
Relational Interpretations of Recursive Types in an

Operational Setting�

Lars Birkedal and Robert Harper

birkedal@cs.cmu.edu and rwh@cs.cmu.edu

School of Computer Science

Carnegie Mellon University

December 29, 1998

�A summary of some of the results in this paper appeared in TACS '97.

1

Proposed running head:

Recursive Types in an Operational Setting

Mailing address of corresponding author:

Lars Birkedal
School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA

2

Abstract

Relational interpretations of type systems are useful for establish-

ing properties of programming languages. For languages with recursive

types it is di�cult to establish the existence of a relational interpreta-

tion. The usual approach is to pass to a domain-theoretic model of the

language, and exploiting the structure of the model to derive relations

properties of it. We investigate the construction of relational interpre-

tations of recursive types in a purely operational setting, drawing on

recent ideas from domain theory and operational semantics as a guide.

We prove syntactic minimal invariance for an extension of PCF with a

recursive type, a syntactic analogue of the minimal invariance property

used by Freyd and Pitts to characterize the domain interpretation of a

recursive type. As Pitts has shown in the setting of domains, syntactic

minimal invariance su�ces to establish the existence of relational in-

terpretations. We give two applications of this construction. First, we

derive a notion of logical equivalence for expressions of the language

that we show coincides with experimental equivalence and which, by

virtue of its construction, validates useful induction and coinduction

principles for reasoning about the recursive type. Second, we give a

relational proof of correctness of the continuation-passing transforma-

tion, which is used in some compilers for functional languages.

3

1 Introduction

It is an important problem to develop techniques for building compilers that
help to ensure that the generated code behaves as expected. A natural ap-
proach is to view compilation as a form of program transformation between
a source and a target language, each with a well-de�ned syntax and seman-
tics. The problem is then to prove that the source and target program have
the same observable behavior at execution time.

Most studies of compiler transformations focus on type-free languages,
for which types play no role at run time. Compiler transformations are given
as syntax-directed translations between untyped intermediate languages.
Recent work, however, stresses the use of types during compilation and at
run time to enhance the reliability of the compiler itself and to improve the
quality of generated code (Shao et al. , 1998; Tarditi et al. , 1996; Morrisett,
1995). To take advantage of types, compiler transformations are generalized
to type-directed translations between typed intermediate languages. Type-
directed translations are guided by, and preserve, the type of the program
to ensure that types are propagated from one stage to the next.

We will consider two forms of type-based compiler transformation. Lo-
cal, or peephole, transformations are those that replace one code fragment by
another that is contextually equivalent to it, which means that which means
that the second exhibits the same behavior as the �rst in all contexts. Deter-
mining whether two fragments are contextually equivalent is di�cult since
it requires consideration of all possible contexts in which these fragments
might be used. Global transformations are those that operate on complete
programs, rather than program fragments. An example of a global trans-
formation is the continuation-passing (cps) transformation, which makes
explicit the control state of a program (Fischer, 1993; Plotkin, 1975). The
correctness of this transformation states that a complete program and its
cps transformation yield the same observable behavior; when viewed as a
transformation on program fragments, it does not preserve contextual equiv-
alence.

We will use the method of logical relations (Statman, 1985) in our study
of compiler transformations for typed languages. Roughly speaking, logical
relations are a means of specifying an invariant relation between two pro-
grams that ensures that they engender the same observable behavior when
used in a complete program, even though they may di�er substantially on
intermediate results. This is achieved by associating with each type a rela-
tion that is preserved (in a sense to be made precise below) by the primitive
operations of that type. We will demonstrate the use of logical relations to

4

characterize experimental equivalence and to give a proof of correctness of
the cps transformation. As we will see, the key to applying the method of
logical relations is to establish the existence of a family of relations satisfying
the required properties.

It is straightforward to construct logical relations for languages with sim-
ple type systems, including those with product, sum, and function types,
because in these systems we may make use of de�nition by induction on the
structure of type expressions. However, practical programming languages
(such as Standard ML (Milner et al. , 1997)) have richer type systems for
which the it is more di�cult to establish the existence of relational interpre-
tations. As a case in point we will consider a call-by-value variant of Plotkin's
PCF (Plotkin, 1977) extended with a single (unrestricted) recursive type.
For such a language the conditions required of a logical relation are \circu-
lar", precluding their de�nition by induction on types. (Other language fea-
tures, such as impredicative polymorphism (Girard, 1972; Reynolds, 1974b),
or computational e�ects, such as mutable references, present further di�-
culties for the relational approach. We do not consider these complications
here.)

The usual method for handling recursive types is to pass to a denota-
tional semantics of the language (Plotkin, 1983). In such a semantics the re-
cursive type is interpreted as the inverse limit of a system of domains (Scott,
1982). Relations over the domain model may be constructed by an analogous
inverse limit construction (see, for example, Reynolds's proof of correctness
for the continuation transform (Reynolds, 1974a)). A weakness of this ap-
proach is that it is still necessary to prove that the denotational semantics
is computationally adequate (Plotkin, 1983) in order to transfer properties
of the model to properties of the execution behavior of the program. But
the usual proof of adequacy relies on a logical relations argument, raising a
further question of existence of a relational interpretation of types (Plotkin,
1983; Pitts, 1996)!

A natural question is whether it is possible to avoid the passage to a do-
main model, instead working entirely with the operational semantics of the
language. We answer this in the a�rmative by transferring key properties of
the domain interpretation into the operational setting. Speci�cally, we ex-
ploit recent results of Pitts on relational properties of domains (Pitts, 1996)
and the methods of Mason, Smith, and Talcott for deriving equivalences of
expressions (Mason et al. , 1995). Pitts demonstrated that relational prop-
erties of a domain model of a recursive type can be obtained using only a
universal property of the model, called minimal invariance, that states that
a recursive function canonically associated with the recursive type is the

5

identity function on that type. Mason, Smith, and Talcott developed meth-
ods for establishing equivalences of expressions in an untyped language that
we adapt and extend to the case of a typed language with a single recursive
type. This extension sheds light on the need for \run-time type checks" in
their formalism; here they arise naturally from the isomorphism between a
recursive type and its unrolling, and the primitive case analysis construct of
disjoint union types.

The starting point for our work is the observation that the minimal in-
variance condition isolated by Pitts is expressible entirely in the syntax of
the language itself. More precisely, the canonical recursive function associ-
ated with the recursive type is de�nable as an expression of PCF extended
with that recursive type. Adapting techniques introduced by Mason, Smith,
and Talcott (Mason et al. , 1995), we prove that this function is opera-
tionally equivalent to the identity, a property that we call syntactic minimal

invariance. Following Pitts, we then show that syntactic minimal invari-
ance is su�cient for the construction of logical relations, which we use to
characterize experimental equivalence and to prove correct the continuation
transformation. The characterization of experimental equivalence provides
induction and co-induction methods for proving equivalence of expression of
recursive type. The proof of correctness for the cps transformation extends
Reynolds's proof (Reynolds, 1974a) to a typed language with an arbitrary
recursive type, and avoids the passage to a denotational semantics.

The remainder of this paper is organized as follows. In Section 2 we
introduce the language L, a call-by-value variant of Plotkin's PCF enriched
with a single recursive type. In Section 3 we de�ne the notion of exper-
imental equivalence, with which we shall be working in the remainder of
the paper. The main result of this section is the proof of syntactic min-
imal invariance, based on a technique introduced by Mason, Talcott, and
Smith (Mason et al. , 1995). In Section 4 we de�ne a universe of admis-
sible relations over experimental equivalence classes of closed expressions.
We also de�ne relational operators corresponding to the type constructors
of the language and show that they preserve admissibility. The relational
constructors are used in Section 5 to de�ne the relational interpretation of
types. In Section 6 we use this construction to characterize experimental
equivalence. In Section 7 we use a similar construction to give a proof of
correctness of the cps transformation. Finally, in Section 8 we discuss re-
lated work, and in Section 9 we conclude and suggest directions for further
research.

6

2 The Language

The language, L, is a simply-typed fragment of ML with one top-level re-
cursive type. We let x and f range over a set Var of program variables. The
syntax of the language is given by the following grammar:

Types � ::= 0 j 1 j � j �1 + �2 j �1 � �2 j �1 * �2
Expressions e ::= v j in e j out e j inl� e j inr� e j case(e1; e2; e3) j

(e1; e2) j fst e j snd e j e1 e2
Values v ::= � j in v j inl� v j inr� v j x j

(v1; v2) j �x f(x:�):�
0:e

Evaluation E ::= � j in E j out E j inl� E j inr� E j case(E; e; e0) j
Contexts (E; e) j (v;E) j fst E j snd E j E e j v E

The L raw terms are given by the syntax trees generated by the grammar
above, with e as start symbol, modulo �-equivalence, as usual. Alpha-
equivalence is denoted ��. Observe that � is a type constant. Distinguish
a �xed type expression ��, the intuition being that � is a recursive type
isomorphic to ��; in and out are used to mediate the isomorphism.

A �nite map is a map with �nite domain. We use ; to denote the map
whose domain is the empty set. The domain and range of a �nite map f are
denoted Dom(f) and Rng(f), respectively. When f and g are �nite maps,
f + g is the �nite map whose domain is Dom(f)[Dom(g) and whose value
is g(x), if x 2 Dom(g), and f(x) otherwise. f # A means the restriction
of f to A, and f nn A means f restricted to the complement of A. We use
[x1 : y1; : : : ; xn : yn] to denote the �nite map which maps xi to yi, for all
1 � i � n.

We denote the set of all types by Type. A typing context is a �nite
map from variables to types; we use � to range over typing contexts. If
x 62 Dom(�), then �[x : �] denotes the typing context � + [x : �]. A typing
judgment has the form � ` e : � . The typing rules are given in Figure 1. We
write ` e : � for ; ` e : � . The L terms is the set of raw terms e for which
there exists, for each e, a typing context � and a type � such that � ` e : � .

Note that, even though there is no explicit introduction rule for the type
0, there are terms of this type, for instance (�x f(x:1):0:f x) �.

The set of expressions of type � with free variables given types by �,
denoted Exp� (�) is de�ned as follows.

Exp� (�)
def
= f e j � ` e : � g

Further de�ne
Exp�

def
= Exp� (;)

7

� ` x : � (�(x) = �) (t-var)

� ` � : 1 (t-one)

� ` e1 : �1 � ` e2 : �2

� ` (e1; e2) : �1 � �2
(t-prod)

� ` e : �1 � �2

� ` fst e : �1
(t-fst)

� ` e : �1 � �2

� ` snd e : �2
(t-snd)

� ` e : �1

� ` inl�2 e : �1 + �2
(t-inl)

� ` e : �2

� ` inr�1 e : �1 + �2
(t-inr)

� ` e1 : �1 + �2 � ` e2 : �1 * � � ` e3 : �2 * �

� ` case(e1; e2; e3) : �
(t-case)

�[f : �1 * �2][x : �1] ` e : �2

� ` �x f(x:�1):�2:e : �1 * �2
(f; x 62 Dom(�)) (t-fix)

� ` e1 : �2 * � � ` e2 : �2

� ` e1 e2 : �
(t-app)

� ` e : �

� ` out e : ��
(t-out)

� ` e : ��

� ` in e : �
(t-in)

Figure 1: Typing Rules

8

Likewise, we de�ne sets for values as follows.

Val� (�)
def
= f v j � ` v : � g

and
Val�

def
= Val� (;)

Substitution of an expression e0 for free occurrences of x in e is written
[e0=x]e. The parallel substitution of e1, . . . en for x1, . . . , xn in e is written
[e1; : : : ; en=x1; : : : ; xn]e. We let FV(e) denote the set of free variables in e.
Suppose �[x : �] ` e : � 0. We then write �x:�:e as an abbreviation for
�x f(x:�):� 0:e, where f is some variable satisfying f 62 FV(e); when there is
no risk of confusion we shall use this abbreviation without explicating the
context �.

It can easily be shown that the following \strengthening lemma" holds
for typing: if �[x : �] ` e : � 0 and x =2 FV(e), then � ` e : � 0. Also, the
usual substitution lemma holds: if �[x : �] ` e0 : � 0 and � ` e : � , then
� ` [e=x]e0 : � 0.

2.1 Contexts

The L contexts, ranged over by C, are the syntax tree generated by the
grammar for e augmented by the clause

C ::= � � � j p�

where p ranges over some �xed set of parameters. Note that the syntax trees
of L terms are contexts, namely the ones with no occurrence of parameters.
[C=p�]C

0 denotes the context obtained from context C 0 by replacing all
occurrences of p� in C 0 with C. This may involve capture of variables.

Lemma 2.1 If C1 �� C2 then [C1=p�]C
0 �� [C2=p�]C

0.

Proof By induction on C 0. ut

By Lemma 2.1, the operation of substituting for a parameter in a context
induces a well-de�ned operation on �-equivalence classes of L contexts.

Notation 2.2 Most of the time we will only use contexts involving a single

parameter which we will write as � . We write Cf �g to indicate that C is

a context containing no parameters other than � (note that it may contain
no parameters at all). If e is an L term, then Cfeg denotes the raw term

9

resulting from choosing a representative syntax tree for e, substituting it

for the parameter in c and forming the �-equivalence class of the resulting

L syntax tree (which by the remarks above is independent of the choice of

representative for e).

2.2 Typed Contexts

The relation � ` C : � is inductively generated by axioms and rules just like
those de�ning � ` e : � together with the following axiom for parameters.

� ` � : � (t-par)

The set of contexts of type � with free variables given types by �, denoted
Ctx� (�) is de�ned as follows.

Ctx� (�)
def
= fC j � ` C : � g

Ctx�
def
= Ctx� (;)

2.3 Evaluation

The operational semantics will be given by term rewriting and will be de�ned
for all closed terms (not only those of ground type).

The set of evaluation contexts are the syntax trees generated by the
grammar for E. Note that this is clearly a subset of the set of contexts
(with parameters including �). Hence we shall use the notation associated
with contexts for evaluation contexts also. In addition, we de�ne

ECtx� (�)
def
= fE j � ` E : � g

and
ECtx�

def
= ECtx� (;)

Note that evaluation contexts are not capturing. Hence we have the follow-
ing lemma.

Lemma 2.3 For all e 2 Exp� and for all Ef �g 2 ECtx� 0, Efeg = [e=x]Efxg

Proof By induction on E. ut

10

Redices are generated by the following grammar.

Redices r ::= (�x f(x:�):� 0:e) v j fst (v1; v2) j snd (v1; v2) j
out (in v) j case(inl� v; e1; e2) j case(inr� v; e1; e2)

Note that the set of redices is a subset of the set of expressions. We de�ne

Rexp� (�)
def
= f r j � ` r : � g

and
Rexp�

def
= Rexp� (;)

Lemma 2.4 For all e 2 Exp� nVal� , there exists a unique pair of evaluation

context, E, and redex, r, such that e = Efrg.

Proof By induction on e. ut

The reduction rules for redices are as follows.

(�x f(x:�):� 0:e) v [�x f(x:�):� 0:e; v=f; x]e (r-beta)
fst (v1; v2) v1 (r-fst)
snd (v1; v2) v2 (r-snd)
out (in v) v (r-out)
case(inl� v; e1; e2) e1 v (r-case-inl)
case(inr� v; e1; e2) e2 v (r-case-inr)

Further, we de�ne, for closed expressions e and e0, e 7! e0 if and only if
e = Efrg and e0 = Efe1g and r e1.

De�nition 2.5 The re
exive and transitive closure of 7! is denoted 7!�.
For n � 0, we de�ne e 7!n e0 i� e = e0 7! e1 7! � � � en�1 7! en = e0.
Further, we write e * i� whenever e 7!� e0, there exists an e00 such that

e0 7! e00. Finally, we write e + i� there exists a v such that e 7!� v.

Note that evaluation is only de�ned for closed expressions and that during
evaluation we will only ever substitute closed values for variables.

Lemma 2.6 (Evaluation is deterministic) If e 7! e0 and e 7! e00, then
e0 = e00.

Proof Follows by Lemma 2.4. ut

Lemma 2.7 1. For all � and all v 2 Val� : v +.

11

2. For all e 2 Exp� , if e 7! e0, then e 2 Exp� n Val� .

Lemma 2.8 For all Ef �1g 2 ECtx�2 , and for all e 2 Exp�1 n Val�1 , if

Efeg 7! Efe0g, then there exists E1f �3g 2 ECtx�1 and r 2 Rexp�3 and

e1 2 Exp�3 such that e = E1frg and e0 = E1fe1g and r 7! e1.

Lemma 2.9 1. If �[x : �] ` e : � 0 and � ` e0 : � , then � ` [e0=x]e : � 0.

2. If ` Efeg : � then there exists a �e such that ` e : �e and ` Efe0g : �
for all e0 such that ` e0 : �e.

Theorem 2.10 (Preservation)

If e 7! e0 and ` e : � , then ` e0 : � .

Proof By the de�nition of the evaluation relation and Lemma 2.9. ut

Lemma 2.11 (Canonical Forms) Suppose that ` v : � . Then

� � 6= 0.

� If � = 1, then v = �.

� If � = �, then v = in v0 for some v0 2 Val��.

� If � = �1+�2, then either v = inl�2 v
0 for some v0 2 Val�1 or v = inr�1 v

0

for some v0 2 Val�2 .

� If � = �1 � �2, then v = (v1; v2) for some v1 2 Val�1 and some v2 2
Val�2 .

� If � = �1 * �2, then v = �x f(x:�1):�2:e for some variables f and x,

and some e 2 Exp�2([f : �1 * �2; x : �1]).

