; L) is (Ag; Ky < Lo), Al = Ay, and AL = Ay then (Al; Ky < Ly) is (AL Ko < La).
4. If (Ay; Ay Ky) is (Ag; Ay Ka), Al = Ay, and Al = Ay then (A]; A Ky) 1s (AL; As; Ka).

5. If (Ag; Ay K1) valid and A = A, then (A]; Ar; K)) valid.

6. If (Ar;y1;01) is (A2;72;00), Al = Aq, and Ay = Ay then (Af;y1;T1) s (AL 925 1)

We next give a technical lemma which shows that logical equivalence of kinds is enough to get logical

subkinding.

Lemma 4.3
If (Aq; Ly) 1s (Ag; Lo), (A1 Ky) is (Aq; L), and (Ag; Kg) is (Ag; La) then
(A, Ky < Lq) is (Ag; Ka < La).
Proof: Assume (A1;L1) is (Az;L2), (A1; K1) is (A1 L), and (A2; K2) is (Ao; Lo).
Let (AL, A}) > (A1, Az) and assume (A]; Ar; K1) is (AL; Az; K32). Then (AL K4) is (AL; K3).
o Case K1 =Ko =11 =Lo=T. (A};A1;T) is (A%; A»; T) by assumption.
o Case K1 = S(B1), Kz = S(B2), L1 = S(C1), and L, = 5(Ch).
By monotonicity, A| - B : T & A +-C, : T
and AL By : T & ALFCy: T
Similarly, A1 F A : T & Al F By : T,
AbFAy:T & ALF By : T, and
and ATFA T ALE A T.
Thus by Lemma 3.8, Al A : T & A FC: T
and AL AT & ALHCy T
Therefore (A7; A1;.5(Ch)) valid,
(A%; Az; S(Ch)) valid,
and (A7; A1;S(Ch)) is (A% Az; S(C2)).
o Case: Ky =lla:K|. K|, Ky =lla: K} K, Ly =a:Ly. LY, and Ly = Ila:L5. LY.
1. Let (AY, AY) = (A}, A}) and assume (AY; Bi; L1) is (AY; Ba; Lb).
2. By monotonicity, (A; K1) is (A%; K3),
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3. (A5 L) is (A% Ls),

4. (AY; K1) is (AY; L), and

5. (ALK i (AL Lb).

6. By the inductive hypothesis, (AY; L] < K1) is (AS; L5 < K3), (AY; L1 < K1) is (AY;L1 < L), and
(A% Ly < K3) is (A3 Ly < L),

7. Thus (AY; B1; K1) is (AY; Ba; K3).

8. Since (AY; Bi;LY) is (AY; Bi; L1) and (A% Ba; Ly) is (AY; Ba; L),
9. we have (A{; B1; K1) is (AY; B1; L1),
10. and (A3 B2; K3) is (AY; Ba; Lb).
11. So, (AY; A1 Bi;{a—B1}K1') is (AY; A2 Ba;{a— B2} K7Y'),
12. (Af;{a—=B1}KY) is (AY;{a—B1}LY),
13. (AY;{a—=B1}LY) is (AY;{a—B2}LY),
14. and (AF; {a—B2}KY) is (AY;{a—B2}LY).
15. By the inductive hypothesis, (AY; {a—B1} K7 < {a—=Bi1}LY) is (AY;{a— B2} Ky < {a—B>}LY).
16. Thus (AY; Ay Br;{a—Bi}LY) is (AY; A2 Bo;{as B2 }LY).
17. Therefore (AL; Ay Ta:Li. LYY is (A%; Ax; Tla: Ly LY.
o Case: K| = Ya:K|. K|, Ko =Xa:K5. K}, L1 =Ya:L1.L{, and Ly = Ya:L5. LY.

1. (AL m A K1) s (AL m Az KG).

2. Also, (A]; K1) is (A%; K3),

3. (AL LY) is (A% L),

4. (ALK s (A Ly,

5. and (AY; K3) is (AL; LY).

6. By the inductive hypothesis, (A}; K3 < L1) is (A4 K3 < L),
7. so (Al;m Ay L) is (AL m Ag; LY).

8. By similar considerations, (A]; {a—m A1 }K]") is (Al {asm A1 }LY),
9. (AL {a—m A2} KY) is (AL {a—m A2 }LY),

10. and (A} {a—sm A }LY) is (AL {arsm A2}LY).

11. By the inductive hypothesis,

(AL {asm AKY < {a—sm ALY is (A {asm A YK < {a—sm A2 }LY).
12. Since (Al;mAr; {a—sm A1 }KY) is (AL w2 An; {a—m A2} KT,
13. we have (A};mAr;{asm A1 }LY) is (A maAr; {ami A2 }LY).
14. Therefore (AL; A1; Za:Li L)) is (A}; Az; Ta: Ly LY).

An easy corollary of this lemma may be visualized as the following rule:

(A A Ky is (A A Ko)
(Al,ffl) IS (Az,[&rz)
1s 1s

(Al;Ll) iS (AQ,LQ)
(A A Ly) is (Ag; As; Lo)

The logical relations obey reflexivity, symmetry, and transitivity properties. The logical relations were
carefully defined so that the following property holds:

Lemma 4.4 (Reflexivity)
1. (A; K)valid if and only if (A;K) is (A; K).
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2. (A; A; K) valid if and only if (A; A; K) 1s (A A; K).
3. (A;v;T)valid if and only if (A;y;T) is (A;v;T).

Proof: The “if” direction is immediate from the definitions of the logical relations, so we only show the “only if”
direction.

1. By induction on the size of K. Assume (A; K) valid.

o Case: K =T. Follows by definition of (A;T) is (A;T).
o Case: K = 5(B).
(a) (A;B;T)valid.
(b) AFB:T & AFB:T.
(¢) Then (A; B;T) valid
(d) and (A;B;T) is (A; B;T).
(e) Therefore (A;S(B)) is (A;S(B)).
o Case: K =Tla:K'.K".
(a) By (A;TTa:K'.K") valid we have (A; K') valid.
(b) By the inductive hypothesis, (A; K') is (A; K').
(c) Let (A", A") = (A,A)
(d) and assume (A'; A; K') is (A"; A K').
(e) By (A;Tla:K'. K"} valid we have (A'; {a— A1} K") is (A";{a— A2} K").
(f) Therefore (A;Tla: K. K"y is (A;Tla: K. K").
o Case: K =Xa:K' K",

Same proof as for II case.

2. By induction on the size of A. Assume (A; A; K) valid. Then (A; K) valid so that by Part 1,
(A K) is (A K.
o Case: K =1T.
(a) (A;A;T)valid implies AFA: T & AFA:T.
(b) Therefore, (A; A;T) is (A; A;T).
o Case: K = 5(B).
(a) (A;A;S(B))valid implies AFA: T & AFB:T.
(b) By Lemma 3.8, AFA: T & A+ A:T,
(c) so (A; A;T)valid
(d) and (A; A;T) is (A; A;T).
(e) Therefore (A; A; S(B)) is (A; A; S(B)).
o Case: K =Ila:K'.K".
(a) Let (A", A") = (A, A)
(b) and assume (A'; B1; K') is (A”; Ba; K').
(c) Then (A’; AB1;{a—B1}K") is (A"; ABa; {a— B2} K").
(d) Therefore (A; A; Tl K K" is (A; A;TTa: K. K").
o Case: K =Xa:K' K",
) Then (A;m A; K') valid
) and (A;m A; {asm AYK') valid.
c) By the inductive hypothesis, (A;m A; K') is (A;mA; K')
) and (A;mA; {asm AYK") is (A;m A {a—sm AYK").
) Therefore (A; A; S K. K") is (A; A; S KK").

3. (a) Assume (A;v;I') valid.
(b) Let x € dom(I") be given.
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(c) Then (A;~w;y(I'z)) valid.
(d) By Lemma 4.4, (A;yz;v(Tz)) is (A;vz;v(Tx)).
(e) Therefore (A;~;T') is (A;~;T).
|

Symmetry is straightforward and exactly analogous to the symmetry properties of the algorithmic rela-
tions.

Lemma 4.5 (Symmetry)
1. If(Al,[{l) 1s (Az,[&rz) then (Az,[&rz) 1s (Al,ffl)

2. If(Al,Al,[{l) 1s (AZ,AZ,[{Q) then (AZ,AQ,I{Q) 1s (Al,Al,[{l)

3. I (AvsyisTh) is (Agsye; o) then (Ag;y2; Do) ds (Ag;yi;Ty).
Proof:
1. Assume (Ay; K1) is (Agz; K2). Then (Ar; Ky ) valid and (Az; K32) valid.
o Case: K4 = Ko =T Trivial.
o Case: [(1 = S(Al), [(2 = S(AQ)
(a) (A1;ALT) is (Ag; Ay T).
(b) Inductively by Part 2, (Az; A2;T) is (A1; A T).
(c) Therefore (Az; S(Az)) is (A1;S(A1)).
o Case: K| =Ila:K|.K{ and K, = la:K5. K.
(a) (Al;[({) is (AQ;[{é) by (Al;l(l) is (AQ; [(2).
(b) By induction, (Az; K3) is (Aq; K7).
(c) Let (A}, Al) = (A2, A1) and assume (AY; Az; K3) is (AL; A1 K7).
(d) Inductively by Part 2, (Al; A1; K1) is (AL; As; K3).
(e) By (A1; K1) is (Aq; K>) again, (Al;{a—A1}KT) is (AL {a—A2}KY)
(f) By the inductive hypothesis again, (A}; {a—A2}K7Y) is (A} {a—A41}KT).
(g) Therefore, (Az; Tl K3. K3 is (Aq;Ta:K{.KY').
o Case: K; = Xa:K|.K{| and Ky = Za:K%.K}. Same proof as for II types.
2. Assume (Ay; Ar; K1) is (Az; Az; K3). Then (A Ky) is (Az; K2), (Ar; Ay Ky) valid, and
(AQ; AQ; [(2) valid.
By Part 1, (Ag; K2) is (A Ky).
o Case K1 =Ko =T.
(a) A FA K1 & A E A K
(b) By Lemma 3.8, Ao - Az : Ko & Ay F Ay 2 K.
(¢) Therefore (Ag; A2;T) is (Ar; A T).
o Case K1 = S(B1) and K> = S(B2).
(a) (A1;ALT) is (Ag; Ay T).
(b) By the inductive hypothesis, (Az; A2;T) is (Aq; A T).
(c) Therefore (Az; A2; S(B1)) is (A1 Ar; S(B2)).
o Case K| =lla:K|.K{ and K, = Ila:K}. K.
(a) Let (A%, A]) = (A2, Ay)
(b) and assume (Aj; By; K3) is (AL; Bi; K1).
By the inductive hypothesis, (A1; Bi; K1) is (A%; B2; K3).
Thus (A}; A1 Br; {a—=B1}KY') is (A%; A2 Ba; {a— B2 }KY).
By the inductive hypothesis, (A}; Az Bo;{ars B2} K2 is (Al; A1 By {a—B1}KY).
Therefore (Az; Az; T K3 . K3 is (A Ar; T K. K1),
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Case K1 = Ya:K|.K{ and K> = Sa: K5 K.

Assume (Ar;71;11) is (A2;72;T2). Then (Ar;v1;T1) valid and (Ag; y2; I'z) valid.

