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Homotopy type theory is a recently-developed unification of previously dis-
parate frameworks, which can serve to advance the project of formalizing
and mechanizing mathematics. One framework is based on a computational
conception of the type of a construction, the other is based on a homotopical
conception of the homotopy type of a space. The computational notion of
type has its origins in Brouwer’s program of intuitionism, and Church’s λ-
calculus, both of which sought to ground mathematics in computation (one
would say “algorithm” these days). The homotopical notion comes from
Grothendieck’s late conception of homotopy types of spaces as represented
by ∞-groupoids [12]. The computational perspective was developed most
fully by Per Martin-Löf, leading in particular to his Intuitionistic Theory of
Types [23], on which the formal system of homotopy type theory is based.
The connection to homotopy theory was first hinted at in the groupoid inter-
pretation of Hofmann and Streicher [14, 13].1 It was then made explicit by
several researchers, roughly simultaneously.2 The connection was clinched
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1The importance of equality of elements of a type in constructive mathematics was also
emphasized by Bishop [7]. Quotient types, which were introduced in NuPRL as a further
development of Bishop’s and Martin-Löf’s ideas [9], may be seen as a particular case of
this connection.

2Awodey and Warren [5] showed that the basic system of Martin-Löf type theory can
be interpreted in a Quillen model category (an abstract framework for doing homotopy
theory); Lumsdaine [22] and van den Berg and Garner [27] showed that every type in the
system has the structure of an ω-category (a structure closely related to that of an ∞-
groupoid); Gambino and Garner [11] showed that the type theory itself supports a weak
factorization system (the basic building block of a Quillen model structure); and both
Streicher [25] and Voevodsky [28] proposed interpretations into the category of simplicial
sets, using ideas from homotopy theory.

1



by Voevodsky’s introduction of the univalence axiom, which is motivated by
the homotopical interpretation, and which relates type equality to homotopy
equivalence [18, 4].

Constructive foundations are often regarded as incompatible with clas-
sical mathematics. By contrast, the framework of homotopy type theory is
fully compatible with classical mathematics, and indeed allows for a classical
conception of proposition, as well as a conception of set that is compatible
with such principles as the axiom of choice. The key to achieving this uni-
fication is to avoid postulating generally certain reasoning principles, such
as the decidability of every type, although these may still be postulated
“locally”, for example the decidability of every proposition. It is notable
that these same reasoning principles are also those that are usually avoided
in constructive foundations, opening the door to the unification of the con-
structive (computational) and homotopic (spatial) interpretations of types,
the implications of which are only just beginning to be understood. More-
over, by not insisting on these principles globally, it is possible to consider
a far richer notion of type than has previously been considered in the com-
putational approach, namely one in which types are abstract spaces that
may have non-trivial higher-dimensional structure, like the n-spheres for all
n ≥ 0. In conventional foundations, such as axiomatic set theory, these
objects are presented as structured sets representing certain conceptions of
space, such as topological spaces. Here, instead, such higher-dimensional
objects arise “synthetically” in much the way that lines and triangles in
Euclid’s geometry are primitive abstract objects, rather than being com-
prised of analytic point-sets. This provides a new perspective on some fa-
miliar constructions in homotopy theory, such as the homotopy groups of
a space [26, 21, 19] and the construction of so-called Eilenberg-MacLane
spaces [20], with specified homotopy groups. Moreover, new proofs of some
standard results have a distinctively “logical” flavor, in combination with
more “geometric” and “topological” elements.

What is it that makes this new unification possible? Although it may
be too early to formulate a single, deep unifying principle, it is possible to
make a few observations that will give the reader a sense of its inevitabil-
ity. First, all of the constructions of Intuitionistic Type Theory, includ-
ing especially the identity type, are homotopy invariant, in the sense that
type families and mappings between types inherently respect identifications
(paths, homotopies, or deformations). Moreover, the formation of indexed
products and sums of types, which correspond to analogous constructions
on spaces, respect the homotopically motivated notion of equivelence of
types,corresponding to the homotopy equivalence of spaces. This invariance

2



essentially follows from the basic fact that Martin-Löf’s ingenious concept of
the identity type corresponds to the path space of a space, and since every-
thing in the formal system respects identity, everything in the interpretation
respects homotopy, which is determined by identfication along paths. Sec-
ond, a characteristic feature of both intuitionistic type theory and homotopy
theory is an emphasis on structure over property. Under the propositions-
as-types conception of intuitionistic logic,3 types express propositions, and
objects of the type are proofs of those propositions in the form of mathemat-
ical constructions that provide evidence for their truth. A similar emphasis
can be discerned in abstract homotopy theory, in which, e.g., paths (homo-
topies) may be seen as evidence for the “identification” of two points, and
similarly for paths between the corresponding values of two functions. Two
points are not merely “equal”, as a property, but rather are identified by
a (not necessarily unique) deformation, construction, or procedure. This
approach extends to higher dimensions, in that one may speak of the iden-
tifications of two (parallel) identifications, at all higher dimensions. Such a
structure of a hierarchy of identifications via path connectedness is found in
standard settings for homotopy theory such as simplicial sets, cubical sets,
and globular sets, all of which stress the role of cells as identifications.