Proof By inspection of the typing rules and the de�nition of closed val-
ues. ut

Theorem 2.12 (Progress) If ` e : � , then either e is a value or there

exists an e0 such that e 7! e0.

Proof By induction on ` e : � . ut

Corollary 2.13 If ` e : � , then either e * or e +.

12

Lemma 2.14 (Uniformity of Evaluation) For all e 2 Exp�1 nVal�1 and

for all Ef �1g 2 ECtx�2 , if Efeg 7! Efe0g, then 8E0f �1g 2 ECtx�2 :
E0feg 7! E0fe0g.

Proof By the de�nition of the evaluation relation e 7! e0 and the de�nition
of the reduction rules. ut

Lemma 2.15 For all e; e0 2 Exp� n Val�1 and for all Ef �g 2 ECtx� 0 , if

Efeg 7! Efe0g, then also e 7! e0.

Lemma 2.16 If e 2 Exp� and e *, then 8Ef �g 2 ECtx� 0 : Efeg *.

Example For the purpose of this example, we shall assume that we have
another ground type N and that �� = 1 +N � �, such that � is intuitively
the type of lists of natural numbers. Then the usual list function map can
be de�ned as follows:

�x map(f :N * N):(� * (N * N) * �):�x:�:
case(out x; �y:��:in (inlN�� �); �y:��:in (inr1 (f (fst y);map f (snd y))))

where succ is the successor function for the type of natural numbers and �
is the functional-composition term. ut

3 Experimental Equivalence

For closed expressions of base type 1, we de�ne a notion of Kleene approxi-
mation and Kleene equivalence as follows.

De�nition 3.1 (Kleene Approximation and Equivalence) For all

e; e0 2 Exp1, we de�ne e �k e0 i� e 7!� �) e0 7!� � and e �k e0 i�
e 7!� � () e0 7!� �.

For closed expressions we de�ne notions of experimental approximation and
experimental equivalence as follows.

De�nition 3.2 (Experimental Approximation and Equivalence) For

all e; e0 2 Exp� , we de�ne

` e � e0 : � () 8Ef �g 2 ECtx1 : Efeg �
k Efe0g

` e � e0 : � () 8Ef �g 2 ECtx1 : Efeg �
k Efe0g

13

Lemma 3.3 ` e � e0 : � () (` e � e0 : � ^ ` e0 � e : �)

Notation 3.4 When � is clear from context we write e � e0 for ` e � e0 : �
and e � e0 for ` e � e0 : � .

We now state some basic properties of experimental equivalence and
evaluation.

Lemma 3.5 If ` e1 � e2 : � then e1 + i� e2 +.

Lemma 3.6 For all e 2 Exp�1 and for all Ef �1g 2 ECtx� ,

` Efeg � (�x:�:Efxg) e : � .

Lemma 3.7 (7!��) For all e; e0 2 Exp� , if e 7! e0, then ` e � e0 : � .

Lemma 3.8

1. Experimental equivalence is closed under evaluation contexts, i.e., if

` e � e0 : � and Ef �g 2 ECtx� 0 , then ` Efeg � Efe0g : � 0.

2. Experimental equivalence on closed values is closed under arbitrary

contexts, i.e., if ` v � v0 : � and Cf �g 2 Ctx� 0, then ` Cfvg �
Cfv0g : � 0.

Lemma 3.9 Experimental equivalence, �, is an equivalence relation. That

is, the following three properties hold.

1. If ` e1 � e2 : � and ` e2 � e3 : � , then ` e1 � e3 : � .

2. If e 2 Exp� , then ` e � e : � .

3. If ` e1 � e2 : � , then ` e2 � e1 : � .

Lemma 3.10

1. If ` e � (e1; e2) : �1 � �2 then e + i� e1 + and e2 +.

2. If ` e � (e1; e2) : �1 � �2 and ` e1 � e01 : �1 and ` e2 � e02 : �2, then
` e � (e01; e

0
2) : �1 � �2.

3. If ` e � (e1; e2) : �1 � �2 and e +, then ` fst e � e1 : �1 and

` snd e � e2 : �2.

Lemma 3.11

14

1. If ` e � inl�2 e
0 : �1 + �2 then e + i� e0 +. If ` e � inr�1 e

0 : �1 + �2,
then e + i� e0 +.

2. If ` e � inl�2 e
0 : �1 + �2 and ` e0 � e00 : �1, then ` e � inl�2 e

00 :
�1 + �2. If ` e � inr�1 e

0 : �1 + �2 and ` e0 � e00 : �2, then ` e �
inr�1 e

00 : �1 + �2.

3. If ` e � inl�2 e
0 : �1 + �2 and e +, then there exists a v0 such that

` e � inl�2 v
0 : �1 + �2 and ` e0 � v0 : �1. If ` e � inr�1 e

0 : �1 + �2
and e +, then there exists a v0 such that ` e � inr�1 v

0 : �1 + �2 and

` e0 � v0 : �2.

4. ` inl�2 e � inl�2 e
0 : �1 + �2 i� ` e � e0 : �1. ` inr�1 e � inr�1 e

0 :
�1 + �2 i� ` e � e0 : �2.

Lemma 3.12

1. If ` e � in e0 : �, then e + i� e0 +.

2. If ` e � in e0 : �, then e0 * i� e *.

3. ` in e � in e0 : � i� ` e � e0 : ��.

Using the above lemmas, it is easy to show the following corollary. The
corollary expresses that to show two values of type �1 � �2, �1 + �2, or �
experimentally equivalent we do not have to consider all possible evaluation
contexts (as in the de�nition of experimental equivalence); a more restricted
set su�ces.

Corollary 3.13

1. To show ` v � v0 : �1 � �2, it su�ces to show

8Ef �1g 2 ECtx1 : Effst vg �
k Effst v0g

and

8Ef �2g 2 ECtx1 : Efsnd vg �
k Efsnd v0g

2. To show ` v � v0 : �1 + �2, it su�ces to show

8� 2 Type : 8Ef �g 2 ECtx1 : 8e1 2 Exp�1*� : 8e2 2 Exp�2*� :
Efcase(v; e1; e2)g �

k Efcase(v0; e1; e2)g

15

3. To show ` v � v0 : �, it su�ces to show

8Ef ��g 2 ECtx1 : Efout vg �
k Efout v0g

We now embark on showing that also for function types �1 * �2 it su�ces to
consider a restricted set of evaluation contexts. To this end, we �rst prove
the following lemma.

Lemma 3.14 For all v; v0 2 Val�1*�2 , if for all Ef �2g 2 ECtx1 and for all

v1 2 Val�1 , Efv v1g �
k Efv0 v1g, then for all � 0 2 Type, for all z 2 Var, for

all e 2 Exp� 0(z : �1 * �2), for all Ef
0
�g 2 ECtx1(z : �1 * �2),

([v=z](Efeg) 7!n �))
�
[v0=z](Efeg) 7!� �

�
:

Proof By induction on n.
Basis (n = 0): Then � 0 = 1, E = 1, and e = � and then also

[v0=z](Efeg) = � and hence [v0=z](Efeg) 7!� �, as required.

Inductive Step: We assume that the lemma holds for n � 0 and show
for n+1. Assume [v=z](Efeg) 7!n+1 �. Since there is at least one reduction
step, we can proceed by cases on the �rst reduction step.

Case r-beta: Then there are two cases.

1. Efeg = E0fz v1g for some E0f �2g 2 ECtx1([z : �1 * �2]) and some
v1 2 Val�1([z : �1 * �2])

2. Efeg = E0f�x f(x:� 01):�
0
2:e0 v

0
1g for someE

0f � 0
2
g 2 ECtx1([z : �1 * �2]),

some v01 2 Val� 0
1
([z : �1 * �2]), and some �x f(x:� 01):�

0
2:e0 2

Val� 0
1
*� 0

2
([z : �1 * �2])

SubCase 1: Then v is of the form �x f(x:�1):�2:e0. Thus

[v=z](Efeg) = [v=z](E0fz v1g)

= [v=z](E0f(�x f(x:�1):�2:e0) v1g)

7! [v=z](E0f[v; v1=f; x]e0g)

7!n �

Thus we can apply induction to get that

[v0=z](E0f[v; v1=f; x]e0g) 7!
� �

from which the required easily follows, since

[v0=z](Efeg) 7! [v0=z](E0f[v; v1=f; x]e0g):

16

SubCase 2: Then

[v=z](Efeg) = [v=z](E0f�x f(x:� 01):�
0
2:e0 v

0
1g)

7! [v=z](E0f[�x f(x:� 01):�
0
2:e0; v

0
1=f; x]e0g)

7!n �

Now use induction and proceed as in the previous case.
Case r-out, r-case-inl, r-case-inr, r-fst, or r-snd: The proof for

each of these cases are all easy applications of the inductive hypothesis. ut

Corollary 3.15 To show ` v � v0 : �1 * �2 it su�ces to show

8Ef �2g 2 ECtx1 : 8v1 2 Val�1 : Efv v1g �
k Efv0 v1g

Proof Let Ef �1*�2g be arbitrary and suppose Efvg 7!n �. Let e = z,
� 0 = �1 * �2, Ef � 0g = Ef �1*�2g in the previous lemma and conclude that
[v0=z](Efzg) 7!� �. But Efv0g = [v0=z](Efzg), so we have the required. ut

3.1 Compactness of Evaluation

In this section we show that a �x-term is approximated, in the experimental
approximation pre-order, by its �nite unrollings. Further, we show that to
�ll a context is a monotone operation with respect to the experimental pre-
order and we use this to show that a �x-term is the least upper bound of
its �nite unrollings. These properties are also referred to as compactness of
evaluation. Finally, we show that to �ll a context is a continuous operation
with respect to the approximation pre-order. We shall only be concerned
with closed �x-terms, as this su�ces for our purposes.

Our development of compactness of evaluation follows the approach of
Pitts (Pitts, 1995, Section 5) quite closely but there are some technical di�er-
ences due to the fact that we use a reduction semantics rather than a natural
semantics as employed by Pitts. We have chosen this formulation, using co-
�nal sets, because it �ts nicely with our formulation of admissible relations,
for which a formulation based on co�nal sets su�ces (see Section 4).

Throughout this section we shall consider a particular �xed term F =
�x f(x:�1):�2:e satisfying F 2 Exp�1*�2 , and use the following abbreviations:

F0
def
= �x f0(x:�1):�2:e

def
= �x f(x:�1):�2:f x

Fn+1
def
= �x fn+1(x:�1):�2:e

def
= �x:�1:[Fn=f]e

F!
def
= F

17

Note that the Fi's are just abbreviations of expressions already in the lan-
guage. Another approach is to introduce new labelled expressions and new
notions of reduction for labelled expressions as, e.g., done by Gunter (Gunter,
1992).

We will only consider contexts involving parameters of type �1 * �2.
We write Cf~pg for such a context whose parameters are included in the list
~p (note that we do not required that all the parameters in ~p occur in C).
Given an k-tuple ~n = (n1; : : : ; nk) of natural numbers, then we make the
following abbreviations.

CfF~ng
def
= CfFn1 ; : : : ; Fnkg

CfF~!g
def
= CfF!; : : : ; F!g

The length of a list of parameter ~p will be denoted j~pj.

De�nition 3.16 For each k, we partially order the set Nk by

~n � ~n0 () (n1 � n01 ^ � � � ^ nk � n0k)

De�nition 3.17 A subset I � Nk is said to be co�nal in Nk if and only if,

for all ~n 2 Nk, 9~n0 2 I : ~n � ~n0. We write Pcof(N
k) for the set of all such

co�nal subsets of Nk.

We say that a context C is a value if it follows the grammar for values v
augmented by the obvious clause for parameters. We introduce the following
de�nitions of sets of value contexts

VCtx� (�)
def
= fC 2 Ctx� (�) j C is a value or C is a parameter g

VCtx�
def
= VCtx� (;)

We use V to range over value contexts. We say that a value context is proper
if it is not a parameter.

Remark 3.18 Note that, if V f �g 2 VCtx� 0 is a proper value context and

e 2 Exp� , then V feg is a value. Also, if V f �g 2 VCtx� 0 and v 2 Val� , then

V fvg is a value.

Notation 3.19 We abbreviate V fF~mg and V fF~!g analogously to CfF~mg
and CfF~!g.

18

De�nition 3.20 If Cf~pg is a context and V f~p0g is a value context, then we

write Cf~pg +F V f~p0g to mean that for all I 2 Pcof(N
j~pj)

f ~m~m0 j ~m 2 I ^ CfF~mg 7!
� V fF~m0g g 2 Pcof(N

j~pj+j~p
0

j)

The intuition of this de�nition is the following: Suppose you have m un-
rollings of F to compute with, that is, if you try to make more than m
recursive calls of F , then you will diverge. Now, if m unrollings are enough
to result in a value in which there are m0 unrollings of F left, then, if you
have k � m unrollings and you perform the same computation, you will end
up with a value with more than m0 unrollings left.

Note that the relation Cf~pg +F V f~p0g is preserved under renaming of
the parameters ~p and, independently, the parameters ~p0.

Lemma 3.21 If Cf~pg is a context and V f~p0g is a value context, then

Cf~pg +F V f~p0g () Cf~p~qg +F V f~p0~q0g

Proof By de�nition of +F and simple properties of co�nal subsets of Nk. ut

Lemma 3.22

1. If V f~pg is a proper value context, then V f~pg +F V f~pg.

2. If E0fV gf~pg +F V 00f~p00g and V 0f~p~p0g is a value context, then

E0ffst (V; V 0)gf~p~p0g +F V 00f~p00g.

3. If E0fV gf~pg +F V 00f~p00g and V 0f~p~p0g is a value context, then

E0fsnd (V; V 0)gf~p~p0g +F V 00f~p00g.

4. If E0fV gf~pg +F V 0f~p0g, then
E0fout (in V)gf~pg +F V 0f~p0g.

5. If E0fe1 vgf~pg +
F V f~p0g and e2 = C2fF~!g for some C2f~p~p

0g, then
E0fcase(inl�2 v; e1; e2)gf~p~p

0g +F V f~p0g

6. If E0fe2 vgf~pg +
F V f~p0g, and e1 = C1fF~!g for some C1f~p~p

0g, then
E0fcase(inr�1 v; e1; e2)gf~p~p

0g +F V f~p0g

Proof Item 1 is immediate. We show item 2; items 3{6 are similar.
Let C = E0fV g and let C 0 = E0ffst (V; V 0)g. By the assumption and

Lemma 3.21,
Cf~p~p0g +F V 00f~p00g (1)

19

Assume I 2 Pcof(N
jpj+jp'j). Then we are to show that

I 0
def
= f ~m~m0 j ~m 2 I ^ C 0fF~mg 7!

� V 00fF~m0g g

is a co�nal subset of N j~pj+j~p0

j+j~p00

j. But C 0fF~mg 7! CfF~mg so by determin-
ism of evaluation, C 0fF~mg 7!

� V 00fF~m0g if and only if CfF~mg 7!
� V 00fF~m0g.

Hence I 0 equals the set

f ~m~m0 j ~m 2 I ^ CfF~mg 7!
� V 00fF~m0g g

which by (1) is a co�nal subset of N j~pj+j~p0

j+j~p00

j, as required. ut

Lemma 3.23 (Compactness of Evaluation) For all Cf~pg 2 Ctx� , if

CfF~!g 7!� v, then there exists a V f~p0g 2 VCtx� such that v = V fF~!g
and Cf~pg +F V f~p0g.

Proof By induction on the length, n, of CfF~!g 7!
� v.

Basis (n = 0): Pick V = C. If C is a parameter, then the required
is immediate (recall that F! is a value). Otherwise, C is a proper value
context and the required follows by Lemma 3.22, item 1.

Inductive Step: We assume it holds for n and show for n+ 1. To this
end assume CfF~!g 7!

n+1 v. We proceed by cases on the �rst reduction
step.

Case r-fst: Then CfF~!g = Effst (v1; v2)g with E = E0fF~!g, v1 =
V1fF~!g, and v2 = V2fF~!g for some E0f~p1g, V1f~p1g, and V2f~p1 ~p2g with
~p = ~p1 ~p2. Moreover, Effst (v1; v2)g 7! Efv1g 7!n v. Note that Efv1g
is of the form C 0

1fF~!g where C 0
1f~p1g = E0fV1gf~p1g. Hence we can apply

induction on n to yield that there exists a V f~p0g such that v = V fF~!g and
C 0
1f~p1g +

F V f~p0g. By Lemma 3.22, item 2, also Cf~pg +F V f~p0g, as required.
Case r-snd, r-out, r-case-inl, r-case-inr: All analogous to preced-

ing case, using corresponding item in Lemma 3.22.
Case r-beta: Then CfF~!g = Ef(�x f 0(x0:� 0):� 00:e0) v0g for some f 0,

x0, � 0, e0, � 00, v0, and E. There are two cases, depending on whether F =
�x f 0(x0:� 0):� 00:e0 or not.

SubCase I: Assume F = �x f 0(x0:� 0):� 00:e0. Then

CfF~!g = Ef(�x f(x:�1):�2:e) v
0g

7! Ef[�x f(x:�1):�2:e; v
0=f; x]eg

7!n v

20

where E = E0fF~!g and v0 = V 0fF~!g for some E0f~pg and V 0f~pg. We have
that

Ef[�x f(x:�1):�2:e; v
0=f; x]eg = E0f[p; V 0=f; x]egfF~!g

Let C 0f~ppg = E0f[p; V 0=f; x]eg. Then we have that C 0fF~!g 7!
n v so by

induction on n there exists a V f~p0g such that v = V f~p0g and

C 0f~ppg +F V f~p0g (2)

We aim to show that
Cf~pg +F V f~p0g (3)

Let I 2 Pcof(N
j~pj) be arbitrary. We are to show that

I1
def
= f ~m~m0 j ~m 2 I ^ CfF~mg 7!