(a)
b)
)
)

S~

C

d
(©)

€

Then (Ar;m A Kp) is (Az;m Az K3)

and (Ar;maAr;{asm A1 KL is (Ag;ma Ao {asm A2 YY),
By the inductive hypothesis, (Az; 71 A2; K3) is (A1 714 K7)
and (Az;maAn;{asm A2} KY) is (Ar;maAv; {asm A KT,
Therefore (Az; Ar; T K5.K3') is (A A Sa: K1 KY).

Let z € dom(I'2) be given.

Then z € dom(T'y).

Then (Ar;via;v1(Tha)) is (Ag;vea;v2(T2a)).

By Part 2, (Ag;vea;v2(l2a)) is (A via;vi(Dha)).
Therefore (Az;v2;2) is (Ar;y1;T1).

In contrast, the logical relation cannot be easily shown to obey the same transitivity property as the
algorithm; it does hold at the base kind but does not lift to function kinds. We therefore prove a slightly
weaker property, which is nevertheless what we need for the remainder of the proof. The key difference is
that the transitivity property for the algorithm involves three contexts/worlds whereas the following lemma
only involves two.

Lemma 4.6 (Transitivity)
1. If (Ay; K1) is (Ay; L) and (Ay; L) is (Ag; Kg) then (Aq; Ky) is (A Ko).

2. If (A1; Ay Ky) is (Aq; By L) and (A By Ly) s (Ag; A Ka) then (Aq; Ar; Kq) s (Ag; As; Ka).

Proof:

1. Assume (Ay; K1) is (Ar;L1) and (Aq; Ly) is (Ag; K2). First, (Ay; K1) valid and (Ag; K3) valid.

Case: K1=Li1=K>,=1T.

(A;T) is (Ag;T) always.

Case: Ky = S(A1), Ly = S(By1), and K, = S(A2).

(a) Then Ay F A T © A FB T

(b) and A1 F By : T & Ap - Az i T

(¢) By Lemma 3.8, A1 F A : T & Ax Ay : T

(d) Therefore (A1;S(A1)) is (A2; S(A2)).

Case: Ky =Ila:K{.K{', Ly =la:L].L{, and K> = la:K}. K.
(a) (A1; K1) is (A1;L1) and (Aq; L) is (Az; K3).

(b)
(c)
(d

(

(e
(

(
(h

f
g

—
—

J

—

(k

1

—~

m

(

n

)
)
)
)
)

)
)
)
)
)
)

By induction, (Aq; K1) is (Aqz; K3).

Let (A1, A4) = (A1, Ag)

and assume (A7; Ar; K1) is (AS; Az K3).

By Lemma 4.4, (A1; K1) is (Ar; K7).

By monotonicity and Lemma 4.3, (A}; K] < K1) is (A}; K{ < LY).
Since (A1; Ar; K1) is (Al; A K7),

we have (Al; Ar; K1) is (AL; Ar; LY.

Thus (Al;{a— A1 }KT) is (Ar;{a— A1 }LY).
Similarly, (A}; K1 < 1Y) is (AL K5 < K3).

Then (Af; A1y L) is (A3; As; K3).

So, (AL {a—A LYY is (AL {a— A2 KY).

By induction, (Ay;{a—A1}K7) is (Az;{a— A2} KY).
Therefore (Ar; Ta:K1. K1) is (Az;Ta:K5.K3).
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o Case: K| = Ya:K{.K{, Li =Ya:L{. LY, and K> = Ya:K}. K}
Same proof as for II types.
2. Assume (Ay; A1 K1) is (A1 By Ly) and (A By L) is (Agz; Az; K2). Then (Aq; Ay Kyp) valid,
(Ag; Ag; Ko) valid, (Ar; K1) is (Ag;Ly), and (Ay; Ly) is (Ag; K2). By Part 1, (Ay; K1) is (Agz; K2).
o Case: i =11 =K, =T.
(a) M FA TS A FB T
(b) and Ay By : T & Ap - Ay i T
(¢) By Lemma 3.8, A1 F A : T & Ax Ay : T
(d) Therefore (A1; Ay;T) is (Ag; Ay T).
o Case: K1 = S(A}), L = S(B1), and K> = S(Aj).
(a) (A3 AT is (A By T)
(b) and (Ay; By;T) is (Ag; Ay T).
(c) By the inductive hypothesis, (A1; A7) is (Az; A T).
(d) Therefore (Ar; A1; S(AL)) is (Ax; Az; S(AS)).
o Case: K| =lla:K|.K{, L1 =la:L].LY, and Ky = lla: K. K5
(a) Let (A}, A2) = (Ar, Az)

(b) and assume (A5; Aj; K1) is (A%; A% K3).
(c) Then by monotonicity (A1; K1) is (Al;L1) and (A; L) is (A%; K3).
(d) By Lemma 4.3, (A]; K{ < K1) is (A5; K{ < LY).

)
)
)
)
(e) By Part 2, (A5 A} K7) is (A} A K),
(f) so (A1 AL KY) is (Al Ay LY).
) Thus (A]; A1 AL {as ALY is (AL BiAL; {as ALYLY).
) Similarly, (A}; K1 < 1Y) is (AL K) < K3),
) so (A% AL L) I (Al Ab; D).
) Thus, (A; B1 Ay {a— ALY is (A% Ax A {a—s ASTKY).
) By the inductive hypothesis, (A1; A1 Al; {ar—>A1}KT') is (A% As A {a— AL }KY).
(1) Therefore, (Ar; Ar;Tla: K1 K7') is (Az; Az Tla: K5 K3).
o Case: K1 =Xa:K|.K{, L1 =Xa:L|.LY, and K7 = Sa:K}. K.
(a) (Ar;mAKY) is (A m By LY)
(b) and (Ar;m Bi;LY) is (Az;mi Az K3}).

(c) By the inductive hypothesis, (A1;m1A1; K1) is (Az;m1A2; K3).

(d) Similarly, (Ar;mAr; {a—sm A1 }KY) is (Av; 72 Br; {a—sm Bi}LY)

(e) and (Ar;mBi;{a—sm Bi}LY) is (Ax;mAs; {a—sm A2 }KY).

(f) By the inductive hypothesis, (A1; 7 Ar; {a—sm A1 }KT) is (Ax; w0 As; {a—m A2} K.
)

Therefore, (A1; Ar; Za: K1 K1) is (Az; Ax; Sa K. KY).
|

Because of this restricted formulation, we cannot use symmetry and transitivity to derive properties such
as “if (A1; K1) is (Ag; Ko) then (Aq; K7) is (Ap; K1)”. An important purpose of the validity predicates is
to make sure that this property does in fact hold (by building it into the definition of the equivalence logical
relations).

Next we show that logical relations are closed under head expansion and reduction. Define I' - Ay ~ A,
to mean that A; and A; have a common weak head reduct. The following lemma then follows by induction
on the size of kinds.

Lemma 4.7 (Weak Head Closure)
1. IfT - A~ B then T F E[A] ~ E[B]

2. IfT A1 ~ A2 then I' b E[Al] ~ E[Az]

25



3. If (A; A; K)valid A+ A' ~ A, then (A; A'; K) valid.

4. If(Al,Al,[{l) 1s (AQ;AQ;[(Z), Al F All ~ Al, and Az F A/2 ~ A2 then (Al,All,[{l) 1s (AZ,A&,[\’Q)
Proof:

1. Obvious by definition of ' F A ~+ B.

2. By repeated application of Part 1.
3. By induction on the size of K. Assume (A; A; K)valid and A - A’ ~ A. Note that (A; K) valid.

o Case: K =1T.

(a) AFA: TS AFA:T.
(b) By the definition of the algorithm and determinacy of weak head reduction,
AFA T AFA:T.
(c) Therefore (A; A’; T) valid.
o Case: K = S(B)
(a) Then A A: TS AFB:T

(b) so by the definition of the algorithm and determinacy of weak head reduction
AFA T ARB:T

c) which yields (A; A; vali
(c) which yields (A; A’; S(B)) valid
o Case: K =Tla:K'.K".
(a) Let (A", A") = (A, A)
(b) and assume that (A'; By; K') is (A"; Bo; K').
(c) Then (A’; AB1;{a—B1}K") is (A"; ABa; {a—B2}K"),
(d) By Part 2 and an obvious context weakening property, A’ - AB; ~ A'B;
(e) and A" + AB, ~ A'Bs.
(f) By the inductive hypothesis, (A’; A'By;{arBi1}K") is (A"; A'By; {a—B2}K").
(g) Therefore, (A; A Tla: K'.K"') valid.

o Case: K =Xa:K' K",
(a) Then (A;m A; K') valid
and by Part 2, A Fm A ~m A,
By the inductive hypothesis, (Ag;m Al; K1) valid.
and inductively by Part 4, (A;m A; K') is (A;m A" K').
Similarly, (A1;mA; {a—sm AYK") valid,

(b)
(c)
(d)
)
) and A F m A’ ~ mA,
)
)
)

(e
(f
so by the inductive hypothesis again, (A;m A'; {arsm AYK'') valid.
But (A; {a—m AYK") is (A;{a—m A'}K"),
(i) so by Reflexivity and Lemma 4.3,

(A;{a—m AYK" < {am A'YK") is (Aj{a—m AYK" < {am A'YK").
(j) so by Reflexivity (A;mA’;{arsm A'}K") valid.
(k) Therefore, (A; A'; Za: K' . K") valid.

4. By induction on the size of K.
Assume (Ar; A1; Ki) is (Az; A2 Ko), Ay = A ~ Ay, and Ay F A5 ~ A,. First, note that (Aq; Aq; K1) valid,
(A2; Az; Kp) valid, and (Aq; K1) is (A2; K2). By the argument in Part 3, (Aq; A; K1) valid and
(Az; AY; K>») valid.
o Case: K1 =Ko=T.
(a) A FA TS Ak AT
(b) By the definition of the algorithm, Ay - A} : T & Ax F A : T.
(c) Therefore (A1; Ay;T) is (Az; Ay T).
o Case: K = S(By) and K> = S(B2).

26



—

a) Then Ay F A T & Ak A T
b) so A1 F A T & Ak Ay T
c) which yields (A1; A1; S(B1)) is (Az; A%; S(B2)).
ase: K1 = lla:K{.K{ and K, = lla:K5. K5 .
) Let (A}, AD) = (A1, As)
) and assume that (A]; Bi; K1) is (AL; Ba; K3).
) Then (A}; A1 Bi;{awB1}K7) is (AL; AsBo; {a B2 Y KY'),
d) By Part 2 and an obvious weakening property, A} - A1 B1 ~ A} By
)
)
)
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o

b

—~

C
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and A, F Ay By ~ ALB,.

By the inductive hypothesis (A}; A} B1; {a—B1}K7') is (A}; AL Ba; {a— B2 }KY).
Therefore, (Ar; Ay; oK. KY') is (Aq; Ay o K5 K3).

ase: K1 = oK. K{ and K> = Sa: K. K.

Then (Ar;mi A Ky) is (Az; w1 Az Kb),

(Ar;m A K1) s (A m A K7,

(A2 m Az K3) s (Az;mi Az K3),

and by Part 2, Aj F 71 A} ~ m Ay,

and Ay F 7 AL ~ m As.

By the inductive hypothesis, (A1; 71 A K1) is (A w1 AL; Kb),

(Ar;m A K1) s (A m AL K,

and (Az;m1Ar; K3) is (Ag;mAS; K3).