We thus already see an analogy between the constructively motivated
concept of proof relevance, in which proofs are mathematical objects classi-
fied by a type, and the homotopically motivated distinction between struc-
ture and property. An important advantage resulting from proof relevance is
that it naturally supports a comprehensive approach to mechanized math-
ematics in which computer systems, such as Coq [10] and Agda [1], can
be used to verify the correctness of mathematical arguments, of either a
classical, set-theoretic form, or a constructive, type-theoretic form. In ei-
ther case the proof of a theorem constitutes a formal mathematical object
whose validity can be independently checked, avoiding the need to rely on
the correctness of the proof checker itself. Once a proof has been obtained,
others can not only check its formal correctness by the usual means, but
can also submit the proof to another checker, to ensure that it is valid ac-
cording to the rules of homotopy type theory. This approach to verification
is fundamentally the same as that proposed by de Bruijn in the Automath
system [3], albeit applied to a language with richer foundational commit-
ments than were required there. It should be contrasted with the approach
of systems such as NuPRL [24] or HOL [15, 16], that rely on a small trusted
code base to ensure the validity of proofs.

3See, e.g., [17] for its original formulation.
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The idea of identifications of points in a space along a continuous path,
and of higher identifications of paths as homotopies, etc., leads to Voevod-
sky’s conception of a hierarchy of homotopy levels, or h-levels for short,
which is definable within type theory. Whereas the usual hierarchy of size
is determined by type universes or large cardinals in type theory or set the-
ory, the hierarchy of h-levels is based instead on the internal structure of
types. Roughly speaking, the lowest level consists of the types that have
at most one element, up to path-connectedness; these are called proposi-
tions, and they correspond to the (empty or) contractible spaces. The next
level, called sets, consists of those types whose identity types are themselves
propositions — two elements of a set are “equal in at most one way”. After
that come the types whose identity types are sets; these are the groupoids.
And so on, with the types at level n + 1 being those whose identity types
have level n, for all n ≥ 0. Just the recognition that this hierarchy of
h-levels is present in the system of all types has been a huge advance in
our understanding of type theory; previously, it was simply a mystery that
some types were fully determined by their elements, while others seemed
to behave as though they had some further structure. The construction of
quotient types, for example, is now greatly simplified when one knows that
the equivalence relation being factored out is a family of propositions, and
not of “higher-dimensional” types. For another example, for types A and
B that are propositions, the relevant notion of equivalence is logical equiv-
alence, represented by the type A ↔ B. For sets, the relevant notion is
isomorphism A ∼= B, and for groupoids, there is the notion of (categorical)
equivalence A ' B. Each of these concepts results by specializing the single,
uniform notion of equivalence of types A ' B (also due to Voevodsky) to
the respective cases of propositions, sets, and groupoids.

In this setting, Voevodsky’s univalence axiom can be stated as the as-
sertion that the type A ' B of all equivalences between two types A and B
is itself equivalent to their identity type,

(A ' B) ' Id(A,B). (UA)

Thus in particular, logically equivalent propositions will be identified, as in
the original, extensional type theory of Church [8]. Isomorphic sets, too, will
be identified “up to homotopy”, i.e., by paths between them in the universe
of all types, and similarly for equivalent groupoids, and equivalent types
in general. Note that this stipulation also serves to specify the otherwise
underdetermined identity type Id(A,B).

This is not really the place for a systematic introduction (for that, see
[26]), but a brief example may serve to convey a bit of the flavor of the new

4



p

b

Figure 1: The 1-sphere S1

approach, especially the distinctive intermingling of logical and homotopical
ideas. As is the case in conventional Martin-Löf type theory, the basic types
of booleans B and natural numbers N can have at most one identification
between any two elements; that is, given say n,m : N and p, q : IdN(n,m)
in the identity type of n and m, we always have some α : Id(IdN(n,m))(p, q)
identifying p and q. In this sense, there is no real information in the type
IdN(n,m), apart from whether or not it is inhabited. Such types with at
most one identification between any two elements are called “sets”. Any
types that can be constructed from B, N, or any other sets, by means of the
usual type constructors of dependent sum Σx:AB(x) and dependent product
Πx:AB(x) (which include A×B and A→ B as special cases) are also sets,
and the same is true for the identity types IdA(a, a′) for a, a′ : A, for any
set A.