� V fF~m~m0g g

is a co�nal subset of N j~pj. De�ne

I2
def
= fn~m j ~m 2 I ^ n = nk ^ CfF~mg 7! C 0fFn~mg g

Clearly, I2 is co�nal since I is co�nal. By (2) we therefore have that

I3
def
= f ~m~m0 j ~m 2 I2 ^ C 0fF~mg 7!

� V fF~m0g g

is co�nal. Now it is easy to see that I3 � I1 and thus, since I3 is co�nal, I1
is co�nal. Since I was arbitrary, we have (3) as desired.

SubCase II: Assume F 6= �x f 0(x0:� 0):� 00:e0. Then

CfF~!g = Ef(�x f 0(x0:� 0):� 00:e0) v0g

7! Ef[�x f 0(x0:� 0):� 00:e0; v0=f; x]e0g

7!n v

and Ef[�x f 0(x0:� 0):� 00:e0; v0=f; x]e0g is of the form C1fF~!g for some C1f~p~p1g.
By induction we get that

C1f~p ~p1g +
F V f~p0g (4)

Let I 2 Pcof(N
j~pj) be arbitrary. Let

I1
def
= f ~m~m0 j ~m 2 I ^ ~m0 2 N

~p
1 g

Then I1 is a co�nal subset of N
j~pj+j ~p

1
j since I is co�nal. Hence, by (4),

I2
def
= f ~m~m0 ~m00 j ~m~m0 2 I1 ^C1fF~m~m0g 7!� V fF~m00g g

21

is co�nal and thus it is easy to see that also

I3
def
= f ~m~m00 j ~m 2 I ^ CfF~mg 7!

� V fF~m00g g

is co�nal, as required. ut

The following lemma expresses that the �nite unrollings of a �x-term
form a chain with respect to the approximation order and that the �x-term
itself is an upper bound of this sequence. We shall soon see that it is in fact
the least upper bound.

Lemma 3.24 For all i 2 N , ` Fi � Fi+1 : �1 * �2 and ` Fi � F! :
�1 * �2.

Proof Both properties are shown by induction on i. ut

We now generalize the experimental pre-order to open expressions in the
following way.

De�nition 3.25 An expression substitution
 for a type environment � is

a �nite map from variables to closed expressions satisfying the following two

conditions.

1. Dom(
) = Dom(�).

2. 8x 2 Dom(
) : ; `
(x) : �(x).

De�nition 3.26 A value substitution
 for � is an expression substitution

for � satisfying 8x 2 Dom(�) :
(x) +.

De�nition 3.27 Let
 and
0 be expression substitutions for �. Then

approximates
0, written `
 �
0 : �, if and only if 8x 2 Dom(�) : `

(x) �
0(x) : �(x). Likewise, we write `
 �
0 : �, if and only if

8x 2 Dom(�) : `
(x) �
0(x) : �(x).

Note that this de�nition also expresses when a value substitution
 approxi-
mates another value substitution
0 (both for some �) as a value substitution
is just a special expression substitution (we need a notion of expression sub-
stitution in Section 3.2, which is why we have chosen this formulation).

De�nition 3.28 (Open Experimental Approximation and Equivalence)

For all e and e0, if � ` e : � and � ` e0 : � , then we de�ne � ` e � e0 : � if,

and only if, for all value substitutions
 and
0 for � satisfying `
 �
0 : �,
`
(e) �
0(e0) : � . Moreover, we de�ne � ` e � e0 : � if and only if

� ` e � e0 : � and � ` e0 � e : � .

22

Lemma 3.29 If [f : �1 * �2; x : �1] ` e � e0 : �2 then ` �x f(x:�1):�2:e �
�x f(x:�1):�2:e

0 : �1 * �2.

Proof By induction on i, it is easy to show that, for all i 2 N ,

` �x f i(x:�1):�2:e � �x f i(x:�1):�2:e
0 : �1 * �2 (5)

By Corollary 3.15, it su�ces to show,

8Ef �1*�2 v1g 2 ECtx1 : Ef�x f(x:�1):�2:eg �
k Ef�x f(x:�1):�2:e

0g

So assume, Ef(�x f(x:�1):�2:e) (v1)g 7!
� �. Let Cf �1*�2g = Ef �1*�2 v1g.

Then, by Lemma 3.23, there exists a V f~p0g such that V fF~!g = � and

Cf~pg +F V f~p0g (6)

Let I = N , clearly a co�nal set. Then by (6),

I 0
def
= f i 2 I j Cf�x f i(x:�1):�2:eg 7!

� � g

is a co�nal subset of N j~pj. Hence I 0 is in particular non-empty, i.e., there
exists i 2 I 0 such that Cf�x f i(x:�1):�2:eg 7!

� �. Thus, by de�nition of I and
C, there exists an i 2 N such that Ef(�x f i(x:�1):�2:e) (v1)g 7!

� �. Hence,
by (5), we also have Ef(�x f i(x:�1):�2:e

0) (v1)g 7!
� �. Then by Lemma 3.24,

we get Ef(�x f(x:�1):�2:e
0) (v1)g 7!

� �, as required. ut

Lemma 3.30 If �;�0 ` e � e0 : � , Cf �g 2 Ctx� 0(�), � ` Cfeg : � 0, and
� ` Cfe0g : � 0, then �;�0 ` Cfeg � Cfe0g : � 0.

Proof By induction on C. In the case for C = �x f(x:�):� 0:C 0, use
Lemma 3.29; all the other cases follow easily (either directly by the as-
sumptions or by induction and using Lemmas 3.7{3.12 and composition of
evaluation contexts). ut

An alternative de�nition of open experimental approximation would be
to say that � ` e � e0 : � if and only if, for all value substitutions
 for
�, `
(e) �
(e0) : � . This notion is referred to as CIU experimental
approximation and was used by Mason, Talcott and Smith (Mason et al. ,
1995). We write � ` e �CIU e0 : � when e CIU approximates e0 in context �.
In fact, CIU approximation agrees with open experimental approximation:

Lemma 3.31 � ` e � e0 : � () � ` e �CIU e0 : �:

23

Proof The left-to-right implication is obvious. For the other direction,
suppose � = [x1 : �1; : : : ; xn : �n] and that
 and
0 are value substitutions
satisfying `
 �
0 : �. Then by Lemma 3.7,

`
(e) � (�x1:�1:: � � � �xn:�n:e)
(x1) � � �
(xn) : �

and thus, since each
(xi) occurs in an evaluation context and `
 �
0 : �,

`
(e) � (�x1:�1:: � � � �xn:�n:e)

0(x1) � � �

0(xn) : �

By Lemma 3.7 again and transitivity, we get

`
(e) �
0(e) : �

so by the assumption � ` e �CIU e0 : � and transitivity,

`
(e) �
0(e0) : �

as required. ut

Remark 3.32 One can now show, either directly or using the above lemma

as in (Mason et al. , 1995), that open experimental equivalence coincides

with the usual notion of contextual equivalence. We shall not give the de-

tails here, since they are fairly standard and since they are not used in the

remainder of the paper. The point of this fact, however, is that we can

use experimental equivalence to reason about \peephole" optimizations, as
argued in the introduction.

The following corollary expresses the monotonicity of contexts with re-
spect to the experimental pre-order | in other words, the experimental
pre-order is a pre-congruence. We shall subsequently show that contexts are
not only monotone, but also continuous (in an appropriate sense).

Corollary 3.33 (Context Monotonicity) If ` e � e0 : �1 and Cf �1g 2
Ctx� , then ` Cfeg � Cfe0g : � .

Proof Follows immediately by Lemma 3.30. ut

Lemma 3.34 If ` e1 � e01 : �1; : : : ; ` ek � e0k : �k and Cf 1; : : : ; kg 2 Ctx�
with i of type �i, for all 1 � i � k, then ` Cfe1; : : : ; ekg � Cfe01; : : : ; e

0
kg : � .

24

Proof By repeated application of Corollary 3.33 and transitivity of �. ut

Corollary 3.35 (Experimental equivalence is a congruence relation)

If ` e1 � e01 : �1 : : : ; ` ek � e0k : �k and Cf 1; : : : ; kg 2 Ctx� with i of type

�i, for all 1 � i � k, then ` Cfe1; : : : ; ekg � Cfe01; : : : ; e
0
kg : � .

Proof Follows immediately by Lemma 3.34. ut

Theorem 3.36 For all Cf~pg 2 Ctx� , the following three propositions are

equivalent.

1. ` CfF~!g � e : �

2. 9I 2 Pcof(N
j~pj) : 8~m 2 I : ` CfF~mg � e : �

3. 8I 2 Pcof(N
j~pj) : 8~m 2 I : ` CfF~mg � e : �

Proof
1) 3: Let I 2 Pcof(N

j~pj) be arbitrary. The required follows by
Lemmas 3.34 and 3.24 and transitivity. (as in 1) 2 above).

3) 2: Obvious.
2) 1: Let Ef �g 2 ECtx1 be arbitrary. We are to show that

EfCfF~!gg �
k Efeg

So assume EfCfF~!gg 7!
� �. Then by Lemma 3.23, there exists a V f~p0g

such that V fF~!g = � and

EfCgf~pg +F V f~p0g (7)

Clearly, V = �. By the assumption that I 2 Pcof(N
j~pj) and (7) we get that

I 0
def
= f ~m 2 I j EfCgfF~mg 7!

� � g

is a co�nal subset of N j~pj. Hence I 0 is in particular non-empty, i.e., there
exists ~m 2 I 0 such that EfCgfF~mg 7!

� �. Now, EfCgfF~mg = EfCfF~mgg
so we have 9~m 2 I 0 : EfCfF~mgg 7!

� �. Finally, since I 0 is a subset of I we
get by the assumption 2 that Efeg 7!� �, as required. ut

25

Corollary 3.37 (Context Continuity) For all Cf~pg 2 Ctx� ,

` CfF~!g � e : � () 8n 2 N : ` CfFn; : : : ; Fng � e : �

Proof Follows by Theorem 3.36. ut

Let Cf~pg = �1*�2 in Corollary 3.37. Then the corollary together with
Lemma 3.24 intuitively says that F! is the least upper bound of the chain
of its �nite unrollings: By Lemma 3.24,

F0 � F1 � F2 � � � �

is a chain with upper bound F!. By Corollary 3.37, if e is an upper bound
of the same chain, then F! � e, so F! is a least upper bound of the chain:

F! =
G
fF0; F1; F2; : : : g

Furthermore, by Corollary 3.33,

CfF0g � CfF1g � CfF2g � � � �

is again a chain with upper bound CfF!g, and by Corollary 3.37, if e is an
upper bound of the same chain, then CfF!g � e, so CfF!g is a least upper
bound of the chain:

CfF!g =
G
fCfF0g; CfF1g; CfF2g; : : : g

In other words, to �ll a context is a continuous operation for chains of �nite
unrollings of �x terms with respect to the approximation order.

As explained by Mason, Smith, and Talcott (Mason et al. , 1995) arbi-
trary chains of terms do not always have a least upper bound. This leads
Mason, Smith, and Talcott to develop a notion of ordering between sets of
terms, for which arbitrary chains do have a least upper bound, (Mason et al.

, 1995, Lemma 4.31). Here, however, we shall only ever consider chains of
the form

CfF0g � CfF1g � CfF2g � � � �

for some given closed �x-term F and thus the chains, which we shall consider,
will always have a least upper bound. Hence we do not need to develop
more complicated notions of approximation �a la the set ordering developed
by Mason, Smith, and Talcott (Mason et al. , 1995).

26

3.2 Syntactic Projections

In this section we introduce syntactic projection terms which are the syn-
tactic counterpart of the semantic projection functions known from domain
theory. These syntactic projections will be used in the construction of the
desired relations in Section 5.

Let � be a variable. For all types � , we de�ne terms �� : � * � (given
� : � * �) by induction on � as follows.

�� def
= �x:�:� x

�0 def
= �x:0:x

�1 def
= �x:1:x

��1��2 def
= �x:�1 � �2:(�

�1 (fst x);��2 (snd x))

��1+�2 def
= �x:�1 + �2:case(x; �x:�1:inl�2 (�

�1 x); �x:�2:inr�1 (�
�2 x))

��1*�2 def
= �f :�1 * �2:�x:�1:�

�2 (f (��1 x))

Note that � is possibly free in these so de�ned terms. Further, de�ne

�!
def
= �x �(x:�):�:in (��� (out x)) : � * �

and de�ne �i (i � 0) to be the �nite unrollings of �!, as in the previous
section. Observe that �i and also �! are values.

The �! term corresponds to the least �xed point �x(�) of the contin-
uous function �(e) = iF (e; e)i�1 in (Pitts, 1996, De�nition 3.2). We shall
show that �! is experimentally equivalent to the identity function (more pre-
cisely, the term �x:�:x); this corresponds to the minimal invariant property
in (Pitts, 1996, De�nition 3.2).

Example Assume �� = 1 + �. Intuitively, our recursive type then corre-
sponds to the type of natural numbers. Then �! is equal to

�x �(x:�):�:
in ((�x:1 + �:case(x; �x:1:inl� ((�x:1:x) x); �x:�:inr1 ((�x:�:� x)x))) (out x))

Intuitively, it is clear that this is equivalent to the identify function. ut

For all � and all i � 0, we de�ne

��
i
def
= [�i=�]�

� : � * �

27

Finally, for all � , we de�ne

��
!

def
= [�!=�]�

� : � * �

It is easy to show that the above de�nitions do indeed de�ne terms, i.e., for
all � , [� : � * �] ` �� : � * � and ` ��

! : � * � ; ` �! : � * �; and for all
� , for all i � 0, ` ��

i : � * � ; and for all i � 0, ` �i : � * �.
We aim to show that �! is operationally equivalent to the identity func-

tion �x:�:x. To this end we need a series of simple lemmas which we now
proceed to establish .

Lemma 3.38 If ` e � � : 1 then

1. For all i � 0, ` �1
i e � � : 1.

2. ` �1
! e � � : 1

Lemma 3.39 If ` e � (v1; v2) : �1 � �2, then

1. For all i � 0, ` ��1��2
i e � (��1

i v1;�
�2
i v2) : �1 � �2.

2. ` ��1��2
! e � (��1

! v1;�
�2
! v2) : �1 � �2.

Proof We show 1; 2 is similar. Let i � 0 be arbitrary. Assume ` e �
(v1; v2) : �1 � �2. Then by Lemma 3.5, e +, i.e., there exists a v such that
e 7!� v. By Canonical Forms Lemma (Lemma 2.11), v = (v01; v

0
2) for some

v01 and v02. Hence

��1��2
i e = (�x:�1 � �2:(�

�1
i (fst x);��2

i (snd x))) (e) 7!� (��1
i v01;�

�2
i v02)

Thus by Lemma 3.7 ` ��1��2
i e � (��1

i v01;�
�2
i v02) : �1 � �2 and ` e �

(v01; v
0
2) : �1 � �2. By transitivity of �, we get have ` (v1; v2) � (v01; v

0
2) :

�1 � �2. By Lemma 3.10 it then follows that ` v1 � v01 : �1 and `
v2 � v02 : �2. Hence it follows, by composition of evaluation contexts, that
` ��1

i v1 � ��1
i v01 : �1 and ` ��2

i v2 � ��2
i v02 : �2. Hence, by Lemma 3.10,

` ��1��2
i (e) � (��1

i v1;�
�2
i v2) : �1 � �2, as required. ut

Lemma 3.40

1. If ` e � inl�2 v : �1 + �2, then

(a) For all i � 0, ` ��1+�2
i e � inl�2 (�

�1
i v) : �1 + �2.

28

(b) ` ��1+�2
! e � inl�2 (�

�1
! v) : �1 + �2.

2. If ` e � inr�1 v : �1 + �2, then

(a) For all i � 0, ` ��1+�2
i e � inr�1 (�

�2
i v) : �1 + �2.

(b) ` ��1+�2
! e � inr�1 (�

�2
! v) : �1 + �2.

Lemma 3.41 If ` e � v : �1 * �2, then

1. For all i � 0, ` ��1*�2
i e � �x:�1:�

�2
i (v (��1

i x)) : �1 * �2.

2. ` ��1*�2
! e � �x:�1:�

�2
! (v (��1

! x)) : �1 * �2.

Proof We show 1, 2 is similar. Let i � 0 be arbitrary. Assume ` e �
v : �1 * �2. Then by Lemmas 3.5, 3.7, and 3.9, there exists a v0 such that
e 7!� v0 and ` v � v0 : �1 * �2. Hence,

��1*�2
i (e) 7!� ��1*�2

i (v0) 7!� �x:�1:�
�2
i (v0 (��1

i (x)))

so by Lemma 3.7

` ��1*�2
i (e) � �x:�1:�

�2
i (v0 (��1

i (x))) : �1 * �2

But by Lemma 3.8, we have

` �x:�1:�
�2
i (v (��1

i (x))) � �x:�1:�
�2
i (v0 (��1

i (x))) : �1 * �2

from which the required follows by transitivity. ut

Lemma 3.42 If ` e � in v : �, then ��
0 e *.

Lemma 3.43 If ` e � in v : �, then

1. For all i � 1, ` ��
i e � in (�

��
i�1 v) : �.

2. ` ��
! e � in (�

��
! v) : �.