Similarly, (A1;mAr; {a—rm A1 KL is (Az; ma Ao {asm A2 YY),

Aj b Al 2 m Ay,

and As F m AL ~ m As.

By the inductive hypothesis again, (Aq; 72 AL; {asm A1 }KY) is (Az; maAd; {arsm A2 JKY').
But (Ay; K1) is (Ar; K1) and (Ag; K32) is (Ag; Kb),

so (Aq;{a—m AL }KY) is (A {a—>m ALFKY),

(Az;{arsm A2} KY) is (Az;{a—m A }KY),

and (Ar; {a—=m ALK is (Az;{asm ALY,

By Lemma 4.3, (Ar;{a—m A1 K < {a—sm ALK is (A {asm A K < {a—sm AL LKD),
so (Ar;m Al {amsm ALK is (Ag;m Al {asm AL YTKY).

Therefore, (A1; Aj; S K1 K7') is (A2 Ay Sa K. KY).
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Following all this preliminary work, we can now show by induction on the size of kinds that equivalence
under the logical relations implies equivalence under the algorithm. This requires a stronger induction
hypothesis: that under suitable conditions variables (and more generally paths) are logically valid or logically
related.

Lemma 4.8 (Main Lemma)

1. If (Ay; K1) is (Ag; K3) then Ay F Ky < As F K.

2. If (A1 Ay Ky) is (Ag; Ao Ka) then Ay F Ayt Ky & Ag b As Ko,

3. If (A;K)valid, AFpt K & AFpt K, then (A;p; K) valid.

4. If (A3 Kq) is (Ag; Kao) and Ay b p1 T Ky & As b pat Ky then (Aq;p1; Kq) is (Ag;pa; Ka).

Proof: By induction on the size of the kinds involved.

For Part 4, note that in all cases A1 Fp1 + K1 & A1 Fpr T K and Az Fpe t K2 & Az F p2 T K2 by symmetry
and transitivity of the algorithm, (Ay; /1) valid, and (Ag; K2) valid. Hence by Part 3, (A1;p1; K1) valid and
(AQ;pQ; [(2) valid.
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o Case: K =K1 =Ko =T.
1. Ay T & Ay T by the definition of the algorithm.
2. Assume (A1; A1) is (Ag; A T).
By the definition of this relation, A1 F Ay : T Ax F Ay T
Assume (A;T) valid and
AbptT o AFptT.
By Lemma 3.3, AFptT.
Then A+ pl p.
SO AFp: T AbFp:T.
Therefore (A; p; T) valid.
Assume A1 Fp1 1T & Aok p tT
and (A;T) is (A T).
By Lemma 3.3, A1 Fp1 t T and Az Fpo T T
Thus A1 F p1 U p1 and Az F p2 | p2.
so A bFpr T & Asbpa:T.
Therefore (Ar;p1;T) is (Az;p2; T).

o Case: K = S(B), K1 = 5(B1), and K, = S(B2).

bl
a2aTe T

—

iy
O n T ¢}
ol ool 2sE o s

—_—
= 0

) Assume (A; K1) is (Az; K2).
) Then by definition (Ay; By;T) is (Az; Be; 1),
)soArF BT & Ak By : T
) Therefore, Ay F S(B1) & Az F S(Bs).
) By definition, Ay F Ay : S(B1) & Az F Ay : S(B2) always.
) Assume (A; S(B)) valid,
) and AFpt S(B) < Akpt S(B).
) By Lemma 3.3, A+ pt S(B).
) Then AFp~ Bso AFp~ B.
e) By (A;S(B))valid, AFB: T AFB:T.
) By the definition of the algorithm, AFp: T & A+ B:1T.
) Therefore (A;p; S(B)) valid.
) Assume (A1;5(B1)) is (Az; S(B2)),
) and Ay Fp; 1 5(B1) & Az b pe T S(By).
) By definition of the logical relations, A1 - By : T & Ax F By : T
) By Lemma 3.3, Ay p; 1 5(B1) and Az F p2 T S(B2).
) That is, Ay F p1 ~ By and Ap b+ py ~ B
) Hence A1 bFpy T & Ak py: T
) Therefore (A1;p1;S(B1)) is (Az;p2; S(B1)).

o Case: K =Ila:K' K", Ky = lla:K{. K], and K5 = [la: K. K.

=
—
o

Assume (Ar;Ta:K1.K{') is (Ag;Tla: K5 K3).

Then (Ar; K1) is (A2; K3).

By the inductive hypothesis we have Ay - K{ & As - KJ.
Now A, a: K| Fat K| & Ao, KL Fat KJ.

Inductively by Part 4, (A1, a:K{;0; K1) is (A2, a: K55 a; K3).
Thus (A1, a:K71; K{') is (A2, 0:K3; K3)

By the inductive hypothesis, A, a:K| F K| & As,a: K5 F K3
Therefore A F [la:K{.K{ & A Ila: K5 K5

Assume (Ar; A1 T K1KT'Y is (Ag; Aoy Tl K3 . KY).

Then (Ar;TTa:K7.KY') is (Ax; Tl K3 . KY)

—
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so as above, inductively by Part 4 we have (A1, a:K1;a; K1) is (A2, a: Kb a; K3).
Then (A, 0:K1; A1 K1) is (A2, a: K5 Azar; KY').

By the inductive hypothesis again, A, 0: K] F Aja: K{' & Az, a: K5 F Asa 0 K.
Therefore Ay F Ay : Tla: K. K] & As F Ay : Il K| . K.

Assume (A; K) valid

and AFpt K< AFpt K.

Let (A", A") = (A, A)

and assume (A’; B'; K') is (A"; B"; K').

Inductively by Part 2, A'F B : K' & A"+ B" : K'.

Thus using Weakening, A’ + pB' t {a—~B'} K" <+ A" + pB" 4 {a—~B"} K".

By (A; K)valid, (A" {a—B"}K") is (A";{arsB"}K").

Inductively by Part 4, (A'; pB’; {a—B'}K") is (A”;pB"; {a—B"}K").
Therefore (A; p; oK' . K") valid.

Assume (A1 Ta:K1.K{') is (Ag;Tla:K5.K5),

and Ay Fp1 T Ha:K{.K{' & A b po + o K5 K5

Let (A7, A5) > (A1, Az) and assume that (A7; Bi; K1) is (A%; Ba; K3).

Then (A; {a—Bi}KY) is (AL {a— B2 }KY).

Inductively by Part 2, Al F By : K{ & AL+ By : KJ,

and by Weakening, Aj F p1 T oK. K < AL+ p2 t o K5 KY,

so we have Al F p1B1 t {a—B1}K{ & AL+ p2Bo t {as B} K.

By the inductive hypothesis, (A{;p1B1;{ar—Bi1}K{') is (AL;p2 Ba; {ar B2} K}).
Therefore (Ar;pr1; oK1 .K7') is (Az;po; o K5 . KY).

o Case: K =Y K' K" K| =You:K|.K{ and Ky = Ya: K} K.

1. The corresponding argument for the II case also applies here.

2.
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Assume (A1; Ay S K1 K'Y is (Ag; Az Do K5 . KY).

Then (Ar;mi A Ky) is (Az; w1 Az K3).

and (Ar;maAr;{asm A1 KL is (Ag;ma Ao {asm A2 YY),
By the inductive hypothesis, A; F m1A; : K] & As - mAs : K
and Ay F m A {asmi ALK & As b mAs  {asm A K.
Therefore Ay F A : Yo K. K] & As - Ay - S K5 K.
Assume (A; K) valid,

and AFpt K< AFpt K.

By definition of the algorithm, A+ mipt K' & Ak mpt K’
and A F mp t {a—=mp} K" < A+ mpt {a—mp} K.

By the induction hypothesis, (A;mp; K') valid.

By Lemma 4.4, (A;mip; K') is (A;mip; K').

By (A; K)valid, (A;{a—mp}K") is (A;{a—mip}K").

Thus (A; {a—mip}K'") valid.

By the induction hypothesis again, (A; mop; {arsmip}K") valid.
Therefore, (A; p; Sa:K'. K') valid.

Assume (A1; Za:K1.KY') is (Az; Do K5 . KY),

and Ay Fp1 P X K{LK{ & Az b po t o K3 K.

Then Ay Fmipy T K] & As b mipe T K4

and Ay F mapr T {a—mip1 JKT < As b mapy T {asmip YK
The inductive hypothesis applies, yielding (A1;mip1; K1) is (Aq;mip2; K3)
and (Ar; mapr; {a—rmipr JKT) is (Az; mape; {asmipe K.
Therefore (A1;p1; Sa:K1. K1) is (Az;p2; Do K5 K3).
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Finally we come to the Fundamental Theorem of Logical Relations, which relates provable equivalence
of two constructors to the logical relations The statement of the theorem is strengthened to involve related
substitutions of constructors for variables within constructors and kinds.

Theorem 4.9 (Fundamental Theorem)
1. IfT F K and (Ay;y1;T) is (Ag;y2;T) then (Ay;y K) is (Ag; v K).

2. IfTF Ky < Ky and (Aq;%1;T) is (Ag;y2; 1) then (A v Ky <y K3) is (Ag;y2 K1 < v Ka),
(A7) is (Ag72K71), and (A1 Ka) is (Ag;y2K5).

3. IfT+ Ky = Ko and (Ay;v1;T) is (Ag;y2;T) then (Aq;y1 K1) is (Az;y2K3),
(ApyiKy) is (Ag;y2Ky), and (A yiKo) is (Ag;yaKs).

4. IfTFA: K and (A1;v;T) is (Ag;y2;T) then (A1;yiA;y1 K) s (Ag;y2A4; v K).

5. T F A = Ay : K and (Ay;y13T) is (Ag;y9;T) then (Apsyi Ay K) is (Ao ya A 12 K),
(A A 7K) is (Ag;y2As; 72 K), and (A yi Az v K) is (Az;yeAs; 12 K).

Proof: By simultaneous induction on the hypothesized derivation.

In all cases, (A1;v1;1) is (Ar;91;T) and (Ag;y2; 1) is (Ag;ye; ).

Kind Well-formedness Rules: '+ K.

e Case: Rule 5.
1. mT =T =T.
2. (A7) is (A1),

e Case: Rule 6.
1. By the inductive hypothesis, (A1;v1A;T) is (Az; v A;T).
2. Therefore (A1;5(mnA)) is (Az;S(724)).

e Case: Rule 7.

By Lemma B.1, there is a strict subderivation I', a: K’ F ok

and by inversion a strict subderivation I' - K.

By the inductive hypothesis, (A1; 71 K') is (A2 v K').

Let (A}, A%) = (A1, Az)

and assume that (A]; A1;v1 K') is (A}; Ax; 12 K').

Then by monotonicity (AL; yi[a—A1];T, a: K'Y is (AL v2[a—s A, T, a:K').
By the inductive hypothesis, (Al; (vi[a—A1])K") is (AL; (v2[a—A])K").
That is, (Al {a= A H(n[a—a) K")) is (AL; {a— A H(12[a—a]) K")).
Therefore, (A1; v (Tl K. K")) is (Az;v2(Ta: K. K")).

S A R o

e Case: Rule 8. Just like previous case.