An example of a type that is not a set is the circle (or “1-sphere”) S1,
which has a base point b : S1 and a generating loop p : IdS1(b, b). There are
then many different self-identifications, which may be labelled

refl(b), p, p · p, ... : IdS1(b, b).

Here refl(b) is the trivial identification, i.e., the canonical witness to the
reflexivity of identity. There is also the identification p, which is different
from refl(b) in the sense that Id(IdS1 (b,b))(refl(b), p) is empty. We can think of

p homotopically as the continuous “path” that goes once around the circle.
By the (function witnessing the) transitivity of equality,

(−) · (−) : IdS1(a, b)× IdS1(b, c) // IdS1(a, c),

there are also the “paths” p · p, p · p · p, . . .. And by symmetry,

(−)−1 : IdS1(a, b) // IdS1(b, a),
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there are similarly the paths p−1, p−1 · p−1, . . . : IdS1(b, b). Although S1 is
therefore not a set, it can be shown that IdS1(b, b) is one; that is, the types
Id(IdS1 (b,b))(x, y) are either inhabited (by reflexivities) or empty, depending

on whether or not x = y, for all x, y : IdS1(b, b). Indeed, one can show that
IdS1(b, b) ∼= Z, i.e., the fundamental group of the type S1 is the integers, as
it should be (see [21] for the details). The proof of this uses the univalence
axiom, together with the specification of S1 as a new kind of higher inductive
type, generalizing the usual inductive specification of the natural numbers
and similar structures. For S1, the inductive specification essentially says
that S1 is “the type freely generated by the base point b : S1 and the loop
p : IdS1(b, b)”, in the same sense that the usual inductive specification of N
says that it is the type freely generated by 0 : N and the successor function
s : N // N.

Another type that is not a set is the universe U of all (small) types.
According to the Univalence Axiom, identifications between types A,B : U
correspond to equivalences A ' B, which as we said above are general-
ized type isomorphisms. In fact, as already stated, if A and B themselves
are sets, then an equivalence between them is just an isomorphism in the
usual sense: a pair of maps back and forth that compose to the respective
identity mapppings. Now the booleans B, for example, have two different
isomorphisms B ∼= B, namely the identity and the operation of “negation”
¬ : B // B, which swaps the truth values 0, 1 : B. Thus by univalence
there are two distinct identifications in IdU (B,B), corresponding to these
distinct isomorphisms, and so U is not a set, but a “higher-dimensional”
type, like S1.

Now observe that by the basic recursive property of S1 as “the type
freely generated by a point with a loop on it”, there is a map

rec(B, n) : S1 // U ,

determined by sending the base point b : S1 to the booleans B : U and the
generating loop p : IdS1(b, b) to (the loop corresponding under univalence
to) negation, say n : IdU (B,B). As a type of the form S1 //U , this rec(B, n)
is thus a family of types over S1, sometimes called a “dependent type” and
written

x : S1 ` rec(B, n)(x).

Homotopically, such a type-family is interpreted as a “fibration” E // S1,
where the total space E is just the sum type Σx:S1 rec(B, n)(x), equipped
with its usual indexing projection. In the present case, the “fiber” is then
the type rec(B, n)(b) = B, and the action on (elements of) B induced by the
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Figure 2: The twisted double cover of S1

path n : IdS1(b, b) in the base is exactly the operation of negation ¬ : B //B.
Thus, from a homotopical point of view, we have constructed the “twisted
double cover” of the circle (see Figure 2). This construction from homotopy
theory is closely related to the celebrated Hopf fibration which, among other
things, can be used to compute some of the higher homotopy groups of
the spheres S2 and S3. Indeed, one can construct the Hopf fibration in
homotopy type theory in much the same way as the foregoing example, using
univalence, negation, winding around the circle, and other constructions
derived from combinations of logical, type-theoretic, and homotopical ideas
(see [26], §8.5).