Lemma 3.44 If ` e � in v : �, then

1. For all i � 1, ` �i e � in (�
��
i�1 v) : �.

2. ` �! e � in (�
��
! v) : �.

Lemma 3.45 For all � and for all i � 0, ` ��
i � �x:�:x : � * � .

29

Proof By Lemma 3.6 and Corollary 3.15 it su�ces to show, for all � , for
all v 2 Val� , for all Ef �*� vg

Ef��
i vg �

k Efvg (8)

We show this by induction on (i; �) ordered lexicographically. We proceed
by cases on � .

Case � = 1: Follows by Lemma 3.38.
Case � = 0: Vacuously true since Val0 = ;.
Case � = �: We consider two cases, i = 0 and i > 0.
SubCase i = 0: Follows trivially by Lemma 3.42.
SubCase i > 0: By Canonical Forms Lemma(Lemma 2.11), v = in v0 for

some v0 2 Val�� . Assume Ef��
i in v0g 7!� �. Then by Lemma 3.43 (with

e = in v0 and using re
exivity of � and noting that i > 0 by assumption)
we also have that Efin (�

��
i�1 v

0)g 7!� �. Note that i � 1 � 0 as i > 0 by
assumption and that (i � 1; ��) � (i; �) in the lexicographical order, so we
can apply induction to get Efin v0g 7!� �, which is the required.

Case � = �1 � �2: Follows by Lemma 3.39 and induction on (i; �1) and
(i; �2).

Case � = �1 + �2: Follows by Lemma 3.40 and induction on (i; �1) or
(i; �2) depending on whether v = inl�2 v

0 or v = inr�1 v
0.

Case � = �1 * �2: Follows by Lemma 3.41 and Corollary 3.15, induc-
tion on (i; �1) and induction on (i; �2). ut

We are now in a position to show one half of the operational equivalence
of �! and the identity function, namely that �! approximates the identity
function.

Lemma 3.46 ` �! � �x:�:x : � * �

Proof By Corollary 3.37, it su�ces to show

8i 2 N : ` �i � �x:�:x : � * � (9)

We show this by induction on i.
Basis (i = 0): By Lemma 3.6, Corollary 3.13 and Canonical Forms

Lemma (Lemma 2.11), it su�ces to show, for all Ef � (in v)g 2 ECtx1 and
all v 2 Val�� ,

Ef�0 (in v)g �
k Efin vg

Recalling that �0 = �x �(x:�):�:� x the required follows immediately.

30

Inductive Step: We assume (9) holds for i and show for i + 1. By
Lemma 3.6, Corollary 3.13 and Canonical Forms Lemma (Lemma 2.11), it
su�ces to show, for all Ef � (in v)g 2 ECtx1 and all v 2 Val�� ,

Ef�i+1 (in v)g �
k Efin vg

To this end, assume
Ef�i+1 (in v)g 7!

� � (10)

Then by Lemma 3.43 (with e = in v and using re
exivity of � and noting
that i+ 1 � 1 as i � 0 by the assumption that i 2 N) we also have that

Efin (�
��
i v)g 7!� � (11)

Then by Lemma 3.45, also Efin vg 7!� �, as required. ut

Next we aim to show the other half of the operational equivalence of �!
and the identity function, that is, that the identity function operationally ap-
proximates �!. We shall employ an idea of Mason, Smith, and Talcott (Ma-
son et al. , 1995).

We now proceed to show idempotency of ��
! and �!. The strategy is to

show lemmas for ��
i and �i and then use compactness of evaluation to get

the desired results.

Lemma 3.47 For all i � 0 and for all � , ` ��
i � �x:�:��

! (�
�
! x) : � * � .

Proof By Corollary 3.15 it su�ces to show, for all i � 0, for all v 2 Val� ,
and for all Ef �*� vg 2 ECtx1,

Ef��
i vg �

k Ef(�x:�:��
! (�

�
! x)) vg

This can shown by induction on (i; �) ordered lexicographically. ut

Lemma 3.48 For all i � 0, ` �i � �x:�:�! (�! x) : � * �.

Proof Follows by Lemma 3.47. ut

Lemma 3.49 For all i � 0 and for all � , ` �x:�:��
i (�

�
i x) � ��

! : � * � .

Proof By Corollary 3.15 it su�ces to show, for all i � 0, for all v 2 Val� ,
and for all Ef �*� vg 2 ECtx1,

Ef(�x:�:��
i (�

�
i x)) vg �

k Ef��
! vg

This can shown by induction on (i; �) ordered lexicographically. ut

31

Lemma 3.50 For all i � 0, ` �x:�:�i (�i x) � �! : � * �.

Proof Follows by Lemma 3.49. ut

Lemma 3.51 For all � , ` ��
! � �x:�:��

! (�
�
! x) : � * � .

Proof By Corollary 3.37, with C = �*� , and Lemma 3.47. ut

Lemma 3.52 ` �! � �x:�:�! (�! x) : � * �.

Proof By Corollary 3.37, with C = �*�, and Lemma 3.48. ut

Lemma 3.53 For all � , ` �x:�:��
! (�

�
! x) � ��

! : � * � .

Proof By Corollary 3.37, with C = �x:�: 1 (2 x) with 1 and 2 of type
� * � , and Lemma 3.49. ut

Lemma 3.54 ` �x:�:�! (�! x) � �! : � * �.

Proof By Corollary 3.37, with C = �x:�: 1 (2 x) with 1 and 2 of type
� * �, and Lemma 3.50. ut

Corollary 3.55 For all e 2 Exp� and for all Ef �g 2 ECtx� 0 ,

` Ef��
! (�

�
! e)g � Ef��

! eg : �
0:

Proof Follows by Lemmas 3.51 and 3.53. ut

Corollary 3.56 For all e 2 Exp� and for all Ef �g 2 ECtx� ,

` Ef�! (�! e)g � Ef�! eg : �:

Proof Follows by Lemmas 3.52 and 3.54. ut

We then de�ne a \compilation" relation for expressions that annotates
terms with syntactic projections. The relation � ` e : �) jej is de�ned by
induction on � ` e : � by the axioms and inference rules in Figure 2. It is
easy to see that if � ` e : � , then � ` e : �) jej, for some unique jej (i.e.,
the compilation relation is a function).

32

� ` x : �) ��
! x (�(x) = �) (tr-var)

� ` � : 1) �1
! � (tr-one)

� ` e1 : �1) je1j � ` e2 : �2) je2j

� ` (e1; e2) : �1 � �2) ��1��2
! (je1j; je2j)

(tr-prod)

� ` e : �1 � �2) jej

� ` fst e : �1) fst jej
(tr-fst)

� ` e : �1 � �2) jej

� ` snd e : �2) snd jej
(tr-snd)

� ` e : �1) jej

� ` inl�2 e : �1 + �2) ��1+�2
! (inl�2 jej)

(tr-inl)

� ` e : �2) jej

� ` inr�1 e : �1 + �2) ��1+�2
! (inr�1 jej)

(tr-inr)

� ` e1 : �1 + �2) je1j � ` e2 : �1 * �) je2j � ` e3 : �2 * �) je3j

� ` case(e1; e2; e3) : �) case(je1j; je2j; je3j)
(tr-case)

�[f : �1 * �2][x : �1] ` e : �2) jej

� ` �x f(x:�1):�2:e : �1 * �2) ��1*�2
! (�x f(x:�1):�2:jej)

(f; x 62 Dom(�))

(tr-fix)

� ` e1 : �2 * �) je1j � ` e2 : �2) je2j

� ` e1 e2 : �) je1j je2j
(tr-app)

� ` e : �) jej

� ` out e : ��) out jej
(tr-out)

� ` e : ��) jej

� ` in e : �) ��
! (in jej)

(tr-in)

Figure 2: De�nition of � ` e : �) jej.

33

Lemma 3.57 If � ` e : �) jej, then � ` jej : � .

Proof By induction on � ` e : �) jej. ut

For any Ef �g 2 ECtx� 0 , we de�ne jEj as follows. Clearly, [z : �] `
Efzg : � 0. Thus for some e0, [z : �] ` Efzg : � 0) e0. By induction
on the derivation there will be one free occurrence of z in e0. We de�ne
jEj

def
= [�=z]e

0, and by induction on the derivation jEjf �g 2 ECtx� 0 .

Lemma 3.58 For all e 2 Exp� (�) and for all expression substitutions
 for
�, if � ` e : �) jej, then ` ��

! (
jej) �
jej : � .

Proof By induction on � ` e : �) jej.
Case tr-var, tr-one, tr-prod, tr-inl, tr-inr, tr-fix, tr-in: Use

Corollary 3.55.
Case tr-fst: By induction we get that

`
jej � ��1��2
! (
jej) : �1 � �2 (12)

We are to show ` fst (
jej) � ��1
! (fst (
jej)) : �1 � �2. If
jej * then

it follows by Lemma 2.16. Thus assume that
jej +, that is, that there
exists v 2 Val�1��2 such that
jej 7!� v. By Canonical Forms Lemma
(Lemma 2.11), v = (v1; v2) for some v1, v2. By (12), Lemmas 3.7 and 3.39
and transitivity of �,

`
jej � (��1
! v1;�

�2
! v2) : �1 � �2 (13)

By Lemmas 3.7, 3.9, 3.10, and (13), we get

` fst (
jej) � ��1
! v1 : �1 (14)

Further, again using Lemmas 3.7 and 3.10,

` fst (
jej) � v1 : �1 (15)

so by composition of evaluation contexts, (15) gives

` ��1
! (fst (
jej)) � ��1

! v1 : �1 (16)

which together with (14) gives the required by transitivity and symmetry of
�.

Case tr-snd: Similar to the case for tr-fst.

34

Case tr-case: We are to show that

` ��
! (case(
je1j;
je2j;
je3j)) � case(
je1j;
je2j;
je3j) : �:

If
jej * then it follows by Lemma 2.16. Thus assume that
jej +.
SubCase I: Assume
jej 7!� inl�2 v1. Then by Lemma 3.7, it su�ces to

show ` ��
! (
je2j (v1)) �
je2j (v1) : � . Assume
je2j 7!

� v (otherwise the
required follows by Lemma 2.16). By induction we have

`
je2j � ��1*�
! (
je2j) : �1 * �

so by Lemma 3.7 and transitivity of � we get

` v � ��1*�
! v : �1 * �

Thus it su�ces to show

` ��
! ((�

�1*�
! v) v1) � (��1*�

! v) v1 : �

But
(��1*�

! v) v1 7!
� ��

! (v (�
�1
! v1))

so by Lemma 3.7 and transitivity of � it su�ces to show

` ��
! (�

�
! (v (�

�1
! v1))) � ��

! (v (�
�1
! v1)) : �

but this follows from Corollary 3.55.
SubCase II: Assume
jej 7!� inr�1 v1. Similar to SubCase I.
Case tr-app: Follows by induction and Corollary 3.55.
Case tr-out: Follows by induction and Corollary 3.55. ut

Lemma 3.59 For all e 2 Exp� (�) and for all expression substitutions
,
0

for �, if `
 �
0 : � and � ` e : �) jej, then `
jej �
0(e) : � .

Proof By induction on � ` e : �) jej, using Lemma 3.34 and Lemma 3.46.
For rule tr-fix, by compactness it su�ces to show, for all i 2 N ,

`
(�x f i(x:�1):�2:jej) �
0(�x f i(x:�1):�2:(e)) : �

This is shown by induction on i using the outer induction hypothesis in the
inductive step. ut

35

Corollary 3.60 If ; ` e : �) jej, then ` jej � e : � .

Proof By Lemma 3.59. ut

Corollary 3.61 For all Ef �g 2 ECtx� 0 and for all expression substitutions

 for � = [z : �], if [z : �] ` Efzg) jEfzgj, then `
jEfzgj �
(Efzg) : � 0.

Proof Follows by Lemma 3.59. ut

Lemma 3.62 For all e 2 Exp� and for all Ef �g 2 ECtx� 0

1. If [x1 : �1; : : : ; xk : �k] ` e) jej and ; ` e1 : �1, . . . , ; ` ek : �k, then

` j[e1; : : : ; ek=x1; : : : ; xk]ej � [je1j; : : : ; jekj=x1; : : : ; xk]jej : �

2. ` jEfegj � jEjfjejg : � 0.

Proof

1. By induction on [x1 : �1; : : : ; xk : �k] ` e) jej.

2.

jEfegj = j[e=x]Efxgj by Lemma 2.3
= [jej=x]jEfxgj by 1
= jEjfjejg by Lemma 2.3

where for the last application of Lemma 2.3 note that the lemma indeed
is applicable since jEj is an evaluation context.

ut

Lemma 3.63 For all � and for all v 2 Val� the following holds.

1. jvj +

2. ��
! jvj +

Proof By induction on v. ut

Lemma 3.64 For all e 2 Exp� , if ; ` e : �) jej and e 7! e0, then

` jej � je0j : � , where ; ` e0 : �) je0j

36

Proof Assume e 7! e0. Then e = Efrg for some E and r. We proceed
by cases on the reduction rule applied. We will use Lemmas 3.7 and 3.9
repeatedly without explicit mentioning.

Case r-out: Then r = out (in v) for some v. We reason as follows.

jej = jEfrgj
� jEjfjrjg by Lemma 3.62, item 2
= jEjfjout (in v)jg
= jEjfout (��

! (in jvj))g by de�nition
� jEjfout (��

! (in v0))g by Lemma 3.63, 9v0 : jvj 7!� v0

� jEjfout (in (�
��
! v0))g by Lemmas 3.34 and 3.43

� jEjfout (in (�
��
! jvj))g

� jEjfout (in v00)g by Lemma 3.63, 9v00 : �
��
! jvj 7!� v00

� jEjfv00g by r-out

� jEjf�
��
! jvjg

� jEjfjvjg by Lemma 3.58
� je0j

Case r-beta: We reason as follows.

jej � jEjfj(�x f(x:�1):�2:e1) vjg by Lemma 3.62, item 2
� jEjf(��1*�2

! (�x f(x:�1):�2:je1j)) jvjg by de�nition
� jEjf(�x:�1:�

�2
! ((�x f(x:�1):�2:je1j) (�

�1
! x))) jvjg by Lemma 3.41

� jEjf(�x:�1:�
�2
! ((�x f(x:�1):�2:je1j) (�

�1
! x))) v0g by Lemma 3.63, 9v0 : jvj 7!� v0

� jEjf��2
! ((�x f(x:�1):�2:je1j) (�

�1
! v0))g by r-beta

� jEjf��2
! ((�x f(x:�1):�2:je1j) (�

�1
! jvj))g

� jEjf��2
! ((�x f(x:�1):�2:je1j) jvj)g by Lemma 3.58

� jEjf��2
! ((�x f(x:�1):�2:je1j) v0)g

� jEjf��2
! ([�x f(x:�1):�2:je1j; v

0=f; x]je1j)g by r-beta

� jEjf��2
! ([�x f(x:�1):�2:je1j; jvj=f; x]je1j)g by Lemma 3.34

� jEjf[�x f(x:�1):�2:je1j; jvj=f; x]je1jg by Lemma 3.58
� jEjfj[�x f(x:�1):�2:e1; v=f; x]e1jg by Lemma 3.62, item 1
� je0j by Lemma 3.62, item 2

Case r-fst: We reason as follows.

jej � jEjfjfst ((v1; v2))jg by Lemma 3.62, item 2
� jEjffst ((jv1j; jv2j))g by de�nition
� jEjffst ((v01; v

0
2))g by Lemma 3.63, 9v01 : jv1j 7!

� v01 and 9v
0
2 : jv2j 7!

� v02
� jEjfv01g by r-fst

� jEjfjv1jg
� je0j by Lemma 3.62, item 2

37

Case r-snd: Similar to the r-fst case.
Case r-case-inl: We reason as follows.

jej � jEjfjcase(inl�2 v; e1; e2)jg by Lemma 3.62, item 2
� jEjfcase(inl�2 jvj; je1j; je2j)g by de�nition
� jEjfcase(inl�2 v

0; je1j; je2j)g by Lemma 3.63, 9v0 : jvj 7!� v0

� jEjfje1j v
0g by r-case-inl

� jEjfje1j jvjg
� jEjfje1 vjg by de�nition
� je0j by Lemma 3.62, item 2

Case r-case-inr: Similar to the r-case-inl case. ut

Lemma 3.65 ` �x:�:x � �! : � * �

Proof By Corollary 3.15 and Canonical Forms Lemma (Lemma 2.11) it
su�ces to show, for all Ef �*� (in v)g 2 ECtx1,

Ef(�x:�:x) (in v)g �k Ef�! (in v)g

Let Ef �*� (in v)g 2 ECtx1 be arbitrary. By Lemma 3.6, it then su�ces to
show,

Efin vg �k Ef�! (in v)g

By Corollary 3.60 it then su�ces to show,

Efin vg �k Ef�! jin vjg

Since clearly ` �! � ��
! : � * �, by Lemma 3.58 it then su�ces to show,

Efin vg �k Efjin vjg (17)

Suppose that
Efin vg �k jEfin vgj (18)

holds. Assuming this, we can reason as follows

Efin vg 7!� �) jEfin vgj 7!� � by assumption (18)
) jEjfjin vjg 7!� � by Lemma 3.62, item 2
) Efjin vjg 7!� � by Corollary 3.61

which gives (17) as required.

38

Thus we are left with showing (18). Clearly this follows from showing,
for all closed expressions e 2 Exp1,

e 7!� �) jej 7!� �

We show this by induction on the length m of the computation of e 7!� �.
Basis (m = 0): Then e = �, whence jej = �1

! � 7!
� �, as required.