Subkinding Rules: T'+ K; < K>.
Let (A}, A}) > (A1, Az) and assume (Al; Bi;y1 K1) is (A%; By 12K1).
e Case: Rule 9. By assumption, (A}; B1;T) is (A}; B2 T).
o Also, (Ay;T) is (AyT)
e and, by the same argument as for Rule 6, (Ay; S(v1K)) is (Az; S(v2K)).
o Case: Rule 10. Trivial, since 11T = v.T =T and (A;T) is (Az;T).
e Case: Rule 11.
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By the inductive hypothesis we have (A};v1A1;T) is (As;v2A41;T)
and (A1;7142;T) is (A v2A42;T).

Thus (A1;5(m A1) is (A2;S(v241))

and (A1;S(mAz)) is (Az; S(1242)).

=R =

By the inductive hypothesis we have (A};v1 A1;T) is (Al;v2A2;T),
(ALmAGT) is (A A T),
and (AL;v2A;T) is (AL v2A2;T).
Thus (A};S(7141)) is (A% S(1242)),
(AL S(m1Ar)) is (AL S(1142)),
10. and (A%; S(1241)) is (AL; S(71242)).
11. By Symmetry and Transitivity, (A7;S(7142)) is (A%;S(1242)),
12. so by Lemma 4.3, (A}; S(7141) < S(m142)) is (AL; S(v241) < S(7242)).
13. Therefore (A]; B1;.S(7142)) is (AL; Ba; S(v242)).
e Case: Rule 12.

© o o o

1. By the inductive hypothesis, (Ar;v1 (Ha:K1.K7')) is (Az;v2(Ha: K1 KY')).
2. For the same reasons as for Rule 7, (Aq;y1(Ia:K1. K1) is (Az; v (TMa: K7 K7')).

Let AV, AV = Al

and assume (AY; Bl;v1K3) is (A BY; 1 K3).

By monotonicity and the inductive hypothesis, (AY;v1 K} < 11 K1) is (AY; 1 K5 <y K7Q).
Thus (AY; Bl; 11 K1) is (AY; BY; 1 K7).

Now by reflexivity and monotonicity, (Af; B1;y1 K1) is (A By; 1 K1).

Thus (AY; B1Bi; (mla—Bi])KY) is (AY; BiBY; (vi[e—BI)KY1).

Now (A{syila—Bi];T, a:K3) is (A ; mila— BT, a:K3).

10. By the inductive hypothesis again,
(A (ma=BI)KY < (mlasBi)KY) is (A (m[a—=BY)K{ < (o= Bl KY),

11. so (AY; B1Bi; (mi[a—~Bi])KY) is (A B1BY; (i[a— B KY).
12. Note that (AY; (mi[a—Bi)KY) is (AY; (mi[e—BY)KY).
13. Therefore, (Al; Bi; v (Tl K3. K7')) valid.

© o N ok W

14. An analogous argument shows that (A%; Bz v2(Ila:K3.K3)) valid.

15, Let (A7, A%) = (A}, A1)

16. and assume (AY; By; 11 K3) is (AY; By; v K3).

17. By the inductive hypothesis, (Al;v1 K5 < 71 K1) is (AL; 72 K3 < 12K7).
18. so (AY; Bi;mK7) is (AY; By 12 K1)

19. and (AY; B1B1; (mi[a—B1])KY) is (AY; B2 By (v2[a—Bi) K1').

20. By monotonicity, (AY; vi[asBi;T,a:K3) is (AY; v2[a—Ba]; T, o K3).

21. By the inductive hypothesis again,
(ATs (mla=BIKY < (mla=Bi))KY) s (A (e BI) KT < (vlamB) K7,

22. so (AY; B1B1; (mi[a—Bi)KY) is (AY; B2By; (v2la—B3]) K7).
23. Thus (A1; Biyyi(Ha:K5.K5)) is (As; B2 v2 (Ha: K3.KY)).
e Rule 13.
1. By the inductive hypothesis, (Ar;v1(Za:K3.KY)) is (Az;v2(Za:K3.KY)).

31



2. For the same reasons as for Rule 7, (A1; 71 (Za:K1.K1)) is (A2 v2(Za: K. KT1')).

(AL 71 Bi; v K1) valid.

By the inductive hypothesis, (Al;v1 K7 < v1K3) is (A KL < kK3).
Thus by reflexivity, (A]; 71 By; v1 K3) valid.

Now (Al;nfa—m BT, oK) is (AL m[a—sm BT, a: K1)

so by the inductive hypothesis,
(AL (mamsm B K < (mlamsmB))KY) is (AL (me—=mBi)KL < (ma—m Bi])KY).

Since (Al;m2 B1; (yi[am B1]) K1) valid,
9. Using reflexivity, (AL; m2B1; (v [a—m1 B1])K3') valid.
10. Therefore, (Al; Bi; v1(Za:K5.K3')) valid.

NS ov ke W

&

11. An analogous argument shows that (A%; Ba; v2(Za: K5 K3')) valid.

12. (Al;m By K1) is (AS; i B2 12K71).

13. By the inductive hypothesis, (Al;v1 K1 < 711 K3) is (AL; 72K < 12K3).
14. (A;m By K3) is (AL B2 12K3).

15. Now (Al mfa—mi BT, K1) is (AL v2[a—sm Ba];T, a:K7)

16. so by the inductive hypothesis,
(A% (namm BT < (mlamm B)KS) is (85 (vlamm B2 KT < (valarsmi Ba])K3).

17. Since (Ay;mBi; (m[a—m Bi)KY) is (AL; m2Bo; (12[a—mi B2]) K1),
18. (Al me B (mfa—sm Bi))KY) is (AL ma B (v2[asm B2]) KY).
19. Therefore, (Al; Bi; v1(Za:K3.K3')) is (AL; Bo; v2(Za: K. KY)).
Kind Equivalence Rules: I' - K; = K>.
It suffices to prove that if I' - Ky = K3 and (Ap;71;T7) is (Az;v2; 1) then (A v Ky) is (Ag;v2K32), because we
can apply this to get (Az;v2 K1) is (Az;v2K3), so (Ar;v1 K1) is (Az;v2 K1) follows by Symmetry and
Transitivity. A similar argument yields (A1;y1K2) is (Az; 12 K3).
o Rule 14. Trivial.
o Rule 15.
1. By the inductive hypothesis, (A1;v1A1;T) is (Ag;v2A2;T).
2. Therefore, (A1;S(v1A41)) is (Az; S(v242)).

e Rule 16.
1. By the inductive hypothesis, (A1;v1 K1) is (A2 v2K3).
2. Let (A}, AY) = (A1, A2)
3. and assume (A]; A; 11 K1) is (A); Az; v K3).
4. By the inductive hypothesis, (A];v1 K1) is (AL; v K3).
5. (ALK i (ALY,
6. and (A% v K1) is (AL v2K3).
7. By Symmetry and Transitivity, (A%;v2K3) is (AL; 1 K1),
8. (AumKi) is (Al 72K7)
9. and by Reflexivity (A; v K1) is (Al v Kl).

H
e

By Lemma 4.3, (A}; 71 K] <mKi) is (A 7K <1 K7),

11. so (A}; Ay K1) s (A Ax; 12 K7).
12. By monotonicity, then, (Al; yi[a—A1];T, a: K1) is (AY; v2[a— A, T, a: K7).
13. By the inductive hypothesis again, (A7; (71[a—A1)K7) is (AL (v2[a— A])KY).
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14. Therefore (Ar; v (Ma:K1. K1) is (Ag;v2 (Mo K5 KY)).

e Rule 17. Same proof as for previous case.
Constructor Validity Rules: I'+ A : K.

e Case: Rule 18.

1. mibi =veb;=band T =T =T.
2. A bEb T & A bb 0 T,
3. ARG T & A Eb 0T,
4., and Ao Fb; : T & As bbb 0 T
5. Thus (A1;b;T) is (Ag; b T).
e Case: Rule 19.
By the assumption on v and vz, (Ar;viz; 71 (Iz)) is (Az; vez; v2(lx)).

e Case: Rule 20.
. By Lemma B.1 there is a strict subderivation I' - K.
. By the inductive hypothesis, (A1;11K") is (Az; 12 K').
. Let (A1, A%) = (A1, A2) and assume (A; Bi;y1 K') is (A); Ba; v K').
. Using monotonicity, (A}; vi[a—B1]; T, a:K') is (A% v2[a— Ba]; I, o K7).
. By the inductive hypothesis, (A1; (71[a=Bi)4; (nm[a=Bi)K") is (AL; (v2[a—r B2])A; (v2[a—B2]) K").
. Now Aj F (mifa=Bi)A ~ (v1(Aa:K'. A)) By
and Aj F (y2[a—B2])A = (v2(Aa:K'.A)) Ba.
. By Lemma 4.7, (A}; (11(Aa: K" A))B1; (mi[a—B1))K") is (AL (v2(Aa: K'.A)) Bao; (v2[as B2)) K.

9. Similar arguments analogous to lines 3-8 (and reflexivity) show that

(Ar;v1 (Ao K A); v (Ma:K'.K")) valid
10. and (Az;v2(Aa: K’ A); v2(Tla: K. K'")) valid.

11. Therefore (Ar;v1(Aa: K A);vi (Ha: K. K")) is (Az;v2(Aa: K" A);v2 (Tl K K")).
e Case: Rule 21
1. By the inductive hypothesis (Aq;y1 4; 71 (oK' K")) is (Az;v2A; 2 (Tl K. K"Y)
2. and (A A K') is (Az; Al 12 K7).
3. Therefore, (Ar; v (AA); 1 ({as A'FK")) is (Az;v2(AA ) v2({a—s A'FK)).
e Case: Rule 22.
1. By the inductive hypothesis, (A1;v1A; 71 (Za: K. K")) is (Az; 2 4; 2 (Za: K K")).
2. Therefore (Ar;miyiA; i K') is (Az;miye A 12 K).
e Case: Rule 23.
1. By the inductive hypothesis, (A1;v1A; 71 (Za: K. K")) is (Az; 2 4; 2 (Za: K K")).
2. Therefore (Ay; mey1 A; i ({asm AYK)) is (Az; meme A; v2({asm  AYKY)).
o Case: Rule 24.
1. By the inductive hypothesis, (A1;y1(Za:K'.K")) is (A v2(Za: K. K")).
2. By the inductive hypothesis and reflexivity, (A1;y1A1;v1 K') valid
3. and (Ar; 71 Az (n ey A ) K) valid.
4. Now A1 F v1 A1 ~ {1 Ar, 11A2)
5. and Ay F vy As ~ mp (1AL, 71 A2).
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10.
11.

12.
13.

o Case:

ork W=

o Case:

ook Wy =

o Case:

[

oroke W

o

10.
11.
12.
13.

14.
15.
16.

by Lemma 4.7 we have (A1; 71 (v1 41, v142); v K') valid,

(Ar; w1 A1, 1 42); (i [a—y A1) K valid.

and (Ar;mi{y1 A, 11 A1 K') is (A v A iK').

Then (Ar; (a1 AK") is (Ar; (ifa—mi{n A, A K").

Using Lemma 4.3, (Ar; m2{v1 A1, v1 A2); (i[a—mi (v1 A1, v1 A2)]) K'') valid.
Therefore, (Ar; (y1 A1, v142); y1(Za: K. K")) valid

A very similar argument shows that (Az; (241, v242); v2(Za: K. K")) valid

and an analogous argument shows that

(Ar; (n A, M As); 71 (B KL K")) is (A2 (1241, 7242); 72 (o K. K")).
Rule 25

By the inductive hypothesis, (A1;v1A4;T) is (Az;v2A;T).