We can now say in a bit more detail how the univalent framework of ho-
motopy type theory subsumes and extends the classical, set-theoretic frame-
work for doing mathematics, by making use of the hierarchy of h-levels,
which includes sets within a broader framework of homotopy types. At the
bottom level, the propositions (the types having at most one element, up
to higher identification) correspond to conventional, proof-irrelevant propo-
sitions; whether we also assert the law of excluded middle in the form that
every such proposition is either inhabited or empty is a further, consistent
assumption that may be made if classical logic is desired. Next, the sets (for
which equality is a proposition that is taken to be “self-evident” or “proof-
irrelevant”) correspond to the usual sets, but now without any commitment
to choice principles, or whether membership is a boolean proposition. Those
further principles can still be consistently taken as axioms if needed, but they
are not required, even with the introduction of infinite sets such as the type
of natural numbers. Voevodsky’s new insight, which plays such an impor-
tant role in homotopy type theory, is that, besides the familiar concepts of
proposition (classically formalized in predicate calculus) and set (classically
given by the Zermelo-Fraenkel axioms), there is an infinite hierarchy of fur-
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ther dimensions extending beyond just these two. The groupoids (the next
h-level above the sets), such as our example S1, are the natural setting for
systems of set-theoretic structures, such as groups and rings, that one may
wish to regard as identified up to isomorphism. Because two groups, say, can
be isomorphic in many different ways, however, the evidence for an identifi-
cation is not a trivial proposition, but consists in the mutually inverse pair of
homomorpisms, i.e., the isomorphism, that warrant it. Here we see explic-
itly how proof-relevance (from constructivism) and the “property-structure”
distinction (from homotopy theory) coincide.

In this way we can now distinguish, within Martin-Löf type theory, an
infinite hierarchy of different “homotopical dimensions” that were not fully
recognized previously, despite such models as Hofmann and Streicher’s two-
dimensional groupoid interpretation [14] that strongly hinted at the impor-
tance of higher dimensions of structure. Type theory was, of course, origi-
nally conceived as a foundation for constructive mathematics, in which all
constructions, including proofs of propositions, have direct computational
meaning in accordance with Brouwer’s original program. This fundamental
connection with computation has proved enormously influential in computer
science, in particular in the theory of programming languages and the foun-
dations of mechanized proof. Homotopy type theory makes essential use
of the concept of proof relevance, which is so central to the constructive
program, and emphasizes a notion of abstract types that is familiar from
the theory of programming languages (e.g., the identity type is itself an
abstraction, rather than being encoded in terms of a concrete definition of
homotopy). The grand challenge as of this writing is to extend the com-
putational interpretation to the univalence axiom, and therewith to the full
hierarchy of h-levels, providing a computational meaning for, say, mappings
among higher-dimensional structures such as the spheres and toruses of ar-
bitrary dimension. Recent advances, such as the landmark development of a
constructively valid model using cubical sets [6], strongly suggest that such
a unification will be achieved in the near future. The potential implications
for computer science are only beginning to be explored [2].

Perhaps the most important application of the unification of classical and
constructive mathematics is the possibility of applying systems of mecha-
nized proof verification to broad swaths of classical mathematics that were
previously formalizable only via elaborate coding into set theory, and only
in systems based on classical logic, which generally lack the benefits result-
ing from the computational interpretation of constructive systems (e.g., the
generation of independently verifiable proof certificates). The direct for-
malization of everything from quotient sets to cohomology simplifies and
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streamlines the formalization of even advanced mathematics, and has the
potential to eventually make formal verification into a practical tool for the
everyday mathematician. Interestingly, this practical development makes
the logical foundations of mathematics finally relevant to the actual practice
of mathematics, rather than being just a theoretical possibility. The result
may be a new “post-Gödel” attitude toward foundations; for when their
only interest was theoretical, the phenomenon of incompleteness seemed to
lessen the importance of logical foundations in principle. But with the actual
practical benefits of formalization (increased rigor and certainty, ease of re-
mote collaboration, accumulation of results), the theoretical incompleteness
phenomenon diminishes in importance, and logical foundations can become
a useful addition to the toolbox of the working mathematician.4

It is a curious fact, made all the more interesting by the above-mentioned
developments, that two of the most successful systems for mechanized proof,
NuPRL [9] and Coq [10], are both based on constructive type theory. Why
ought that be the case? Homotopy type theory may provide a clue in the im-
portance of proof-relevance, and the associated distinction between property
and structure, in both constructive mathematics and homotopy theory. The
univalent approach of homotopy type theory exploits the axiomatic freedom
provided by constructive mathematics, allowing it to rely far less on elabo-
rate encodings which impede the process of formalization required to admit
machine-checked proof. This experience parallels the development of high-
level (abstract) programming languages that provide a synthetic concept
of computation, rather than one based on low-level machine models such as
the Turing machine or Random-Access Machine. Thus we find that whether
we are discussing mechanized mathematical proof or verified computer pro-
gramming, Church’s λ-calculus emerges as a central concept. Perhaps this
explains why constructive mathematics and mechanized proof are so tightly
linked. That they should also be entwined with homotopy theory — one of
the most abstract, geometrical, and rarified areas of modern mathematics
— is an intriguing and challenging fact inviting further investigation.
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