Inductive Step: Assume e 7! e0 7!m �. Then by induction we get that
je0j 7!� �. By Lemma 3.64, also jej 7!� �, as required. ut

We are now in a position to establish the following theorem, which we re-
fer to as the syntactic minimal invariant property by analogy to the domain-
theoretic work of Pitts (Pitts, 1996).

Theorem 3.66 (Syntactic Minimal Invariance) ` �! � �x:�:x : � * �

Proof By Lemmas 3.46, 3.65, and 3.3. ut

3.3 Summary

In this section we have de�ned a notion of experimental approximation and
experimental equivalence between terms and established some basic equiv-
alences of terms. Further, we have seen that the �nite unrollings of a given
�x-term forms a chain with respect to the approximation pre-order and that
the �x-term itself is the least upper bound of this chain. This has been cru-
cial to establish the syntactical minimal invariant property for the recursive
type �, that is, that the projection term �! associated with the recursive
type � is operationally equivalent to the identity term �x:�:x.

In the following we shall show how to construct relations over equivalence
classes of terms (with respect to the operational equivalence). The properties
established in this section are crucial to this construction, in particular, the
syntactical minimal invariant property plays a central rôle in adapting Pitts'
method (Pitts, 1996) to our operational setting.

4 Relations

In this and the following section we shall show how to construct a relational
interpretation of types over an operational semantics. We shall end up by
showing \The Fundamental Theorem of Logical Relations" which states that
the relational interpretation of types is sound in the sense that well-typed

39

terms are related to themselves by the relation associated to their type. The
constructed relations can be seen to provide a notion of equality of terms,
which we shall refer to as \logical equivalence". In Section 6 we de�ne this
notion of equivalence and show that it coincides with contextual equivalence.
Moreover, we derive a useful coinduction principle for establishing logical
equivalence and thus contextual equivalence. This section also provides the
necessary understanding for constructing a relational interpretation, which
we can use to show the correctness of cps transformation in Section 7.

In this section we de�ne a universe of relations over equivalence classes
of closed expressions, with respect to operational equivalence. Further, we
de�ne a notion of admissibility for relations. This corresponds to the notion
of admissibility (also known as inclusiveness or completeness) used in domain
theory, and is also here used as a condition on relations, which, loosely
speaking, allows one to show that a �x-term is in a relation by showing that
its approximants are in the relation. Next we show that admissible relations
equipped with the obvious ordering form a complete lattice, de�ne relational
constructors corresponding to the type constructors of the language, and
show that these constructors preserve admissibility.

Throughout this section we will let n 2 N be an arbitrary but �xed
natural number, that is, we will consider n-ary relations for a �xed, but
arbitrary n 2 N . We will use the same abbreviations for terms involving
�x and for contexts as in Section 3.1. For any set A and natural number m
we write Am for the m-ary cartesian product of A. For any set A and any
equivalence relation � on A, we write A=� for the set of equivalence classes
of A with respect to �. To simplify notation we denote each equivalence
class by one of its representatives. Moreover, we will simply use � for the
operational equivalence relation at type � (i.e., (e; e0) 2� () ` e � e0 : �)
when � is clear from context.

De�nition 4.1 For all � , we de�ne a universe of n-ary relations Rel � as

follows.

Rel �
def
= P ((Exp� =�)

n)

We use R to range over Rel � .

De�nition 4.2 A relation R 2 Rel � is admissible if and only if it satis�es

both of the following two conditions.

Strictness: (e1; : : : ; en) 2 R if and only if ((8i 2 1::n : ei *)_ (9v1; : : : ; vn :
8i 2 1::n : ei 7!

� vi ^ (v1; : : : ; vn) 2 R))

40

Completeness: For all i 2 1::n and for all Cif~pg 2 Ctx� with all parame-

ters in ~p of type �1 * �2 and for all F i
! = �x f(x:�1):�2:ei 2 Exp�1*�2

,

and for all I 2 Pcof(N
j~pj),

�
8~m 2 I : (C1fF

1
~mg; : : : ; CnfF

n
~mg) 2 R

�
)

�
(C1fF

1
!g; : : : ; CnfF

n
! g) 2 R

�

Recall that Cf~pg means that all of the parameters of C are included in ~p,
that is, in the completeness condition the contexts Ci are not required to all
have the same number of parameters.

The completeness condition on relations is motivated as follows. For
simplicity, let us just consider unary relations (n = 1). We wish to impose
a completeness property that allows us to conclude that CfF!g 2 R based
on whether some collection of �nite unrollings of CfF!g are in R. Clearly,
it is not su�cient to establish that CfFig 2 R for some i � 0, since CfFig
may fail to terminate (and hence lie in R by the strictness condition on rela-
tions), whereas CfF!g may terminate with some value. This suggests that
it may be su�cient to establish that CfFig 2 R for some i such that CfFig
terminates. But such a weak notion of completeness would not be closed
under the standard formation of function spaces between relations, where
an expression, loosely speaking, is related i� it maps related arguments to
related results. Indeed, suppose e 2 R2 and that CfFig terminates and that
CfFig 2 R1 * R2 does not entail that there exists i

0 such that CfFi0g (e)
terminates and lies in R2. Consequently we must assume that for every i
there is a larger i0 such that CfFig 2 R so that in the case of R = R1 * R2

we may pick a large enough i0 to ensure that an application CfFi0g (e) ter-
minates and hence lies in R2. The completeness condition we have stated
here ensures that this is the case.

De�nition 4.3 For all � , we de�ne a universe of admissible n-ary relations
Radm� as follows.

Radm�
def
= fR 2 Rel � j R is admissible g

We also use R to range over Radm� .

We now de�ne a series of relational constructors corresponding to the
syntactic type constructors. For each of these constructors it is easy to
verify that the de�nition does not depend on the choice of representative of
an operational equivalence class.

41

De�nition 4.4

0
def
= f (e1; : : : ; en) 2 (Exp0 =�)

n j 8i 2 1::n : ei *g

De�nition 4.5

1
def
= f (e1; : : : ; en) 2 (Exp1 =�)

n j (8i 2 1::n : ei *) _ (8i 2 1::n : ei 7!
� �) g

De�nition 4.6 For all R1 2 Rel �1 and R2 2 Rel �2 ,

R1 �R2
def
= f (e1; : : : ; en) 2 (Exp�1��2 =�)

n j
(8i 2 1::n : ei *)_
(9v1; : : : ; vn; v

0
1; : : : ; v

0
n : 8i 2 1::n : ` ei � (vi; v

0
i) : �1 � �2

^ (v1; : : : ; vn) 2 R1 ^ (v01; : : : ; v
0
n) 2 R2) g

De�nition 4.7 For all R1 2 Rel �1 and R2 2 Rel �2 ,

R1 +R2
def
= f (e1; : : : ; en) 2 (Exp�1+�2 =�)

n j
(8i 2 1::n : ei *)_
(9v1; : : : ; vn : 8i 2 1::n : ` ei � inl�2 vi : �1 + �2 ^ (v1; : : : ; vn) 2 R1)
(9v1; : : : ; vn : 8i 2 1::n : ` ei � inr�1 vi : �1 + �2 ^ (v1; : : : ; vn) 2 R2) g

De�nition 4.8 For all R1 2 Rel �1 and R2 2 Rel �2 ,

R1 * R2
def
= f (e1; : : : ; en) 2 (Exp�1*�2

=�)n j
(8i 2 1::n : ei *)_
(9v1; : : : ; vn : 8i 2 1::n : ` ei � vi : �1 * �2 ^ ((e01; : : : ; e

0
n) 2 R1)

(v1 e
0
1; : : : ; vn e

0
n) 2 R2)) g

Lemma 4.9 For all � , (Radm � ;�) is a complete lattice.

Proof By a standard lattice-theory theorem (see, e.g., (Davey & Priestley,
1990, Theorem 2.16(ii))) it su�ces to show that the greatest lower bound,V
S, exists for every subset of Radm� . Thus let S be an arbitrary subset of

Radm� . De�ne
V
S

def
=
T
S. We then have to show

1.
V
S 2 Radm�

2.
V
S is the greatest lower bound of S

42

Item 2 is obvious by the de�nitions. To prove item 1 we have to show that
the two conditions in the de�nition of admissibility are satis�ed. They both
follow easily using the fact that each R 2 S is admissible. ut

We now proceed to show that the relational constructors preserve ad-
missibility. To this end we shall employ the following lemma about the +F

relation, which was de�ned in Section 3.1.

Lemma 4.10 For all i 2 1::n and for all contexts Cif~pg and all value

contexts Vif~pig satisfying Cif~pg +
F Vif~pig, there exists a ~p

0 such that for all

i 2 1::n, Cif~pg +
F Vif~p

0g and furthermore, for all I 2 Pcof(N
j~pj), letting

Ii
def
= f ~m~m0 j ~m 2 I ^CifF

i
~mg 7!

� VifF
i
~m0g g 2 Pcof(N

j~pj+j~p
0

j)

then

I 0
def
=

n\
i=1

Ii

is a co�nal subset of N j~pj+j~p
0

j.

Proof Since +F is preserved under renaming of parameters we can as-
sume without loss of generality that all parameters pij are distinct. Let
~p0 = ~p1 � � � ~pn. The result follows by Lemma 3.21 and simple properties of
co�nal sets (it is the fact that each Vi involve a distinct subset of the param-
eters of ~p0 that ensures that the intersection de�ning I 0 indeed is a co�nal
set). ut

We will also make use of the following lemma to show admissibility of
the relational constructors.

Lemma 4.11 For all i 2 1::n, all Cif~pg, and for all R1 2 Radm�1 and

R2 2 Radm�2 if the following conditions are all satis�ed

1. R is either 0, 1, R1 �R2, R1 +R2, or R1 * R2

2. 8~m 2 I 2 Pcof(N
j~pj) : (C1fF

1
~mg; : : : ; CnfF

n
~mg) 2 R

3. each R is strict

then

(8i 2 1::n : CifF
i
~!g +) _ (8i 2 1::n : CifF

i
~!g *)

43

Proof (Sketch) Suppose n = 2 and suppose C1fF
1
~!g + and C2fF

2
~!g *.

Then for some ~m 2 I, C1fF
1
~mg +. By assumption, (C1fF

1
~mg; C2fF

2
~mg) 2 R,

so by strictness of R, also C2fF
2
~mg +, contradicting C2fF

2
~!g *. ut

Lemma 4.12 For all R1 2 Radm�1 and all R2 2 Radm�2 , R1 � R2 2
Radm�1��2 .

Proof We are to show that the two conditions of admissibility hold.

Strictness Follows by Lemmas 3.5, 3.7. and 3.9.

Completeness Let I 2 Pcof(N
j~pj). Assume

8~m 2 I : (C1fF
1
~mg; : : : ; CnfF

n
~mg) 2 R1 �R2 (19)

By Lemma 4.11 (note that we have already argued that the strictness
condition of admissibility is satis�ed) there are two cases to consider.

Case I: 8i 2 1::n : CifF
i
~!g *. Then the desired follows by de�nition

of R1 �R2.

Case II: 8i 2 1::n : CifF
i
~!g +. Then 9v1; : : : ; vn : 8i 2 1::n :

CifF
i
~!g 7!

� vi. By Lemma 3.23, for all i 2 1::n there exists a Vif~pig
such that vi = VifF

i
~!g and Cif~pg +

F Vif~pig. Thus by Lemma 4.10,
there exists a ~p0 such that for all i 2 1::n, Cif~pg +

F Vif~p
0g and

Ii
def
= f ~m~m0 j ~m 2 I ^ CifF

i
~mg 7!

� VifF
i
~m0g g 2 Pcof(N

j~pj+j~p0

j)

and

I 0
def
=

n\
i=1

Ii 2 Pcof(N
j~pj+j~p0

j)

Let
I 00

def
= f ~m0 j ~m 2 I ^ ~m~m0 2 I 0 g

Clearly, I 00 2 Pcof(N
j~p0

j). By (19), Lemma 3.7 and de�nition of I 00, we
have,

8~m 2 I 00 : (V1fF
1
~mg; : : : ; VnfF

n
~mg) 2 R1 �R2 (20)

By Canonical Forms Lemma, for all i 2 1::n, there exist Vi1, Vi2 such
that Vi = (Vi1; Vi2), and by (20) and de�nition of R1 � R2 we then
have

8~m 2 I 00 : (V11fF
1
~mg; : : : ; Vn1fF

n
~mg) 2 R1 (21)

44

and
8~m 2 I 00 : (V12fF

1
~mg; : : : ; Vn2fF

n
~mg) 2 R2 (22)

By admissibility of R1 and (21) we then get

(V11fF
1
~!g; : : : ; Vn1fF

n
~! g) 2 R1 (23)

and by admissibility of R2 and (22) we get

(V12fF
1
~!g; : : : ; Vn2fF

n
~! g) 2 R2 (24)

Hence, by de�nition of R1 �R2 we then have

(V1fF
1
~!g; : : : ; VnfF

n
~! g) 2 R1 �R2 (25)

which together with Lemma 3.7 (and recalling that the relations are
over equivalence classes w.r.t. operational equivalence) gives that

(C1fF
1
~!g; : : : ; CnfF

n
~! g) 2 R1 �R2

as required.

ut

Lemma 4.13 For all R1 2 Radm�1 and all R2 2 Radm�2 , R1 + R2 2
Radm�1+�2 .

Proof We are to show that the two conditions of admissibility hold.

Strictness Follows by Lemmas 3.5, 3.7. and 3.9.

Completeness Let I 2 Pcof(N
j~pj). Assume

8~m 2 I : (C1fF
1
~mg; : : : ; CnfF

n
~mg) 2 R1 +R2 (26)

By Lemma 4.11 (note that we have already argued that the strictness
condition of admissibility is satis�ed) there are two cases to consider.

Case I: 8i 2 1::n : CifF
i
~!g *. Then the desired follows by de�nition

of R1 +R2.

Case II: 8i 2 1::n : CifF
i
~!g +. Then 9v1; : : : ; vn : 8i 2 1::n :

CifF
i
~!g 7!

� vi. By Lemma 3.23, for all i 2 1::n there exists a Vif~pig

45

such that vi = VifF
i
~!g and Cif~pg +

F Vif~pig. Thus by Lemma 4.10,
there exists a ~p0 such that for all i 2 1::n, Cif~pg +

F Vif~p
0g and

Ii
def
= f ~m~m0 j ~m 2 I ^ CifF

i
~mg 7!

� VifF
i
~m0g g 2 Pcof(N

j~pj+j~p0

j) (27)

and

I 0
def
=

n\
i=1

Ii 2 Pcof(N
j~pj+j~p0

j)

Let
I 00

def
= f ~m0 j ~m 2 I ^ ~m~m0 2 I 0 g

Clearly, I 00 2 Pcof(N
j~p0

j). By (26), Lemma 3.7 and de�nition of I 00, we
have,

8~m 2 I 00 : (V1fF
1
~mg; : : : ; VnfF

n
~mg) 2 R1 +R2 (28)

By Canonical Forms Lemma,

9V11; : : : ; Vn1; V12 � � � Vn2 : 8i 2 1::n : (Vi = inl�2 Vi1 _ Vi = inr�1 Vi2)

Claim:

(9V11; : : : ; Vn1 : 8i 2 1::n : Vi = inl�2 Vi1)_(9V12; : : : ; Vn2 : 8i 2 1::n : Vi = inl�1 Vi2)

Proof of Claim: By contradiction (of the assumption (26)), using
Lemma 3.7, and (27). (End of Proof of Claim)

Thus there are two subcases to consider.

SubCase I: 9V11; : : : ; Vn1 : 8i 2 1::n : Vi = inl�2 Vi1. Now proceed as in
the proof of Lemma 4.12, using admissibility of R1.

SubCase II: 9V12; : : : ; Vn2 : 8i 2 1::n : Vi = inl�1 Vi2. Now proceed as
in the proof of Lemma 4.12, using admissibility of R2.

ut

Lemma 4.14 For all R1 2 Rel �1 and all R2 2 Radm�2 , R1 * R2 2
Radm�1*�2 .

Proof We are to show that the two conditions of admissibility hold.

Strictness Follows by Lemmas 3.5, 3.7. and 3.9.

46

Completeness Let I 2 Pcof(N
j~pj). Assume

8~m 2 I : (C1fF
1
~mg; : : : ; CnfF

n
~mg) 2 R1 * R2 (29)

By Lemma 4.11 (note that we have already argued that the strictness
condition of admissibility is satis�ed) there are two cases to consider.

Case I: 8i 2 1::n : CifF
i
~!g *. Then the desired follows by de�nition

of R1 * R2.

Case II: 8i 2 1::n : CifF
i
~!g +. Then 9v1; : : : ; vn : 8i 2 1::n :

CifF
i
~!g 7!

� vi. By Lemma 3.23, for all i 2 1::n there exists a Vif~pig
such that vi = VifF

i
~!g and Cif~pg +

F Vif~pig. Thus by Lemma 4.10,
there exists a ~p0 such that for all i 2 1::n, Cif~pg +

F Vif~p
0g and

Ii
def
= f ~m~m0 j ~m 2 I ^ CifF

i
~mg 7!