As in the case for Rule 6, (A1;5(714)) is (Ag2; S(124)).

Thus (A1;v14; 5(y1A)) valid,

(A2;72A;5(v24)) valid,

and (Ar; 1145 S(11A)) s (Az;724;5(24)).

Rule 26.

By the inductive hypothesis, (A1;v1(Za: K K")) is (Az; v (Ta:K'.K")),
(A m (A7 K7) s (Az;m(124); 72 K),

and (Ar;me(11A); i ({am AYK")) s (Az;m2(r2A); 2 ({am AFK")).
Thus (A1; 71 A; 71 (Zac K. K')) valid,

(A2;v2 A;v2 (T K K')) valid,

and therefore (Ar; v A; v (Za: K. K")) is (A2 1245 v2(Za: K. K")),
Rule 27

By Lemma B.1 and the inductive hypothesis, (A1; 71 K') is (Az; 12 K').

Let AL, AY = A,
and assume (Ay; By K') is (AY; BY; i K').
By monotonicity, (Al;vi[a—B1;T,a:K") is (AY; yi[a—B{);T, a:K').

By the inductive hypothesis,
(AL (e B (Aa); (i [a=BI) K" is (AY; (v2[a B (Aa); (v2[a— B K").

That is, (AL; (v14)BL; (ma—=Bi)K") is (AY; (v2A)BY; (v2[a—= B K").
Therefore, (A1; v (Tl K’ K")) valid
and (Aq;y1A; 71 (Ha:K'.K")) valid.

A similar proof shows that (Az;y2A;v2 (Tla: K'.K")) valid.

Let ( ll,Aé) t (Al,AQ)
and assume (A}; Bi; 11 K') is (A}; Bo; 72 K').
By monotonicity, (Al;vi[asB1];T,a:K") is (A); v2laBa;T, a:K').

By the inductive hypothesis,
(AL (mfa=sBi)(Aa); (ni[a—=B )K" is (AY; (v2lamB2])(Aa); (v2[a—B) K").

That is, (AL; (v14)Bi; (o= Bi)K") is (AL (v24) B (v2[a B)) K.
Therefore, (Ar; v (Tl K. K")) is (Az;v2(Ha:K'.K"Y)
and (Ar; 1 A5y (MoK K")) is (Az;y2 A; v2 (TTa: K K")).
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o Case: Rule 28

1.
2.
3.

By the inductive hypothesis, (A1;v1 A;v1 K1) is (A1 724572 K1)
and (Al;’yl[(l S 71[(2) is (AQ;’}/Q[(l S 72[(2).
Therefore, (Ar;v1A; 11 K2) is (Ar;v2A; 72 K3)

Constructor Equivalence Rules: I'F A; = A, : K.

It suffices to prove that if I' A} = Az : K and (Ar;y1;T) is (Ag;y2; 1) then (A viAnviK) is (Az;v2Az; 12 K),
because it follows that (Az;v2Ar;v2K1) 18 (Ag;v2A2; 72 K2), s0 (A A1 K) is (Ag;v2A2; 72 K) by Symmetry
and Transitivity. A similar argument yields (Aq; v Aoy 1K) is (Ag; 2 Az; 72 K).

o Case: Rule 29.

1.

8.
9.

By the arguments for Rule 40,
(Arv1 QoK A (Mo K K)) is (Azy o (Ao K Az); v (Tl K K)).

By the inductive hypothesis, (A1;v1 AL; 71 K') is (Ag;v2 A% v K').
Therefore, (A1;v1(Aa: K" A1) A 71 ({a—s AL TK™)) is (A vo (Ao K A2) AS); v2 ({as AS T K)).
Similarly (Ar; v ((Aa: K A AL); 71 ({a—ALTFK)) s (Az; v2(Aa:K' A1) AL); v2 ({a—s ALFKY).

But As F ya(Aa:K'.A2)AL) = o ({ars AL T A2).

Thus by Lemma 4.7,
(A (Ao K" ANAD); i ({a=s ALTKY) is (Ag;v2({as AL TAR); 2 ({a—s AL TK)).

Then since (Ao;y2A1; 72 K') is (A5 7245572 K')
we have (Az; 2 ({as A1JKY)) is (Az;2({as A2}KY)).
By Lemma 4.3, (Ar; v ((Ae: K7 A1) A1) ({ar ATFRT)) s (Ao v2({arr A2} A2 ) 2 (fas ATFET)).

e Case: Rule 30.
Exact analog to the proof of Rule 27.

o Case: Rule 31.

This proof 1s analogous to the proof for Rule 26 except that due to the assymmetry of the rule’s last premise
we must note that (Ar;v2({a—rm A1}K")) is (Az;v2({a—m1 A2} K")) and use Lemma 4.3.

o Case: Rule 32.

1.

5.
6.

By an argument as in the proof of Rule 24,
(Al; Y1 <A1, A2>; 71([(1 ><[(2)) is (AQ; 72(141, A2>; 72([(1 ><[(2)).

. Thus (Al;’yl(ﬂj(Al,A2>);71[(1) is (A2;72(7T1<A1,A2>);72[(1).

By the inductive hypothesis, (A1;v1A7;v1 K1) is (Ag;v2 AL 12 K1 ).
Now (Al; Y1 <A1, A2>; 71([(1 ><[(2)) is (AQ; 72(14/1, A2>; 72([(1 ><[(2)).

and Az F 727T1<A/1,A2> ~ 7214/1.
By Lemma 4.7, (Ar;vimi (A1, A2); 11 K1) is (Ao 12 AL 12 K4 ).

o Case: Rule 33.

Same argument as previous case.

o Case: Rule 34.

o ov e L=

By the inductive hypothesis, (A1;v14; 5(v1B)) is (Az;724; S(12B)).
Thus A1 Fv1 AT & Ak vA:T,

AMbEyB:T e A kFwB:T,

and Ao F AT e Ay FvB:T.

By transitivity, A1 F 1 A: T & Ax b vwB:T.

Therefore (A1;v1 A;T) is (Az; v A;T),

(A B;T) is (Az;v2B;T),
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8. and (A A;T) is (Ag; v B;T).
e Case: Rule 35.
By the inductive hypothesis and the definitions of the relations.

e Case: Rule 36.
By the inductive hypothesis and Lemma 4.5.

o Case: Rule 37.

1. By the inductive hypothesis, (A1;v1A; 71 K) is (A3 A5 K)
2. and (A1 A K) is (Az; v A" v K).
3. By Lemma 4.6, (A1; 71 A; v K) is (Az; 724" v K).
e Case: Rule 38.
By the definition of the algorithm and the logical relations.

e Case: Rule 39.
By the assumption regarding i and ..

e Case: Rule 40.
Analogous to the proof for rule 20.

o Case: Rule 41.

1. Using the inductive hypothesis, (A1;y1(AA1); 71 ({a—= A1) is (Az;v2(A'AL); 2 ({a—s AT HKR)).
2. Therefore by Lemma 4.3, (Aq;y1 (A4 ); 71 ({a— A1} K2)) is (A2 v2(A AL v2({as A1 D).

o Case: Rule 42.
Analogous to the proof for Rule 22.

o Case: Rule 43.

Analogous to proofs for Rule 23 and Rule 41, except that the assymmetry of the conclusion requires a use of
Lemma 4.3.

o Case: Rule 44.

Analogous to proof for Rule 24 except that the assymmetry of the rule’s last premise requires a use of
Lemma 4.3.

e Case: Rule 45.
By the inductive hypothesis and the definition of the logical relations.

A straightforward proof by induction on well-formed contexts shows that the identity substitution is
related to itself:

Lemma 4.10
If T F ok then for all 3 € dom(T') we have (T'; 3;T5) is (I'; 5;T). That is, (T';id;T') is (T;id;T') where id
is the identity function.
Proof: By induction on the proof of I'  ok.
o Case: Empty context. Vacuous.
o Case: I'a:K.
By Lemma B.1, I' F K, and T" - ok.
Also, a & dom(I').
By the inductive hypothesis, (I'; 3;T'8) is (I'; 3;I'8) for all 8 € dom(T").
By monotonicity, (', a:K; 8; (I, a: K)3)) is (I', a:K; 3; ((T', a: K) 8)) for all g € dom(T).
By Theorem 4.9, (I'; K) is (T'; K)
and by monotonicity (I',a:/;K) is (I',a:K; K)

oo oy =
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7. Now aKFat K & T aKFat K,
8. so by Lemma 4.8, (T', a:;a; K) is (T, a: K a; K).

|
This yields our completeness result for the algorithm:
Corollary 4.11 (Completeness)
1. IfTF Ky = Ky then (T'; Ky) is (T Ka).
2. IfTF Ay = Ay : K then (T; A, K) is (T Ag; K.
3 IfTFKy =Ky thenl' - Ky T+ Ks.
4 IfTHFA =Ay K thenT'HFA K& T'E A K.
Proof:
1,2 By Lemma 4.10, we can apply the Fundamental Theorem with v; and v2 being identity substitutions.
3,4 Follows directly from parts 1 and 2 and the Main Lemma.
|

Lemma 4.12
1. Ifrll_Alefl Hrll_Alefl aﬂdrzl_AzT[(zHrzl_AzT[(z then
Fl F A1 T [\71 — Fz F A2 T [\72 is decidable.

2 IfTH A KielDhFA Ky and s F Ay Ko ook Ayt Ko then ' F AL Ky Ty F Ayt Ky
is decidable.

3 IfMrFKy el FKyandl'yF Ko &9 F Ky then 'y H Ky & 'y B Ky is decidable.

Proof Sketch: By induction on the proof of the first assumption.

Roughly speaking, the algorithm does independent expansion of the two terms and compares the results.
If we know that the expansion process terminates for the two terms individually, then the simultaneous
expand-and-compare of both terms will also terminate (possibly earlier if the terms are inequivalent).

Corollary 4.13 (Decidability)
1. fTHA K andT'H Ay : K thenT'HF A, : K & T'F Ay : K is decidable.

2. IfTF Ky and ' F Ky then ' - Ky & ' F K5 is decidable.

Proof: By Corollary 4.11, comparison of each well-formed type or term with itself is decidable. by Lemma 4.12,

therefore, the comparison of the two types or two terms is decidable. |

We conclude this section with an application of completeness.

Proposition 4.14 (Consistency)
Let by and by be two distinct constants of kind T'. Then the judgment “t by = bs : T' 7 is not provable.

This inequivalence (and the inequivalence of Aa:T.a and Aa:T.b; at kind T'—7T mentioned in Section 2.2)
is obvious for algorithmic equivalence, which by completeness transfers to inequivalence in the declarative
system.