� VifF
i
~m0g g 2 Pcof(N

j~pj+j~p0

j) (30)

and

I 0
def
=

n\
i=1

Ii 2 Pcof(N
j~pj+j~p0

j)

Let
I 00

def
= f ~m0 j ~m 2 I ^ ~m~m0 2 I 0 g

Clearly, I 00 2 Pcof(N
j~p0

j). By (29), Lemma 3.7 and de�nition of I 00, we
have,

8~m 2 I 00 : (V1fF
1
~mg; : : : ; VnfF

n
~mg) 2 R1 * R2 (31)

Hence by de�nition of R1 * R2

8~m 2 I 00 : 8(e01; : : : ; e
0
n) 2 R1 : (V1fF

1
~mg e

0
1; : : : ; VnfF

n
~mg e

0
n) 2 R2

(32)
Let (e01; : : : ; e

0
n) 2 R1 be arbitrary. Then by (32) we have

8~m 2 I 00 : (V1fF
1
~mg e

0
1; : : : ; VnfF

n
~mg e

0
n) 2 R2 (33)

whence by admissibility of R2, also

(V1fF
1
~!g e

0
1; : : : ; VnfF

n
~! g e

0
n) 2 R2 (34)

Since (e01; : : : ; e
0
n) was arbitrary and using Lemma 3.7 we have that

(C1fF
1
~!g; : : : ; CnfF

n
~! g) 2 R1 * R2

as required.

47

ut

Lemma 4.15 1 2 Radm1.

Proof We are to show that the two conditions of admissibility hold.

Strictness Follows by Lemmas 3.5, 3.7. and 3.9.

Completeness Let I 2 Pcof(N
j~pj). Assume

8~m 2 I : (C1fF
1
~mg; : : : ; CnfF

n
~mg) 2 1 (35)

By Lemma 4.11 (note that we have already argued that the strictness
condition of admissibility is satis�ed) there are two cases to consider.

Case I: 8i 2 1::n : CifF
i
~!g *. Then the desired follows by de�nition

of 1.

Case II: 8i 2 1::n : CifF
i
~!g +. Then 8i 2 1::n : CifF

i
~!g 7!

� �. By
Lemma 3.23, for all i 2 1::n there exists a Vif~pig such that � = VifF

i
~!g

and Cif~pg +
F Vif~pig. Thus by Lemma 4.10, there exists a ~p

0 such that
for all i 2 1::n, Cif~pg +

F Vif~p
0g and

Ii
def
= f ~m~m0 j ~m 2 I ^ CifF

i
~mg 7!

� VifF
i
~m0g g 2 Pcof(N

j~pj+j~p0

j) (36)

and

I 0
def
=

n\
i=1

Ii 2 Pcof(N
j~pj+j~p0

j)

Let
I 00

def
= f ~m0 j ~m 2 I ^ ~m~m0 2 I 0 g

Clearly, I 00 2 Pcof(N
j~p0

j). Clearly, Vi = �. Since I 00 is co�nal, in
particular it is non-empty, so by (35) we have (�; : : : ; �) 2 1. Whence,
by Lemma 3.7 we have that

(C1fF
1
~!g; : : : ; CnfF

n
~! g) 2 1

as required.

ut

Lemma 4.16 0 2 Radm0.

Proof Immediate by the de�nition of 0 and the fact that, for all e 2 Exp0,
e *; the latter follows from progress and the fact that there are no values of
type 0 (formally, by Theorem 2.12 and Lemma 2.11). ut

48

5 Relational Interpretation

In this section we give a relational interpretation of the types of L, that is, an
assignment of admissible relations to each type. To interpret the di�erent
type constructors we, of course, make use of the corresponding relational
constructors de�ned in the previous section. Our construction follows along
the lines of Pitts (Pitts, 1996).

De�nition 5.1 For all � , de�ne [[�]] : Radm� ! Radm� by induction on �
as follows.

[[0]]R = 0

[[1]]R = 1

[[�]]R = R
[[�1 � �2]]R = [[�1]]R � [[�2]]R
[[�1 + �2]]R = [[�1]]R + [[�2]]R
[[�1 * �2]]R = [[�1]]R * [[�2]]R

Note that the operation [[�]] is well-de�ned by induction on � and Lem-
mas 4.9{4.16.

De�nition 5.2 De�ne � : Radm� ! Radm� by

�(R)
def
= f (e1; : : : ; en) 2 (Exp� =�)

n j
(8i 2 1::n : ei *) _ (9v1; : : : ; vn : 8i 2 1::n : ` ei � in vi : � ^

(v1; : : : ; vn) 2 [[��]]R) g

Lemma 5.3 � is well-de�ned.

Proof First note that the de�nition does not depend on the chosen equiv-
alence class representatives (by Lemma 3.5 and transitivity of �). Let
R 2 Radm�. We are to show that �(R) is admissible. Use the fact that
[[��]]R is admissible and proceed as in Lemma 4.12. ut

Lemma 5.4 (Radmop � Radm) ordered component-wise is a complete lat-

tice.

Proof Follows by Lemma 4.9 ut

We write v for the component-wise ordering on (Radmop � Radm).

49

De�nition 5.5 For all � , de�ne [[�]]0 : (Rel op� � Radm�) ! Radm� by in-

duction on � as follows.

[[0]]0(R�; R+) = 0

[[1]]0(R�; R+) = 1

[[�]]0(R�; R+) = R+

[[�1 � �2]]
0(R�; R+) = [[�1]]

0(R�; R+)� [[�2]]
0(R�; R+)

[[�1 + �2]]
0(R�; R+) = [[�1]]

0(R�; R+) + [[�2]]
0(R�; R+)

[[�1 * �2]]
0(R�; R+) = [[�1]]

0(R+; R�) * [[�2]]
0(R�; R+)

Note that the operation [[�]]0 is well-de�ned by induction on � and Lem-
mas 4.9{4.16. Moreover, note that the �rst argument to [[�]]0 is not required
to be admissible; this will be useful in the following section.

De�nition 5.6 De�ne 	 : (Radmop
� � Radm�)! Radm� by

	(R�; R+)
def
= f (e1; : : : ; en) 2 (Exp� =�)

n j
(8i 2 1::n : ei *) _ (9v1; : : : ; vn : 8i 2 1::n : ` ei � in vi : �^

(v1; : : : ; vn) 2 [[��]]
0(R�; R+)) g

Lemma 5.7 	 is well-de�ned.

Proof As in the proof of 5.3. ut

De�nition 5.8 De�ne 	x : (Radmop
� � Radm�) ! (Radmop

� � Radm�) as
follows.

	x(R�; R+) = ((R+; R�);	(R�; R+))

Lemma 5.9 	x is monotone.

Proof By induction on � using monotonicity properties of the relational
constructors in the obvious way. ut

De�nition 5.10 By Lemma 5.9 and 5.4 and Tarski's �xed point theorem,

	x has a least �xed point lfp(x). De�ne (��;�+)
def
= lfp(x).

Lemma 5.11 (��;�+) satis�es the following properties

1. ��;�+ 2 Radm�

50

2. �� = 	(�+;��)

3. �+ = 	(��;�+)

4. for all (R�; R+) 2 (Radmop
� � Radm�), if 	

x(R�; R+) v (R�; R+)
then R� � �� and R+ � �+

5. �+ � ��

Proof Items 1{3 are obvious. Item 4 follows by the least �xed point prop-
erty. Item 5 follows by letting R� = �+ and R+ = �� in 4. ut

To simplify notation, we write e : R � R0 for

8(e1; : : : ; en) 2 R : (e e1; : : : ; e en) 2 R0:

Note that this notation does not depend on the chosen equivalence class
representative, so the notation is indeed well-de�ned.

Lemma 5.12 For all i 2 N and for all � ,

��
i : [[�]]

0(�+;��) � [[�]]0(��;�+)

Proof By induction on (i; �) ordered lexicographically. We proceed by
cases on � .

Case � = 0: Follows immediately by [[0]]0(�+;��) = [[0]]0(��;�+) = 0

and �0
i = �x:0:x, for all i, and Lemma 3.6.

Case � = 1: As the previous case.
Case � = �: Then [[�]]0(�+;��) = �� and [[�]]0(��;�+) = �+. As-

sume e1; : : : ; en 2 ��. We are to show that (��
i e1; : : : ;�

�
i en) 2 �+. By

admissibility of ��, in particular by the strictness condition of admissibility,
there are two cases to consider.

SubCase ek *, for all 1 � k � n: Then also ��
i ek *, for all 1 � k � n,

so by admissibility of �+, the required follows.
SubCase ek +, for all 1 � k � n: Then, as �� = 	(�+;��), (e1; : : : ; en) =

(in v1; : : : ; in vn) for some (v1; : : : ; vn) 2 [[��]]
0(�+;��) (recall that we are

working over equivalence classes). There are two subcases.
SubSubCase i = 0: Then ��

i ek *, for all 1 � k � n, by Lemma 3.42, so
by admissibility of �+, the required follows.

SubSubCase i > 0: Then by Lemma 3.43 (applicable as i � 1), `
��
i e � in (�

��
i�1 vk) : �. By induction (note that (i � 1; ��) < (i; �) in the

lexicographic order), we get that (�
��
i�1v1 ; : : : ;�

��
i�1vn) 2 [[��]]

0(��;�+). By
admissibility there are two cases to consider.

51

SubSubSubCase �
��
i�1 vk *, for all 1 � k � n: Then also ��

i ek *, for all
1 � k � n, so by admissibility of [[�]]0(��;�+), the required follows.

SubSubSubCase �
��
i�1 vk +, for all 1 � k � n: Then �

��
i�1 vk = v0k, for all

1 � k � n such that (v01; : : : ; v
0
n) 2 [[��]]

0(��;�+), whence by Lemma 3.12, `
��
i ek � in v0k : �, for all 1 � k � n, so by de�nition of 	, (��

i e1; : : :�
�
i en) 2

	(��;�+) = �+ = [[�]]0(�+;��), as required.
Case � = �1� �2: Then [[�]]0(�+;��) = [[�1]]

0(�+;��)� [[�2]]
0(�+;��)

and [[�]]0(��;�+) = [[�1]]
0(��;�+) � [[�2]]

0(��;�+). Assume (e1; : : : ; en) 2
[[�]]0(�+;��). We are to show that (��

i e1; : : : ;�
�
i en) 2 [[�]]0(��;�+). By

admissibility there are two cases to consider.
SubCase ek *, for all 1 � k � n: Easy.
SubCase ek +, for all 1 � k � n: Then by de�nition of [[�1]]

0(�+;��)�
[[�2]]

0(�+;��), ek = (v0k; v
00
k), for all 1 � k � n, (v01; : : : ; v

0
n) 2 [[�1]]

0(�+;��),
and (v001 ; : : : ; v

00
n) 2 [[�2]]

0(�+;��). By Lemma 3.39, ` ��
i ek � (��1

i v0k;�
�1
i v00k) :

�1 � �2, for all 1 � k � n. By induction on (i; �1), (v
0
1; : : : ; v

0
n) 2 [[�1]]

0(��;�+).
By induction on (i; �2), (v

00
1 ; : : : ; v

00
n) 2 [[�2]]

0(��;�+). By admissibility of
[[�1]]

0(��;�+) and [[�2]]
0(��;�+), there are three subcases to consider.

SubSubCase ��1
i v0k *, for all 1 � k � n: Easy using Lemma 3.39.

SubSubCase ��2
i v00k *, for all 1 � k � n: Easy using Lemma 3.39.

SubSubCase ` ��1
i v0k � vk0 : �1 for some (v10 ; : : : ; vn0) 2 [[�1]]

0(��;�+)
and ` ��2

i v00k � vk00 : �2 for some (v100 ; : : : ; vn00) 2 [[�2]]
0(��;�+): By

Lemma 3.10, ` ��
i ek � (vk0 ; vk00) : �1 � �2, so by de�nition of [[�1]]

0(��;�+)�
[[�2]]

0(��;�+), the required follows.
Case � = �1+�2: Similar to the case for � = �1��2, using Lemmas 3.40

and 3.11.
Case � = �1 * �2: Then [[�]]

0(�+;��) = [[�1]]
0(��;�+) * [[�2]]

0(�+;��)
and [[�]]0(��;�+) = [[�1]]

0(�+;��) * [[�2]]
0(��;�+). Assume (e1; : : : ; en) 2

[[�]]0(�+;��). We are to show that (��
i e1; : : : ;�

�
i en) 2 [[�]]0(��;�+). By

admissibility there are two cases to consider.
SubCase ek *, for all 1 � k � n: Easy.
SubCase ek +, for all 1 � k � n: Then (e1; : : : ; en) = (v1; : : : ; vn) for

some (v1; : : : ; vn) 2 [[�]]0(�+;��). By de�nition of * we thus have

(e01; : : : ; e
0
n) 2 [[�1]]

0(��;�+)) (v1 e
0
1; : : : ; vn e

0
n) 2 [[�2]]

0(�+;��) (37)

By Lemma 3.41, for all 1 � k � n,

` ��
i ek � �x:�1:�

�2
i (vk (�

�1
i x)) : �1 * �2

Assume (e01; : : : ; e
0
n) 2 [[�1]]

0(�+;��). By de�nition of * it then su�ces
to show that

(�x:�1:�
�2
i (v1 (�

�1
i x)) (e01); : : : ; �x:�1:�

�2
i (vn (�

�1
i x)) (e0n)) 2 [[�2]]

0(��;�+)

52

By admissibility there are two subcases.
SubSubCase e0k *, for all 1 � k � n: Easy.
SubSubCase e0k +, for all 1 � k � n: Then (e01; : : : ; e

0
n) = (v01; : : : ; v

0
n) for

some (v01; : : : ; v
0
n) 2 [[�1]]

0(�+;��). Then, for all 1 � k � n,

` �x:�1:�
�2
i (vk (�

�1
i x)) (e0k) � ��2

i (vk (�
�1
i v0k)) : �2

By induction on (i; �1), (�
�1
i v01; : : : ;�

�1
i v0n) 2 [[�1]]

0(��;�+). Hence, by (37),

(v1 (�
�1
i v01); : : : ; vn (�

�1
i v0n)) 2 [[�2]]

0(�+;��)

By admissibility there are two cases to consider.
SubSubCase vk�

�1
i v0k *, for all 1 � k � n: Easy.

SubSubCase vk �
�1
i v0k +, for all 1 � k � n: Then (v1�

�1
i v01; : : : ; vn�

�1
i v0n) =

(v001 ; : : : ; v
00
n) for some (v

00
1 ; : : : ; v

00
n) 2 [[�2]]

0(�+;��). Then, for all 1 � k � n,
` ��2

i (vk (�
�1
i v0k)) � ��2

i v00k : �2 and by induction on (i; �2), (�
�2
i v001 ; : : : ;�

�2
i v00n) 2

[[�2]]
0(��;�+). Hence by admissibility of [[�2]]

0(��;�+) and transitivity of
�, the required follows. ut

Lemma 5.13 For all i 2 N , �i : �
� � �+.

Proof By induction on i.
Basis (i = 0): Assume (e1; : : : ; en) 2 ��. By Lemma 3.42 and since

` �0 � ��
0 : � * �, �0 ek *, for all 1 � k � n. Hence, by admissibility of

�+, (�0 e1; : : : ; �0 en) 2 �+, as required.
Inductive Step: We assume it holds for i and show for i+ 1. Assume

(e1; : : : ; en) 2 ��. By admissibility of �� there are two cases to consider.
SubCase ek *, for all 1 � k � n: Easy.
SubCase (e1; : : : ; en) = (in v1; : : : ; in vn) for some (v1; : : : ; vn) 2 [[��]]

0(�+;��):
By Lemma 3.43 (applicable as i + 1 � 1), ` ��

i+1 ek � in (�
��
i vk) : �, for

all 1 � k � n. By Lemma 5.12, (�
��
i v1; : : : ;�

��
i vn) 2 [[��]]

0(��;�+). By
admissibility of [[��]]

0(��;�+), there are two subcases to consider.
SubSubCase �

��
i vk *, for all 1 � k � n: Easy using Lemma 3.5.

SubSubCase (�
��
i v1; : : : ;�

��
i vn) = (v01; : : : ; v

0
n) for some (v01; : : : ; v

0
n) 2

[[��]]
0(��;�+): Then by transitivity and Lemma 3.7, ` ��

i+1 ek � in v0k : �,
for all 1 � k � n, so by de�nition of 	 (��

i+1 e1; : : : ;�
�
i+1 en) 2 	(��;�+) =

�+, as required. ut

Lemma 5.14

�! : �� � �+

53

Proof Let (e1; : : : ; en) 2 ��. We are to show that (�! e1; : : : ; �! en) 2 �+.
By admissibility of �+ (Lemma 5.11, item 1), with I = N in the de�nition
of admissibility, it su�ces to show 8i 2 N : (�i e1; : : : ; �i en) 2 �+. But this
follows from Lemma 5.13. ut

Lemma 5.15

�� � �+

Proof By Lemma 5.14, Theorem 3.66 and the fact that admissible relations
are over equivalence classes w.r.t. operational equivalence. ut

Lemma 5.16

�� = �+

Proof By Lemmas 5.11 and 5.15. ut

De�nition 5.17

�
def
= �+

De�nition 5.18 For all � de�ne R�
def
= [[�]]�+.

This completes the construction of relations R� for all � .

We now aim to show \The Fundamental Theorem of Logical Relations"
which states that the relational interpretation of types is sound in the sense
that well-typed terms are related to themselves by the relation associated
to their type. To this end we �rst extend the interpretation of types as
relations to type environments.

De�nition 5.19 For all type environments �,

R�
def
= f (
1; : : : ;
n) j

(8i 2 1::n :
i is an expression substitution for �) ^
(8x 2 Dom(�) : (
1(x); : : : ;
n(x)) 2 R�(x)) g

Theorem 5.20 If � ` e : � and (
1; : : : ;
n) 2 R�, then (
1(e); : : : ;
n(e)) 2
R� .

54

Proof (Sketch) By induction on � ` e : � . In the case for t-fix, by
admissibility of the relations R� , for all � , it su�ces to show, for all i 2 N ,

(�x f i(x:�1):�2:
1(e); : : : ; �x f
i(x:�1):�2:
n(e)) 2 R�1*�2

but this is easy to show by an inner induction on i using the outer induction
hypothesis. ut

6 Logical Equivalence

In this section we shall be concerned with binary relations (i.e., n = 2) as
constructed in the previous section. The relations can be used to de�ne a
notion of logical equivalence as follows.

De�nition 6.1 (Logical Equivalence) For all e; e0 2 Exp� we de�ne `
e R� e

0 if and only if (e; e0) 2 R� .

(Recall that e and e0 denote the equivalence classes, wrt. operational equiv-
alence, of e and e0 respectively in the expression (e; e0) 2 R� .)

Theorem 6.2 If ` e � e0 : � then ` e R� e
0.

Proof By Theorem 5.20. ut

Theorem 6.3 If ` e R� e
0 then ` e � e0 : � .

Proof Suppose ` e R� e0. Let Ef �g 2 ECtx1 be arbitrary. Further let
� = fx 7! �g and let e0 = Efxg,
 = fx 7! eg, and
0 = fx 7! e0g. Then
we have that � ` e : 1 and (
;
0) 2 R�. Thus by Theorem 5.20, we get that
(
(e0);

0(e0)) 2 R1. Thus (Efeg; Efe0g) 2 R1, so by de�nition of R1, we
have that Efeg �k Efe0g. Hence as E was arbitrary, we have ` e � e0 : � ,
as required. ut

De�nition 6.4 (Open Logical Equivalence) For all e and e0, if � ` e :
� and � ` e0 : � , then we de�ne � ` e R� e0 if and only if for all value

substitutions
 and
0 for � satisfying (
;
0) 2 R�, `
(e) R�

0(e0).

Theorem 6.5 � ` e � e0 : � if and only if � ` e R� e
0.

55

Proof Suppose � ` e � e0 : � and let
 and
0 be value substitutions
satisfying (
;
0) 2 R�. Then 8x 2 Dom(�) : `
(x) R�(x)

0(x). Hence
by Theorem 6.3, 8x 2 Dom(�) : `
(x) �
0(x) : �(x). Thus from our
assumption we get that `
(e) �
0(e0) : � so by Theorem 6.2, `
(e) R�

0(e0), as required.
For the other direction, suppose that � ` e R� e

0. Let
 and
0 be value
substitutions such that 8x 2 Dom(�) : `
(x) �
0(x) : �(x). Then by The-
orem 6.2, we have that 8x 2 Dom(�) : `
(x) R�(x)

0(x). Thus from our
assumption we get that `
(e) R�

0(e0) so Theorem 6.3, `
(e) �
0(e0) : � ,
as required. ut

By the above theorem, we may use logical equivalence to prove two
expressions experimentally equivalent. This is especially useful, as we shall
now show, since we can derive a useful coinduction principle for establishing
logical equivalence. One can also derive an induction principle but we shall
not go into that here. These principle are derived in a manner analogously
to the way in which Pitts (Pitts, 1996) derives such principles. For reasons of
space, we shall be less formal in our presentation of these reasoning principles
than we are elsewhere. Moreover, we shall allow ourselves to elide some of
the explicit typing information.

Theorem 6.6 For all R� 2 Rel� and for all R+ 2 Radm�, the following

inference rule is valid:

out : R� � [[��]]
0(R+; R�) in : [[��]]

0(R�; R+) � R+

R� � � � R+

Remark 6.7 Note that R� is not required to be admissible. (If R� was

required to be admissible then the theorem would essentially just be a re-

statement of Lemma 5.11, item 4.)

Proof The idea of the proof is to show that, under the given assumptions,
�! : R� � � and �! : � � R+ and then use the syntactical minimal
invariance to get the conclusion. Since � (as shown earlier) and R+ (by as-
sumption) are both admissible, we can show this by showing it for the �nite
unrollings of �!, as in the proof of Lemma 5.14. For the �nite unrollings of
�!, one proceeds as in the proofs of Lemmas 5.12 and 5.13. ut

We now show how to specialize Theorem 6.6 to a coinduction principle
and give some examples of how to use it. More examples of the kind found
in (Pitts, 1995) may also be treated this way.

56

Theorem 6.8 (Coinduction Principle) For all R 2 Rel�, if in : [[��]]
0(R;�) �

�, then the following inference rule is valid:

out : R � [[��]]
0(�; R)

R � �

Remark 6.9 Note that R is not required to be admissible. The intuition of

the condition in : [[��]]
0(R;�) � � is that � only occurs positively in ��.

Proof By Theorem 6.6, letting R� = R and R+ = � and using that
[[��]]

0(R;�) = �. ut

Example For the purpose of this example, we shall assume that we have
another ground type N and that �� = 1+N��, such that � is intuitively the
type of lists of natural numbers, as in Example 2.3. Moreover, assume RN is
the obvious equality relation on the type N (essentially de�ned analogously
to R1). Then [[��]]

0(R;�) = R1+RN ��, for any R, and thus, by de�nition
of �, in : [[��]]

0(R;�) = R1 + RN �� � �. Hence, for any R 2 Rel�, we
have that the following inference rule is valid:

out : R � R1 +RN �R

R � �

Unwinding the de�nitions, this rule says that if, whenever e R e0 then either

1. out e * ^out e0 *; or

2. out e 7!� inlN�� � ^ out e0 7!� inlN�� �; or

3. out e 7!� inr1 (n; v) ^ out e0 7!� inr1 (n; v
0) ^ v R v0;

then e R e0) e � e0.
Recall the de�nition of map from Example 2.3. We want to show that

map succ (map succ e) is experimentally equivalent to map (succ � succ) e,
for all e : �. By Theorem 6.3 it su�ces to show that they are logically
equivalent. To show that they are logically equivalent, we can apply our
coinduction principle. To this end we let

R = f(map succ (map succ e);map (succ � succ)e) j ` e : �g:

One can now show that whenever e R e0, then the three items above are
satis�ed. Hence we can conclude that e R e0 implies that e � e0 so recalling

57

that R� = �, we have that map succ (map succ e) is indeed logically equiv-
alent to map (succ � succ)e, for all e such that ` e : �. ut

In the above example, we could of course equally well have proceeded by
induction on the length of the list that the argument expression evaluates
to. That option is not available in the following example.

Example In this example, we shall again assume that we have a type of
natural numbers N . We shall consider streams of natural numbers. Streams
are implemented by means of functions, as is often the case in languages with
call-by-value semantics. Thus we shall consider the case where �� = 1 *
N � �. Then one can show that in : [[��]]

0(R;�) = R1 * RN �� � �.
Hence, for any R 2 Rel �, we have that the following inference rule is valid:

out : R � 1 * RN �R

R � �

Unwinding the de�nitions, this rule says that if, whenever e R e0 then either

1. out e � * ^out e0 � *; or

2. out e � 7!� (n; v) ^ out e0 � 7!� (n; v0) ^ v R v0;

then e R e0) e � e0. Pitts (Pitts, 1995) also derives a coinduction principle
for in�nite streams in his theory of program equivalence based on bisimu-
lation. Pitts' coinduction principle corresponds closely to the one we have
obtained here by specializing the recursive type to the type of streams.

Consider the following terms:

ones = �x ones(x:1):N � �:(1; in (�x:1:ones �))
twos = �x twos(x:1):N � �:(2; in (�x:1:twos �))
succstr = �x succstr(s:�):�x:1:(�p:N � �:(succ fst p; in (succstr (snd p)))) (out s �)

Intuitively, ones is the streams of all ones, twos is the stream of all twos,
and succstr is the successor operation on streams which applies the succes-
sor function to every element in the stream. Thus we would expect that
succstr ones is operationally equivalent to twos . We can show this using
coinduction, by considering the relation

R = f(twos ; succstr ones)g;

because supposing that e R e0, one can see that item 2 above is satis�ed.
Thus we conclude that R � � and thus that succstr ones is logically equiv-
alent (and hence operationally equivalent) to twos . ut

58

7 Correctness of CPS Transformation

The continuation-passing (cps) transformation (Fischer, 1993; Plotkin, 1975;
Reynolds, 1972) is a global program transformation used in some compilers
for functional languages (Steele, Jr., 1978; Appel, 1992). The main idea of
the cps transformation is to make the
ow of control in a program explicit
through the use of higher-order functions. The translation of an expression
is a function that takes as argument another function, its continuation,
to which control should be passed upon completion of evaluation of that
expression. Sequencing of the steps of evaluation is expressed by an explicit
\hand-o�" from one continuation to the next in the transformed program.
In addition to making the
ow of control explicit, the cps transformation
also introduces bindings for all intermediate results of a computation, and
makes the state of evaluation available for explicit manipulation. The latter
property is especially of interest for implementing exceptions (Appel, 1992)
and user-level threads (Reppy, 1991).

We de�ne the cps transformation as a relation between a \source" and a
\target" language. The source language, L�, is just the language L de�ned
earlier. The target language, L�

�

, is the variant of L obtained by replacing
the single recursive type � by another recursive type �� obtained from � by
a transformation on types similar to that given by Meyer and Wand (Meyer
& Wand, 1985).

We let Type� denote the set of type expressions of L�, that is Type� =
Type. The set of target type expressions, denoted Type�

�

, is de�ned exactly
as Type, but with �� for �.

Below we de�ne two type translations from Type� to Type�
�

, one for
computations, � , and one for values, �� and extend the one for values to
type environments. Note that the case (�)� = �� is not recursive; it reads:
\the value type translation of the source type � is the target type ��."

Computations � = (�� ! 1)! 1

Values 0� = 0
1� = 1

(�)� = ��

(�1 � �2)
� = �1

� � �2
�

(�1 + �2)
� = �1

� + �2
�

(�1 * �2)
� = �1

� * �2

Type Environments ��(x) = (�(x))� (x 2 Dom(�))

59

� ` x : � v x (�(x) = �) (cps-var)

� ` � : 1 v � (cps-one)

�[f : �1 * �2][x : �1] ` e : �2 c e
0

� ` �x f(x:�1):�2:e : �1 * �2 v �x f(x:�1
�):�2:e

0 (f; x 62 Dom(�))

(cps-fix)

� ` v : � v v
0

� ` v : � c �k:�
� * 1:k v0

(cps-val)

Figure 3: CPS Transformation | Part I

In the target language L�
�

we take the recursive type �� to be isomorphic
to ��

�.
We shall use the same notation for both the source and target language,

but we must take care to remember to which language we are referring. Of
course, all the results obtained in previous sections for L hold analogously for
both the source and target language (for the source it is obvious as it is equal
to L, for the target, just replace � with �� and �� with ��

� everywhere) and
we will freely refer to these results to reason about both the source and the
target language. When we need to distinguish between sets of expressions
of the source and the target language, we shall use the notation developed
for L but use a superscript � for the source language and a superscript
�� for the target language. For example, Exp�� denotes the set of closed
expressions of type � of the source language, whereas Exp�

�

� denotes the set
of closed expressions of type � of the target language. Moreover, we will
abuse notation and write e �k e0, for e 2 Exp�1 and e0 2 Exp�

�

1 , to mean
that e evaluates to � in L� if and only if e0 evaluates to � in L�

�

.
The translation relations � ` v : � v v

0 for values and � ` e : � c e
0

for computations are inductively de�ned by the rules in Figures 3 and 4.

Lemma 7.1

1. � ` e : � c e
0 for some e0 i� � ` e : � .

2. If � ` v : � v v
0, then �� ` v0 : ��.

3. If � ` e : � c e
0, then �� ` e0 : � .

60

� ` e1 : �1 c e
0
1 � ` e2 : �2 c e

0
2

� ` (e1; e2) : �1 � �2 c �k:(�1 � �2)
� * 1:e01 (�x1:�1

�:e02 (�x2:�2
�:k (x1; x2)))
(cps-prod)

� ` e : �1 � �2 c e
0

� ` fst e : �1 c �k:�1
� * 1:e0 (�x:�1

� � �2
�:k (fst x))

(cps-fst)

� ` e : �1 � �2 c e
0

� ` snd e : �2 c �k:�2
� * 1:e0 (�x:�1

� � �2
�:k (snd x))

(cps-snd)

� ` e : �1 c e
0

� ` inl�2 e : �1 + �2 c �k:(�1 + �2)
� * 1:e0 (�x:�1

�:k (inl�2� x))
(cps-inl)

� ` e : �2 c e
0

� ` inr�1 e : �1 + �2 c �k:(�1 + �2)
� * 1:e0 (�x:�2

�:k (inr�1� x))
(cps-inr)

� ` e1 : �1 + �2 c e
0
1 � ` e2 : �1 * � c e

0
2 � ` e3 : �2 * � c e

0
3

� ` case(e1; e2; e3) : � c �k:�
� * 1:e01 (�x:�1

� + �2
�:case(x; e02 x k; e

0
3 x k))

(cps-case)

� ` e1 : �2 * � c e
0
1 � ` e2 : �2 c e

0
2

� ` e1 e2 : � c �k:�
� * 1:e01 (�x1:(�2 * �)�:e02 (�x2:�2

�:x1 x2 k))
(cps-app)

� ` e : � c e
0

� ` out e : �� c �k:��
� * 1:e0 (�x:��:k (out x))

(cps-out)

� ` e : �� c e
0

� ` in e : � c �k:�
� * 1:e0 (�x:��

�:k (in x))
(cps-in)

Figure 4: CPS Transformation | Part II

61

We extend the notion of experimental equivalence to evaluation contexts
as follows.

De�nition 7.2 For all Ef �g; E
0f �g 2 ECtx� 0 , we de�ne

` Ef �g � E0f �g : �
0 () (8e; e0 2 Exp� : ` e � e0 : �) ` Efeg � E0fe0g : � 0):

As in Section 4 we denote equivalence classes by one of their represen-
tatives.

Theorem 7.3 There exists a Type�-indexed family of relations

�c
� � Exp�� =�� Exp�

�

� =�

�v
� � Val�� =��Val�

�

�� =�

�k
� � ECtx�� =��Val�

�

��*1 =�

satisfying

e �c
� e

0 () Ef �g �
k
� v

0) Efeg �k e0 v0

v �v
1 v

0 () v = �; v0 = �
v �v

0 v
0 never

v �v
� v

0 () ` v � in v1 : �; ` v0 � in v01 : �
�; v1 �

v
��
v01

v �v
�1��2 v

0 () ` v � (v1; v2) : �1 � �2; ` v0 � (v01; v
0
2) : �1

� � �2
�;

v1 �
v
�1
v01; v2 �

v
�2
v02

v �v
�1+�2 v

0 ()
�
` v � inl�2 v1 : �1 + �2; ` v0 � inl�2� v

0
1 : �1

� + �2
�; v1 �

v
�1
v01
�

_
�
` v � inr�1 v1 : �1 + �2; ` v0 � inr�1� v

0
1 : �1

� + �2
�; v1 �

v
�2
v01
�

v �v
�1*�2

v0 () v1 �
v
�1
v01) v v1 �

c
�2
v0 v01

Ef �g �
k
� v

0 () v1 �
v
� v

0
1) Efv1g �

k v0 v01;

and
�
8i 2 N : �x f i(x:�1):�2:e �

v
�1*�2

�x f i(x:�1
�):�2:e

0
�
) �x f(x:�1):�2:e �

v
�1*�2

�x f(x:�1
�):�2:e

0:

(Note that the conditions satis�ed by the relations are all independent of the

choice of equivalence class representative and are thus well-de�ned condi-

tions.)

The proof of this theorem will be postponed until Section 7.1. Now we
shall �rst see how to use the relations that exists by the theorem to prove
the correctness of the cps transformation.

62

De�nition 7.4 Let �c
� , �

v
� , and �k

� be relations as in Theorem 7.3. We

then de�ne a source type environment indexed family of relations, �v
�, re-

lating source value substitutions for � modulo experimental equivalence1 to

target value substitutions for �� modulo experimental equivalence as follows:

 �v
�

0 () 8x 2 Dom(�) :
(x) �v
�(x)

0(x):

Theorem 7.5

1. If � ` v : � v v
0 and
 �v

�

0, then
(v) �v

�

0(v0).

2. If � ` e : � c e
0 and
 �v

�

0, then
(e) �c

�

0(e0).

Proof By simultaneous induction on � ` v : � v v
0 and � ` e : � c e

0. ut

Corollary 7.6 (Correctness of cps transformation) If ` e : 1 c e0,
then e0 �k e (�x:1:x).

7.1 Construction of Relations for CPS Correctness

In this section we prove Theorem 7.3. This amounts to constructing rela-
tions satisfying the conditions in Theorem 7.3. The idea is to proceed as in
Sections 4 and 5 but, of course, with a di�erent universe of relations and
with di�erent relational constructors.

We de�ne a source type indexed family of universes of relations as follows.

De�nition 7.7 For all source types � , we de�ne a universe of relations

Rel �
def
= P

�
(Exp�� =�)� (Exp�

�

�� =�)
�
:

We use R to range over Rel � .

Notation 7.8 When I 2 Pcof(N
k+l) we write \~m~m0" for \(i1; : : : ; ik; ik+1; : : : ; ik+l) 2

I and ~m = (i1; : : : ; ik) and ~m0 = (ik+1; : : : ; ik+l)."

As in Section 4, we shall also use a notion admissibility.