In proving soundness of the TILT compiler’s intermediate language, these sorts of consistency properties
are essential. The argument that, for example, the only closed values of type int are the integers would fail
if the type int were provably to another base type.
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Kind Extraction
Lo 1T
I'FatT(a)

I't+ mp T [\71

I'E mop t {B—=mip} Ko
Tk pA 1 {BsA) K>

T+ pt YK K>
T+ pt YK K,
T+ pt KK

Weak head reduction
'k E[(Aa:K.A)A'] ~ E[{a—A'}A]
I't+ E[7T1<A1,A2>] ~r E[Al]
I't+ E[7T2<A1,A2>] ~r E[Az]

I'Fp~ B if T+ ptS(B)

Weak head normalization
r-AlB
r-ByB

fTFA~ A" andTHA | B

otherwise

Algorithmic constructor equivalence
F|_A1C>A21T ifFl—Alllpl,FI—AQUpz,andFI—plszTT
'k A < Az 0 S(B) always
'k A & Ay oK' K" Ul a:K'FAjae Asa : K
'kA & Ay Yo K K" fTFmA ©mAs: K and T F A © mods : {ar—m A K

Algorithmic path equivalence

Il'Fae atl(a)

F"plAl szAz T{Oﬂ—)Al}[{z
['Emipy < mpe T Ky

['F mapr < map2 T {a—smip

Algorithmic kind equivalence
r-7TeT7T
'k S(4;) & S(4s)
I'Flla:K.Li & lla:Ky. Ly
I'FXYa:K.Li & Ya:Ks. Ly

ifi=j

HfI'Fpy < ps Tt HHa: K. Ky andalso ' Ay & Ay 0 Ky
if '+ P11 P2 T Eai[(l.[(z
if '+ P11 P2 T Eai[(l.[(z

always

HfI'EA & Ay T

'K Kyand 'a:K1 F Ly & Ly
'K Kyand 'a:K1 F Ly & Ly

Figure 8: A Simplified Algorithm

5 A Simpler Algorithm

We have shown that constructor equivalence is decidable by presenting a sound, complete and terminating
algorithm. However, as an implementation it inefficiently maintains two typing contexts and two classifying
kinds. We would prefer an algorithm more like the declarative rules for equivalence, having only a single
typing context and a single classifier. The revised algorithmic relations are shown in Figure 8.

The definition of this simplified algorithm is asymmetric because of essentially arbitrary choices between
two provably equivalent kinds for the classifier or the typing context. Because we cannot prove directly that
this simplified algorithm satisfies any symmetry or transitivity properties, we cannot simply use the same
proof strategy. However, we can show the simplification is complete with respect to the previous algorithm,
from which the remaining correctness properties follow easily.

One other small simplification is that in weak head reduction we need not worry about a path having
a proper prefix with a definition; for well-formed constructors this can never occur. (See the proof of
Corollary 3.2.)

We first define a “size” metric on derivations in the six-place algorithmic system. This metric measures
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the size of the derivation ignoring head reduction or head normalization steps; equivalently, we can define
the metric as the number of term or path equivalence rules used in the derivation. Since every judgment

has at most one derivation in the six-place system, we can refer unambiguously to the size of a provable
algorithmic judgment.
The important properties of this metric are summarized in the following two lemmas.

Lemma 5.1

1.

2.

IfI'FA K1 e lyFAy: Kgand 'y F Ay - Ky & I's b Az : K3 then the two derivations have equal
sizes.

IfriFA T Kol Ayt Ksand ' F Ay + Ky & I's B A3 1 K3 then the two derivations have
equal sizes.

Proof: [By induction on the hypothesized derivations]

Assume I F AT I Ay :Tand M A T T3 As :T. Then 't F Ay U p1, T2 F Az | po,

s AsUps, ibEpr 1T & TobptT,and 't Fp1 17T < I's Fps +T. By the inductive hypothesis, these
last two algorithmic judgments have equal sizes, so the original equivalences have equal sizes (greater by one).
Assume I'' F A; : S(B1) & T2 F Ay : S(Bz)and I'y F Ay : S(B1) & I's F A3 : S(Bs). Then the derivations
both have a size of one.

Assume I'y F Ay 1 oA AY & To b Ay i Tla: AL AY and Ty F Ay : Tla:ALLAY & T3 F Az Tla: AL AY. Then
NaKiFAia: K ey, a: K- Asa: K and T, oK F Ao K & T3, 0K F Asa - K. By the
inductive hypothesis these derivations have equal sizes and hence the original equivalence judgments have
equal sizes (greater by one).

Assume 'y F A; : ZacALLAY @ To b Ay : AL AY and Ty F Ar - Sac AL AY © Ts F As - Sa:AL AY. Then
I'MEmiAr I({ S IhEmAs: [(é, I'MEmAr I({ S sk mAs: [(é,

' EmAr {O{l—)ﬂ'lAl}I({/ S IhFmAsr: {Ozl—)ﬂ'lAQ}[(é/, and

Ty kmAr s {a—sm A }KY © Ts b 71 As - {a— 71 A3 }KS' . By the inductive hypothesis twice, both pairs of
judgments contain two derivations with equal sizes.

Assume 't F b, 1T & I bbbt T and 'y b 17T < I's Fb; 1 T. Both derivations have size one.
Assume I FaftTi(a) o T Fatlz(a) and T Fati(a) & I's B a 1 T's(a). Both derivations have size

one.

The remaining three cases follow directly by the inductive hypothesis.

Lemma 5.2

1.
2.

IfI'y+- A Ky ©T's b Ay 0 K5 then the derivation I's F Ay : Ko < 'y B Ay : Ky has the same size.
IfI'yF Ay T Ky < I'sH Ay 1+ Ko then the derivation I's - As 1+ Ko <> 'y H Ay T Ky has the same size.

Proof Sketch: The two derivations are essentially mirror-images of each other, and hence use the same
number of rules of each kind.

Using the metric, we can show the completeness of the four-place algorithm with respect to the six-place
algorithm.

Lemma 5.3

1.

2.

If+ Fl = Fz, Fl F [\71 = [(2, Fl "Al 11(1, Fz F A2 : [(2, and Fl F A1 11(1 C}Fz F A2 : [\72 then
A < A K.

If+ Fl = Fz, Fl F [\71 = [(2, Fl "Al 11(1, Fz F A2 : [(2, and Fl F A1 T[{1 — Fz "Az TI{Z then
Fl "Al HAQ T[{1

Proof: [By induction on the size of the hypothesized algorithmic derivation.]
Assume F '] = F27 MK = [(2, I'ME A [(1, and I's F As @ K.

39



e Case: IT+F A :T©I2F Ay : T because I'1 H Ay Upr, T2 F Ay Upe,and T Epr 1 T & T b po 1t T
Now by the soundness and completeness of the six-place algorithm we have I't H A1 : T'& I't F Az : T, where
FAUpband Ty bp1r t T < Dy Fph 7.
By Lemma 5.1, the sizes of the two proofs of algorithmic path equivalence have equal sizes. Since this size is
less than the size of the original algorithmic judgment (by one), we may apply the inductive hypothesis to get
T'1Fpr < phtT. Therefore, 't F A; & Ay : T.

e The remaining cases are all either trivial or follow directly from the inductive hypothesis.

Corollary 5.4 (Completeness)
ITHA =Ay: K thenTHA © A K.

Proof: AssumeI'F A; = As : K. By the completeness of the six-place algorithm, I' - A; : K & I' - As : K. Then
' A & Ay : K by Lemma 5.3. |

Theorem 5.5 (Soundness)
1. fTHFA K, TFAy . K,andT'H A & Ay : K then '+ A = Ay . K.

2. IfTkFp K, Tk ps Ko, and U py <o ps T K then T'F py =ps: K.

Proof Sketch: By induction on the hypothesized derivations, exactly analogous with the soundness proof
for the six-place algorithm.

Lemma 5.6

1. fTHFA Ayt Kandl'F As & Ayt K then ' A; & As T K is decidable.
2 IfTHFA A :KandT'H Ay © Ay : K then I'F Ay & A, : K is decidable.
3 IfITHFK, & Ky andT'+F Ky & Ky then I' F K1 & K> is decidable.

Proof: Essentially the same proof as in the original algorithm. |

Theorem 5.7 (Decidability)
1. fTHA) K and'H As : K then ' F A; & As : K is decidable.

2. IfTHKy and '+ Ky then ' F K| & K5 is decidable.

Proof: Follows from reflexivity of constructor and kind equivalence, Completeness, and Lemma 5.6. |

6 Related Work

Our proof was inspired by that of Coquand [3], but because the equivalence considered there was not context-
sensitive in any way our algorithm and proof are substantially different. Because of the validity logical
relations and the form of the symmetry and transitivity properties for logical equivalence, our initial attempts
to use more traditional Kripke logical relations (with worlds being pairs of contexts) were unsuccessful.

Other researchers have considered lambda calculi with more interesting equivalences. TLillibridge [10]
considered a language in which equivalence depends on the typing context. He eliminates the context-
sensitivity by tagging each path with its enclosing typing context, and then gives a rewriting strategy for
this tagged system. Curien and Ghelli [5] gave a proof of decidability of term equivalence in F< with §7-
reduction and a Top type. Because their Top type i1s both terminal and maximal, equivalence depends on
both the typing context and the type at which terms are compared. They eliminate context-sensitivity by
inserting explicit coercions to mark uses of subsumption and then give a rewriting strategy for the calculus
with coercions. Both Lillibridge’s and Curien and Ghelli’s approaches require an extra step to transfer
decidability results from this system without context-sensitivity back to the original systems.
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Severi and Poll [15] study confluence and normalization of fé-reduction for a pure type system with
definitions (let bindings), where § is the replacement of an occurrence of a variable with its definition. This
calculus contains no notion of partial definitions and no subtyping.

David Aspinall [1] studied a calculus A<y} with singleton types and (-equivalence. Labelled singletons
are primitive notions in this system; in the absence of 5-equivalence the encoding of Section 2.3 does not
work. He conjectured that equivalence in this system was decidable. Karl Crary [4] studied an extension of
/\EES with subtyping and power kinds and also conjectured that typechecking was decidable.

7 Conclusion and Future Work

We have confirmed that gn-equivalence for well-formed constructors is decidable in the presence of singleton
kinds by providing a sound, complete, and terminating algorithm. This algorithm — with minor extensions
such as stopping early when constructors are found to be a-equivalent — is used by the internal typechecker
of the TILT compiler.

Although the pattern of our logical relations proof is fairly standard, our formulation — in particular,
the equivalence relation involving two constructors, two kinds, and two worlds — appears novel, as is the
extension to subkinding and singleton kinds.

We believe that our proof should generalize well to extensions of /\EES such as subtyping and power kinds
like those found in Crary’s work. The technique may be applicable to other calculi, especially those with
context-sensitive equivalence.

We are currently investigating the addition of singleton types to the TILT compiler. These seem a
promising formalized vehicle for expressing the information needed by cross-module inlining [2, 16] and
modeling the structure sharing feature of original Standard ML.
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A  Rules for \I*°
Well-Formed Context

o ok

r-K a ¢ dom(T)
I, a:K + ok

Context Equivalence

Fe=e

"Fl EFZ Fl "[{1 EI{Q a&dom(Fl)

F Fl, a:[(l = Fz, Ozi[(z

Well-Formed Kind

I'F ok
reT

I'tA:T
'k S(A)

oK'+ K"
't Ia:K' K"

oK'+ K"
't Xa:K' K"

Subkinding

I'A:T
IFSA)<T
I't ok
TFT<T
F"AlEAQZT
Tk S(A;) < S(As)

'k oK. KY
THE,<Kl T a:K,FK{ <Kl

It oK) K < Ta: K5 KY

'+ Xa:K5 KY
I+ K| <K, T,ak|FK/<Kl

I'FXa:K] K < Xa:K,.KY
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Kind Equivalence

I'F ok
reTr=rT
F"AlEAQZT

I'FEK,=K, T,a:K|bFK/=Kl

I'+ [(1 = [(2

It THa: K] K = Ha: K5 KY

MK =K, TakrFK/ =K

I'Xa:K]. K = Xa:K,.KY

Well-Formed Constructor
I'F ok
I'F ok
I'Fa:T(a)

Fa:K'HA: K"
XK' A:TMa:K' K"

I'FA: oK' K" A K’
'F AA  {a—s A YK

'FA:Ya:K' K"
I'FmA: K’

't A:Ya:K' K"
I'FmA: {a—sm AYKY

I'XYa:K" K"
A : K’
Ik A2 . {Oﬂ—)Al}[(//

' (A, As) : Ba: K. K"

I'A:T
T A
't Xa:K' . K"
I'FmA: K’
I'FmA:{a—mm ALK
'FA:Sa:K' K"

'k A:MMoe:K' K
oK' b Aa : K"

'FA:TMa:K'" K"

r-A:K; ' Ky < Ks
'-A: K,
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(14)

(17)

(18)
(19)
(20)
(21)
(22)

(23)

(24)

(25)

(27)

(28)



Constructor Equivalence

Ia:K'F A = Ay K" 'k A=A, K

'k (Aa:K" A1) A = {a—m AL Ay - {as ALK

'k Ay :Ha:K'.KY{
'k Ay :Ta:K'.KY
Iao:K'F Aja = Asa : K

I'FA =4y oK' K"
't Xa:K' . K"

I't+ 7T1A1 = 7T1A2 K’
Ik 7T2A1 = 7T2A2 . {Oﬂ—)ﬂ'lAl}[(//

I'FA =4 S K. K"
THA=A K, TFA: Ko
[ m(A,A)) = Al - Ky
THA K, TFA=A4,: Ko
' ma(Ay, Ag) = AL« Ko

'FA:S5(B)
r-A=8B:7T
r-A=8B:7T

I'FA=B:5(A)
r-A=4:K
rFA=A":K

r-A=A:K r-A=A4":K
rtA=A":K
I'F ok
kb =b;:T
I'F ok

I'Fa=a:T(a)
TFK{ =K, T,a:K|FA =A4s:K"
' XK. A = da: Ky Ay TTa: K/ K
A=A :Tla: K. K, A=A, Ky

'k AA1 = A/All . {Oﬂ—)Al}[(z
A=A Za:K' K"
F"ﬂ'lAlEﬂ'lAzif(/
A=A Za:K' K"

Ik 7T2A1 = 7T2A2 . {Oﬂ—)ﬂ'lAl}[(//
I'XYa:K" K"

T'hA; =A% K
T AY = AL : {ams AL} K"

T F (AL, A7) = (A, AY) - S K K7
A=A, K 'K <K'
F"Al EAZ:I(/
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TFA=A:K

(29)

(30)

(32)

(33)

(34)



* [\71 1s [\72 [A] iff
1. AFok
2. And,
— Ky =Tand Ko =T
— Or, K1 = S(A1) and K3 = S(Az) and A; is Az in T [A]
— Or, K; = Ho: K} .KY and Ko = Ta: K5 . KY and K7 is Kf [A] and YA = A if
Ay is Ag in K [A'] then {a—A; KT is {a—As} K [A']
— Or, K1 = Xa:K|. K} and Ky = Xa:K}.KY and K] is K} [A] and VA’ = A if
Ay is Ag in K [A'] then {a—A; KT is {a—As} K [A']
o Ajis As in K [A]iff
1. AF A K
2. And, AF Ay K
3. And, AF Ay = A2 K

e 7y is v2 in T' [A]iff
1. AF ok
2. And, Vo € dom(T). 1 (Ter) is y2(To) [A]
3. And, Vo € dom(T). y1ev is yaar in y1 (Te) [A].

Figure 9: Logical Relations for Declarative Properties

B Declarative Properties of /\225

To prove many of the important properties of the declarative system, we use a Kripke logical relations
argument with a more standard form than that used in the main paper to prove completeness. The definition
of the relations is shown in Figure 9. As in the main paper, a Kripke world A is a context, and worlds are
ordered by the prefix ordering.

The logical relations in Figure 9 are not used outside this section, and should not be confused with the
logical relations of Section 4. (It seems possible that the two logical relations arguments could be combined
into one, as in Coquand’s work, but we have decided to keep them separate for this presentation.)

Lemma B.1
1. If '+ J then there is a subderivation I' F ok.

2. If 'y, 0:K,I's = J then there is a subderivation I'y - K.

Proof: By induction on derivations. |

Lemma B.2 (Reflexivity)
1. fITFK thenT'F K =K.

2. IfT+ K then T HF K < K.
3 IfTHFA: K thenTHFA=A: K.

Lemma B.3 (Weakening 1)
1. IfFl,Fg F j and Fl,rz,rg F ok then Fl,rz,rg F j

2. IfFl,ozsz,Fz F j, Fl F [\71 S [(2, and Fl F [\71 then Fl,azKl,Fz F j
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Lemma B.4 (Substitution)
1. T J, At ok, and (Vo € dom(T'). A F va : y(T'(«))) then AF~(J).

2. IfTy,a:K,To b J and Ty + A : K then Ty, {a— ATy F {a—A}T
Proof:

1. By induction on derivations.

2. By Part 1.

Lemma B.5
The logical relations in Figure 9 are monotone (preserved under world extension.)

Lemma B.6
If Ky is Ko [A] then AF Ky = Ko, AF Ky <Ko, AL Ky < Ky, AF Ky, and A+ K3,
Proof: [By induction on the size of kinds ]
o Case: Tis T [A].
Follows by A + ok.
o Case: S(A1)is S(A2) [A]
1. Then A; is Az in T [A],
2. 0 AF A=A T, AR A :T,and A+ Az : T.
3. The desired results follow.
o Case: Ila:K{.K{ is la:K3}. K3 [A].

1. K1 is K3 [A]

2. so by the inductive hypothesis A - Ki = K3, A+ K{ < K), AF K, < K{, AF K, and A - KJ.

3. Then A, a:K] F ok,

4. so A,a:K{Fa=a: K| and A, a: K| Fa: K].

5. Thus « is a in K| [A, a:K{]

6. and K1 is K3 [A,a:K1].

7. By the inductive hypothesis, A, a:K| F K{'=K{, A,a: K| F K < KY, A, o: K| + KY < K/,
A,a:K{ F K and A, a: K] - KY.

8. Thus A F e K1 K{ = Ha: K3 KY, AFTa: K] K|, and A F K5 K} < Ta: K7 K/

9. By Weakening, A, o: K5 F K{' < K} and A, a: K} - K.
10. Therefore A F oK. K| < Ha: K5 KY and A F o K5 K3

o Case: oK. K{ is Ta:K3. K4 [A]

Essentially the same argument as in the 11 case.

Corollary B.7
If Ay is As in Ky [A] and Ky is Ko [A] then Ay is A2 in Ky [A].

Lemma B.8

1. If Ay is Ao in K [A] then As is Ay in K [A].
. If Ay is Az in K [A] and Ay is As in K [A] then A; is Az in K [A].

2

3. If[&rl 18 [\72 [A] then [\72 1s [\71 [A]

4. If Ky is Ko [A] and Ky is K3 [A] then Ky is K3 [A].
5

. If v is y2 in T [A] then v4 is 41 in T [A].
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6. If y1 is y2 in T [A] and vz is vz in T' [A] then v; is v3 in T' [A].
Proof:
1. By the symmetry rule for constructor equivalence.
2. By the transitivity rule for constructor equivalence.
3. By induction on the sizes of kinds.
o Case: T is T [A]. Trivial.
o Case: S(A1)is S(A2) [A]. Follows by Part 1.
o Case: Tla: K. K1 is TMa: K3. K3 [A].
(a) K7jis K3 [A], so by the inductive hypothesis K3 is K] [A].
(b) Let A" > A be given and assume A, is A1 in K3 [A'].
By Part 1, A; is As in K} [A].
By Corollary B.7, A; is A2 in K7 [A'].
Then {a—A; }K7 is {a— A2} K [A'].
By the inductive hypothesis, {a+A>} K7 is {a— A1} K] [A].
(g) Therefore, Tla: K5. K5 is Tla: K{. K} [A].
o Case: oK. K7 is Ya:K3.K4 [A]. Same as previous case.
4. By induction on the sizes of types.
o Case: K1 = Ko = K3 =T. Trivial.
o Case: K1 = S(A1), Kz = S(A2), and K3 = S(As). Follows by Part 2.
o Case: K| =lla:K{.K{, Ko =1la:K5. KY, and K3 = Ila:K5. K3,
(a) Kiis K5 [A] and K3 is K3 [A],
(b) so by the inductive hypothesis K7 is K3 [A].
) Let A" > A and assume A; is As in K7 [A].
) By Parts 1 and 2, A; is A1 in K7 [A].
(e) By Corollary B.7, A1 is As in K3 [A'].
(f) Thus {a—A1}KT is {a— A1 }KY [A]
) and {a— A1 }KY is {a— A3} K [A].
) By the inductive hypothesis, {a+ A1 } K7 is {a— A5 KL [A]
(i) Therefore, K is K3 [A].
o Case: K| = Ya:K{.K{, Ko = Za:K}3. K}, and K3 = Sa:K4.K4. Same proof as in the II case.
5. By Parts 1 and 3 and Corollary B.7.
6. By Parts 2, 4, 5, and Corollary B.7.

Theorem B.9
1. Ify1isy2 in T [A]l and T+ A = Ay : K then y1 Ay is 72 A5 in v K [A] and v K is yo K [A].

2. Ifyyis v in T [A]l and T+ A : K then y1 A is y2 4 in v K [A] and v, K is yo K [A].

3. Ifyp is y2 in T' [A] and T'F K then v1 K is y2 K [A].

4. Ifyyisy2 in T [A]land T F Ky < Ky then 1 Ky is v Ky [A], 71 K2 is y2 K2 [A], and A F 4 Ky < 2 Ko,
5. Ify1 is y5 in T [A] and T+ Ky = Ko then v1 Ky is v2 Ko [A].

Proof:

e Case: Rule 5. T is T [A] because A I ok.
e Case: Rule 6.

1. By the inductive hypothesis, y1 A is 2 A in T [A].
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2. Therefore, S(y1A4) is S(y2A) [A].
e Case: Rule 7.

By Lemma B.1 there exists a strict subderivation I" - K.

By the inductive hypothesis, v1 K’ is 2K’ [A].

Let A" = A and assume A; is A in v K’ [A'].

By monotonicity, y1[arrA1] is v2[a—A2] in T, a: K’ [A'].

By the inductive hypothesis, (y1[a—A1])K" is (y2[a— AV K" [A'].
That is, {a— A1 Hyi[a—a]K") is {ars Az H(2[a—a]K) [A].
Therefore, v (Ila: K. K") is y2(a: K'. K") [A].

No ok Wy

e Case: Rule 8. Same argument as for previous rule.
e Case: Subkinding and kind equivalence rules. Straightforward.

e Case: Constructor validity rules. Essentially the same as reflexive instances of the constructor equivalence
rules.

o Case: Rule 29.

1. Asin Rule 40, A F y1 (Aa: K" A1) : v (Ma: K. K')

2. and v (Tla: K. K") is v (Mo K'. K") [A].

3. By the inductive hypothesis, A v A} @ v1 K.

4. Thus A F yi((Aa:K' A1) AL« i ({a—s AL FK).

5. By the inductive hypothesis, v1 A} is v2 A5 in v1 K’ [A].

6. Thus vi[arsy1 Af] is y2[asv2A5] in T, a: K’ [A].
7. By the inductive hypothesis, A b (y2[a—v2 A5]) Az @ (m[a—sm ATK".

8. mfa—alis vlara]in Ty a: K [A, am K.
9. By the inductive hypothesis, v1[arra]A; is y2[aa]ds in yi[a—a]K” [A, oy K.
10. Thus A F v (Aa:K".A1)AL) = v2({a—r A5 A2) « 11 ({a—s ALK,

11. Finally, y1 A} is y2 A% in v K’ [A]
12. so 1 ({a—s AL }K") is v2({a— AL K" [A]
e Case: Rule 30.
As in the argument for Rule 7, v1 (Ha:K'. K"} is v (Tle: K'. K"y [A].

In particular, by Lemma B.1 there is a strict subderivation I" - K.

By the inductive hypothesis 71 K’ is 72K’ [A].

Also using the inductive hypothesis and Lemma B.6, A F v1 A1 : v (Tla: K. K7")
and Ak v A; -y (Ha: K KY).

A

By Lemma B.6, A F v K’, so A, a:y1 K' F ok.

By monotonicity, vi[arra]is y2[arsa] in T, a: K’ [A, a:y K.

By the inductive hypothesis, (y1K1)a is (v2K2)a in v [a—a] K" [A, ey K']
Thus A,y K' F (1 dr)a = (v242)a : ya—a] K,

10. Ao K'F (y14)a : y[a—sa] K7,

11. and A, am K'F (y242)a : yi[a—a]K".

12. Thus A F v A1+ v (Tl K. K",

13. AF vAr (MoK K"),

14. and Atk y1 41 = v242 : 1 (TTa: K. K").

15. Therefore v1 A1 is v2 Az in v (Tl K. K") [A]

© % =N
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e Case: Rule 31.

By the inductive hypothesis, v1(Za: K. K") is v2(Za: K" K") [A],
w1 A1) is mi(v242) in 1 K' [A],

and m2(y141) is m2(1242) in 1 ({a—mi AL FK") [A]

Thus Ak 141 = 42 n(Sa: K" K"),

and Ak y1 A (S KK,

Also, v ({a—m A1 }K") is v2({arsm A2 }K) [A],

so by subsumption A F y2(m242) @ 2 ({a—=m A2 }K").

Similarly, v1 K’ is v2 K’ [A]

© 0 N o ok W

so by subsumption A F y2(m1A2) 1 2 K'A.
Then A F v Ay : y2(Za: K. K").
. and by subsumption, A F y2 Az : v (Za: K. K").

— =
= O

e Case: Rule 32.

By the inductive hypotheses, v1 A1 is 1247 in 71 K [A],
11 K1 is 2 K1 [A],

and 71 Az is y2 Az in 1 K> [A].

Thus A F v A = v AL : KL,
AFyAr Ky,

AF AL Ky,

and A F vy1 Az : 11 Ko,

Then A F (A1, A2) : 71 (K1 x K>),

s0 A F yi(mi{A1, A2)) s 11 K.

Also, A F yi(mi{A1, A2)) = 72 A2 : K,
. s0 (m{A1, A2)) is v2 A2 in v K [A]

© 0 N o ok W

— =
= O

e Case: Rule 33. Similar proof as in previous case.
o Case: Rule 34.

By the inductive hypothesis A+ y1 A = v A : S(11 B),
Ak vy A:S(nB),

Ak yA:S(nB),

and S(m B) is S(v2B) [A]

Thus Ay wB=vwB:T

and A+ vB:T.

AFyA=yB:T.

By transitivity, AF vy A=vwB:T.

By subsumption AF -~y A:T.

Finally, T'is T [A].

e Case: Rule 35.

© %0 N ok WD

H
e

By the inductive hypothesis v1 A is v2 B in T' [A]
sOo AFyA=vB: T,

AFvA:T,

and A+ vB:T.

Then A+ vy A=~B:S(mA),

Ak yA:S(mA),

A A
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7. and AF 2B : S(v2B).
8. But A+ S(72B) < S(114)
9. so by subsumption A F 2B : S(v1A4).
10. Finally, by the IH and transitivity and symmetry, 1A is 72 A in T [A]
11. so S(y14) is S(2A4) [A]
e Case: Rule 36.
Y2 is v1 in T [A].
By the inductive hypothesis, 72 A" is v1 A in 72 K [A]
and 2K is 71 K [A].
Thus Ak vK =vmK.
By Corollary B.7 and symmetry, v1 A is 72 A’ in 11 K [A].

ook W

By symmetry, 71 K is 72K [A].

e Case: Rule 37.

71 is 1 in T [A]

By the inductive hypothesis, y1 4 is y1 A" in v K [A],
y1A"is 2 A" in v K [A],

and 1 K is 72 K [A].

By transitivity, v1 A is v2 A" in 11 K [A].

ork Wy

¢ Case: Rule 38.
1. Since A F ok, we have AFb=b:T and AFb:T.
2. Also, T'is T [A].

e Case: Rule 39. By assumption.

e Case: Rule 40.

1. By the inductive hypothesis, v1 K’ is v2 K’ [A].

2. As in the proof for Rule 7, we have v1 (ITa:K'. K"} is v2(Tla: K'. K" [A].
3. Now yi[a—al is vo[a—a] in Ty oK' [A, aiy K.

4. By the inductive hypothesis, (v1[a+ra])A1 is (v2[a—a])Az in (yi[a—a )K" [A, ey K]
5. s0 A, K'F (na—al) A = (v2laal) Az« (m[a—a]) K,

6. and A, 1 K' + (mia—al)Ar s (71 [a—a]) K.

7. Thus A F da:y K ((mi[a—al)Ar = dape K (vlo—a]) A2« i (Ha: K .K")
8. and A F dam K .(mila—a])Ar : v (Ha: K. K").

9. Similarly, v2[ara]is yi[arsa] in T a: K’ [A ey K]
10. So by the inductive hypothesis A, a:12 K’ F v[arsa]As : y2[arsa] K.
11. Then A F Ay K'.(y2[a—a]) Az : v (Ta: K. K")
12. and by subsumption A F Aoy K (y2laal)Az : i (TTa: K. K").

e Case: Rule 41.

By the inductive hypothesis v1 4 is 2 A’ in v (TTa: K. K>) [A],
1 A1 is 2 A7 in 1 K [A],

and v1 (Ila: K. K>) is v (Ta: K1 . K3) [A].

Thus A F v (AA41) = 72(A"AL) : i ({a— A1 LK),

AF v (AA) : n({a—=AL LK),

AF (A AD) a1 AL H i [a—a] K3).

ook W
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7. But v Al is 2 A7 in 2K [A]

8. s0 {a1 AL (mla—a]K2) is 2 ({a— AL }KR) [A],

9. and by subsumption A F y2(A'AL) : v ({a— A1 }KR).

10. Finally, vi({a—~ A1} K32) is v2({a— A1 FKR) [A]
e Rule 42.

1. By the inductive hypothesis, v1 41 is v2 A2 in 71 (Za: K’ K") [A]

2. and v (Za: K. K") is 72 (Za: K" K") [A]

3. Thus A F vi(m A1) = va(mA2) s K,

4. A y(mA) K,

5. Ak y(mdz) i K/,

6. and 1 K" is 2 K’ [A].
e Rule 43
As in the previous case, v1(Za: K. K") is v2(Za:K'.K") [A],
Y1 A1 is v242 in 71 (Za: K K" [A]
and vi (w1 A1) is y2(m1Az2) in v1 K’ [A]
and v1 (Za: K K" is v (Za:K'. K") [A].
Also, Ak vi(m2A1) = v2(m242) : 1 ({arsm1 ALK,
AFyi(mdr) : n({a—sm A }K"),
and A b y2(m2Az2) : {a=sva (71 A1) Hin [aa] K.
But y1(Za:K".K") is v1(Za:K'.K") [A],
so {ay1 (71 AN Hn[aalAsz) is {arye (71 A (i [a—alAz) [A]
By subsumption, then, A & vy2(m2A2) 1 vo({arsrm A1 JK')

S N A e

H
e

e Case: Rule 44. Follows easily by the inductive hypotheses.
e Case: Rule 45. Follows easily by the inductive hypotheses.

Lemma B.10
IfT F ok, At ok, and (Yo € dom(T').A F vy = yaa : 41 (T'@)) then 41 is v2 in T [A].

Proof: By induction on I' - ok.
e Case: Rule 1. Follows by A F ok; the other conditions are vacuously true.

o Case: Rule 2.

1. By Lemma B.1 there is a strict subderivation I'" - ok.
2. By the inductive hypothesis, 71 is 72 in T" [A].

3. By Theorem B.9, v1 K is 7. K [A].

4. Therefore, v; is 72 in T, a: K [A].

Corollary B.11 (Functionality)
1. IfTF K and AF ok and (Vo € dom(T). At yieo = ya00 - y1 (T(«))) then AF v K =42 K.

2. IfTF Ky = Ky and AF ok and (Vo € dom(T'). AF yio0 = yo : v1(T'(v))) then Aty Ky = 42 Ko.
3. T+ Ky < Ky and AF ok and (Ya € dom(T). AF yia =yea : y1(T'(«))) then AF v Ky < v Ka.
4. IfTFA: K and AF ok and (Yo € dom(T). AF yia = o : v1(T(a))) then Ay A=y A1 K.
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5. fT+H Ay = A2 - K and A ok and (Vo € dom(T'). A+ vy = vz : 1 (T'(«))) then
AF ”ylAl = ”yzAz : ”)/1[{

Corollary B.12 (Validity)
1. fTHFA =Ay . KthenTHFA . K, THAy: K,and ' - K.

2. fTFA:K thenT'F K.
3. IfTH Ky <Ky thenT'F Ky and ' - K.
4. IfT'F Ky = Ko then ' F Ky and I' F K.

Corollary B.13 (Weakening 2)
1. IfFl,ozsz,Fz F j and Fl F [\71 S [\72 then Fl,azKl,Fz F j

2. IfT+HFJ and+T =1’ then "+ 7.

Corollary B.14
Kind equivalence is symmetric, transitive, and reflexive on well-formed types, while subkinding is transitive
and reflexive on well-formed kinds.

Corollary B.15
IfI'- Ky =Ko thenTE Ky < Ky andT'F Ky < K.

Proposition B.16
IFT- XK' A: L thenT,a:K'HA: K",

Proof: By induction on derivations. For proofs ending with Rule 20 the desired result is given directly; for Rules 27
and 28, the result follows directly by the inductive hypothesis. |

Lemma B.17
1. If T + E[A] : L then there is a subderivation of the form T+ A : K.

2. IfT + E[AA'] : L then there exists a kind Ila:K'. K" such that T+ A : Tla:K'. K" and T+ A" : K.

Proof:

1. By induction on typing derivations. If £ = ¢ then the result follows trivially; otherwise, the result follows by
the inductive hypothesis.

2. By induction on typing derivations. If £ = ¢ and the proof concludes with a use of the application rule then
the result follows by inversion; in all other cases, the result follows by the inductive hypothesis.
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