De�nition 7.9 A relation R 2 Rel � is admissible if and only if it satis�es

both of the following conditions.

1Recall the de�nition of experimental equivalence for substitutions, De�nition 3.27.

63

Strictness: (e; e0) 2 R i� (e * ^e0 *) _ (9v; v0 : e 7!� v ^ e0 7!� v0 ^ (v; v) 2
R).

Completeness: For all Cf~pg 2 Ctx�� with all parameters in ~p of type

�1 * �2, for all C 0f~qg 2 Ctx�
�

�� with all parameters in ~q of type

(�1 * �2)
�, for all F! = �x f(x:�1):�2:e 2 Exp��1*�2

, for all F 0
! =

�x f(x:�1
�):�2:e

0 2 Exp�
�

(�1*�2)
�,

�
8~m~m0 2 I 2 Pcof(N

j~pj+j~qj) : (CfF~mg; C
0fF

0

~m0g) 2 R
�
)

�
(CfF!g; C

0fF 0
!g) 2 R)

�
:

De�nition 7.10 For all source types � , we de�ne a universe of admissible

relations Radm� as follows.

Radm�
def
= fR 2 Rel � j R is admissible g

We also use R to range over Radm� .

We now de�ne a series of relational type constructors, just as in Section 4.
In each case, one has to check that the de�nitions we give are independent
of the chosen equivalence class representative; this is straightforward in all
cases (it is just like in Section 4).

De�nition 7.11

0
def
= f (e; e0) 2 (Exp�0 =�)� (Exp�

�

0 =�) j e * ^ e0 *g

De�nition 7.12

1
def
= f (e; e0) 2 (Exp�1 =�)� (Exp�

�

1 =�) j (e * ^e0 *) _ (e 7!� � ^ e0 7!� �) g

De�nition 7.13 For all R1 2 Rel �1 and R2 2 Rel �2 ,

R1 �R2
def
= f (e; e0) 2 (Exp��1��2 =�)� (Exp�

�

�1��2 =�) j
(e * ^e0 *)_
(9v1; v2; v

0
1; v

0
2 : ` e � (v1; v2) : �1 � �2^

` e0 � (v01; v
0
2) : �1

� � �2
�^

(v1; v
0
1) 2 R1 ^ (v2; v

0
2) 2 R2) g

64

De�nition 7.14 For all R1 2 Rel �1 and R2 2 Rel �2 ,

R1 +R2
def
= f (e; e0) 2 (Exp��1+�2 =�)� (Exp�

�

�1+�2 =�) j
(e * ^e0 *)_
(9v; v0 : ` e � inl�2 v : �1 + �2 ^ ` e0 � inl�2� v

0 : �1
� + �2

�^
(v; v0) 2 R1)_
(9v; v0 : ` e � inr�1 v : �1 + �2 ^ ` e0 � inr�1� v

0 : �1
� + �2

�^
(v; v0) 2 R2) g

The following relational constructors will be used in the de�nition of the
relational constructor for function types.

De�nition 7.15 For all R 2 Rel � ,

�k
� (R)

def
= f (Ef �g; v

0) 2 (ECtx�� =�)� (Val�
�

��*1 =�) j
8(e; e0) 2 R : Efeg �k v0 e0 g

De�nition 7.16 For all R 2 Rel � ,

�c
� (R)

def
= f (e; e0) 2 (Exp�� =�)� (Exp�

�

� =�) j
(e * ^e0 *)_
(9v; v0 : ` e � v : � ^ ` e0 � v0 : �^

8(E0f �g; v
0
0) 2�

k
� (R) : E0fvg �

k v0 v00) g

De�nition 7.17 For all R1 2 Rel �1 and R2 2 Rel �2 ,

R1 * R2
def
= f (e; e0) 2 (Exp��1*�2

=�)� (Exp�
�

�1�*�2
=�) j

(e * ^e0 *)_
(9v; v0 : ` e � v : �1 * �2 ^ ` e0 � v0 : �1

� * �2^
8(e1; e

0
1) 2 R1 : (v e1; v

0 e01) 2�
c
�2
(R2) g

Note that R1 * R2 is anti-monotone in R1 and monotone in R2.
By proofs exactly analogous to the proofs in Section 4 of the correspond-

ing results, one can now show that (Radm� ;�) is a complete lattice, for all
source types � ; a lemma corresponding to Lemma 4.11 holds; 0 and 1 are
admissible; and � and + both preserve admissibility. We now show that
* preserve admissibility:

Lemma 7.18 For all R1 2 Rel �1 and all R2 2 Radm�2 , R1 * R2 2
Radm�1*�2 .

65

Proof The strictness condition is straightforward(as in the proof of Lemma 4.14).
For completeness, assume

8~m~m0 2 I 2 Pcof(N
j~pj+j~qj) : (CfF~mg; C

0fF
0

~m0g) 2 R: (38)

By the lemma corresponding to Lemma 4.11 there are two cases to consider.
Case I: CfF!g * ^C

0fF 0
!g * Easy.

Case II: CfF!g 7!� v and C 0fF 0
!g 7!� v0. By two applications of

Lemma 3.23, there exist V f~p1g and V 0f~q1g such that

v = V fF!g Cf~pg +F V f~p1g

v0 = V 0fF 0
!g C 0f~qg +F

0

V 0f~q1g

so

I 01
def
= f ~m~m0 j ~m~n 2 I ^ CfF~mg 7!

� V fF~m0g g 2 Pcof(N
j~pj+j ~p

1
j)

and

I 02
def
= f~n~n0 j ~m~n 2 I ^C 0fF~ng 7!

� V 0fF
0

~n0g g 2 Pcof(N
j~qj+j ~q

1
j):

Thus
I 00

def
= f ~m0~n0 j ~m~m0 2 I 01 ^ ~n~n

0 2 I 02 ^ ~m~n 2 I g

is co�nal, i.e., I 00 2 Pcof(N
j ~p

1
j+j ~q

1
j). By (38), Lemma 3.7, and de�nition of

I 00,
8~m0~n0 2 I 00 : (V fF~m0g; V 0fF

0

~n0g) 2 R1 * R2:

Hence, by de�nition of * ,

8~m0~n0 2 I 00 : 8(e; e0) 2 R1 : (V fF~m0g e; V 0fF
0

~n0g e0) 2�c
�2
(R2):

Let ~m0~n0 2 I 00 and (e; e0) 2 R1 be arbitrary. By de�nition of �c
�2
(R2) we

then have that

8(E0f �2g; v
0
0) 2�

k
�2
(R2) : E0fV fF~m0g eg �k V 0fF

0

~n0g e0 v00: (39)

We are to show that

8(E0f �2g; v
0
0) 2�

k
�2
(R2) : E0fV fF!g eg �

k V 0fF 0
!g e

0 v00: (40)

Let (E0f �2g; v
0
0) 2�

k
�2
(R2) be arbitrary. Suppose E0fV fF!g eg 7!

� �. Let
C11f~p1g = E0fV f~p1g eg. Then by Lemma 3.23,

C11f~p1g +
F �:

66

Hence
I11

def
= f ~m0~n0 j ~m0~n0 2 I ^C11fF~m0g 7!� � g

is co�nal, thus non-empty. So there exists ~m0~n0 2 I such that C11fF~m0g 7!�

�, i.e. E0fV fF~m0g eg 7!� �. Hence, by (38), V 0fF
0

~n0g e0 v00 7!
� �, from which

V 0fF 0
!g e

0 v00 7!
� � follows by Lemma 3.24. The other direction is similar,

completing the proof of (40). Thus we conclude that (CfF!g; C
0fF 0

!g) 2
R1 * R2, as required, since (e; e

0) and (E0f �2g; v
0
0) were arbitrary and us-

ing Lemma 3.7. ut

For all source types � 2 Type� we de�ne an interpretation [[�]]0 exactly
as in De�nition 5.5.

De�nition 7.19 De�ne 	 : (Radmop
� � Radm�)! Radm� by

	(R�; R+)
def
= f (e; e0) 2 (Exp�� =�)� (Exp�

�

�� =�) j

(e * ^e0 *)_
(9v; v0 : ` e � in v : � ^ ` e0 � in v0 : �� ^ (v; v0) 2 [[��]]

0(R�; R+)) g

Just like in Section 5 it is now easy to show that 	 is well-de�ned.
We de�ne 	x : (Radmop

� � Radm�) ! (Radmop
� � Radm�) and as in

Section 5 we get that 	x is well-de�ned and monotone, so that we can
de�ne (��;�+) as the least �xed point of 	x. Moreover, Lemma 5.11 holds
also now.

We write (e; e0) : R � R0 for 8(e1; e
0
1) 2 R : (e e1; e

0 e01) 2 R0.

Lemma 7.20 For all i 2 N , for all � 2 Type�,

(��
�;i;�

��

��;i) : [[�]]
0(�+;��) � [[�]]0(��;�+):

Proof By induction on (i; �), ordered lexicographically. All the cases are
as in the proof of Lemma 5.12, except the case for � = �1 * �2, which we
now consider. Then

[[�]]0(�+;��) = [[�1]]
0(��;�+)* [[�2]]

0(�+;��)

and
[[�]]0(��;�+) = [[�1]]

0(�+;��) * [[�2]]
0(��;�+):

Assume
(e; e0) 2 [[�]]0(�+;��):

67

We are to show that

(��1*�2
�;i e;���*�2

��;i e0) 2 [[�]]0(��;�+):

By admissibility there are two cases to consider.
SubCase e * ^e0 *: Easy.
SubCase ` e � v : � ^ ` e0 � v0 : �� for some (v; v0) 2 [[�]]0(�+;��):

By de�nition of * , we thus have

(e1; e
0
1) 2 [[�1]]

0(��;�+)) (v e1; v
0 e01) 2�

c
�2
([[�2]]

0(�+;��)) (41)

By two applications of Lemma 3.43 we get that

` ��1*�2
�;i e � �x:�1:�

�2
�;i (v (�

�1
�;i x)) : �1 * �2

and
` ��1

�*�2
��;i e0 � �x:�1

�:��2
��;i (v

0 (��1
�

��;i x)) : �1
� * �2:

Assume
(e1; e

0
1) 2 [[�1]]

0(�+;��):

It then su�ces to show that
�
�x:�1:�

�2
�;i (v (�

�1
�;i x)) e1; �x:�1

�:��2
��;i (v

0 (��1
�

��;i x)) e
0
1

�
2�c

�2
([[�2]]

0(��;�+)):

By admissibility there are two subcases to consider.
SubSubCase e1 * ^e

0
1 *: Easy.

SubSubCase ` e1 � v1 : �1 ^ ` e01 � v01 : �1
� for some (v1; v

0
1) 2

[[�1]]
0(�+;��): Then

` �x:�1:�
�2
�;i (v (�

�1
�;i x)) e1 � ��2

�;i (v (�
�1
�;i v1)) : �2

and
` �x:�1

�:��2
��;i (v

0 (��1
�

��;i x)) e
0
1 � ��2

��;i (v
0 (��1

�

��;i v
0
1)) : �2:

By induction, �
��1
�;i v1;�

�1
�

��;i v
0
1

�
2 [[�1]]

0(��;�+):

Hence, by (41),

�
v��1

�;i v1; v
0 ��1

�

��;i v
0
1

�
2�c

�2
([[�2]]

0(�+;��)):

By admissibility there are two cases to consider.
SubSubSubCase v��1

�;i v1 * ^v
0��1

�

��;i v
0
1 *: Easy

68

SubSubSubCase ` v��1
�;i v1 � v2 : �2 ^ ` v0��1

�

��;i v
0
1 � v02 : �2 for some

(v2; v
0
2) 2�

c
�2
([[�2]]

0(�+;��)): Then it su�ces to show that

(��2
�;i v2;�

�2
��;i v

0
2) 2�

c
�2
([[�2]]

0(��;�+)):

To this end, assume

(E10f �2g; v10) 2�
k
�2
([[�2]]

0(��;�+)): (42)

We are to show that

E10f�
�2
�;i v2g �

k ��2
��;i v

0
2 v10:

Since
` ��2

��;i v
0
2 v10 � v02 (�x

0:�2
�:v10 (�

�2
�

��;i x
0)) : �2

it su�ces to show

E10f�
�2
�;i v2g �

k v02 (�x
0:�2

�:v10 (�
�2

�

��;i x
0)):

Hence it su�ces to show that
�
E10f�

�2
�;i �2g; �x

0:�2
�:v10 (�

�2
�

��;i x
0)
�
2�k

�2
([[�2]]

0(�+;��)):

(because then the above follows since (v2; v
0
2) 2�

c
�2

([[�2]]
0(�+;��))). To

this end, assume
(e11; e

0
11) 2 [[�2]]

0(�+;��): (43)

We are to show that

E10f�
�2
�;i e11g �

k (�x0:�2
�:v10 (�

�2
�

��;i x
0)) e011:

Since
` (�x0:�2

�:v10 (�
�2

�

��;i x
0)) e011 � v10 (�

�2
�

��;i e
0
11) : 1

it su�ces to show

E10f�
�2
�;i e11g �

k v10 (�
�2

�

��;i e
0
11): (44)

But by induction on (43),

�
��2
�;i e11;�

�2
�

��;i e
0
11

�
2 [[�2]]

0(��;�+);

so by assumption (42), the required (44) follows. ut

69

Lemma 7.21 For all i 2 N , (��;i; ���;i) : �
� � �+.

Proof As the proof of Lemma 5.13. ut

Lemma 7.22

(��;!; ���;!) : �
� � �+

Proof As the proof of Lemma 5.14. ut

As in Section 5, it now follows that �� = �+ and we can de�ne �
def
=

�+.

De�nition 7.23 For all source types � 2 Type�, we de�ne

�e
�
def
= [[�]]0(�;�):

De�nition 7.24 For all source types � 2 Type�, we de�ne

�v
�

def
= f (e; e0) 2�e

� j e + ^e
0 +g

�k
�

def
= f (Ef �g; v

0) 2 (ECtx�� =�)� (Val�
�

��*1 =�) j (v1; v
0
1) 2�

v
�) Efvg �k v0 v g

�c
�

def
= f (e; e0) 2 (Exp�� =�)� (Exp�

�

� =�) j (Ef �g; v
0) 2�k

�) Efeg �k e0 v0 g

Lemma 7.25 The above de�ned relations satisfy the conditions in Theo-

rem 7.3.

Proof All the conditions, except the one for �v
�1*�2

and the completeness
condition, are obvious from the above de�nitions. By de�nition of �v

�1*�2
,

we have that

v �v
�1*�2

v0 ()
�
e1 �

e
�1
e01) v e1 �

c
�2
v0 e01

�
;

but it is easy to check, using the de�nition of �c
�2
, that

(e1 �
e
�1
e01) v e1 �

c
�2
v0 e01) () (v1 �

v
�1
v01) v v1 �

c
�2
v0 v01)

which gives the required. The completeness condition for �v
�1*�2

follows by
admissibility of �e

�1*�2
(using I = f (i; i) j i 2 N g a the co�nal set) and

the facts that �x f(x:�1):�2:e + and �x f(x:�1
�):�2:e

0 +. ut

This completes the construction of relations for CPS correctness.

70

8 Related Work

The construction of relations over recursive types hinges on a syntactic ver-
sion of the minimal invariant property of the solution of a domain equation.
The critical ingredient in the construction is Pitts's observation (Pitts, 1996)
that the existence of a relational interpretation can be reduced to minimal
invariance, combined with the observation that this criterion can be stated
and proved at a purely operational level. The proof of syntactic minimal
invariance is a generalization of methods used by Mason, Smith, and Tal-
cott (Mason et al. , 1995) to a typed language with a recursive type. In
addition to the applications given here this generalization sheds light on the
need for \run-time type checks" in Mason, Smith, and Talcott's work |
they arise here as compositions of recursive unrolling and case analysis on
a disjoint union type, con�rming Scott's observation that \untyped" really
means \unityped".

The two applications of relational interpretations suggested here | an-
alyzing contextual equivalence and proving correctness of the cps transfor-
mation | have been studied elsewhere using di�erent methods. Pitts has
emphasized the importance of a characterization of contextual equivalence
for a language with streams as a bisimulation relation constructed as the
maximal �xed point of a monotone operator on relations (Pitts, 1995). To
apply this framework to speci�c examples Pitts relies on a lemma charac-
terizing contextual equivalence of values of stream type. In our setting this
lemma arises as a simple consequence of the de�nition of logical equivalence
relation for a recursive type, as outlined in Section 6. Several authors have
considered the correctness of the cps transformation. Reynolds (Reynolds,
1974a) gives a proof for an untyped functional language by working over a
domain model given by an inverse limit construction. Meyer &Wand (Meyer
& Wand, 1985) give a somewhat di�erent proof for the simply typed �-
calculus (without a recursive type). The proof given in Section 7 generalizes
both of these to a typed language with a recursive type without passage to
a denotational semantics.

9 Conclusion

We have presented a method for constructing relational interpretations of
recursive types in an operational setting. The key result is the syntactic
minimal invariant property up to a suitable notion of operational equiva-
lence. With this in hand we may de�ne relational interpretations of types

71

over operational equivalence classes of closed terms. Using this construc-
tion we give a relational characterization of experimental and contextual
equivalence and derive a coinduction principle for establishing contextual
equivalence. Taking the recursive type to be the type of in�nite streams,
the coinduction principle specializes to a principle corresponding to the one
used by Pitts (Pitts, 1995) in his theory of program equivalence based on
bisimulation. Using our construction we further give a relational proof of
correctness of cps conversion, generalizing Reynolds' proof to the typed set-
ting.

The proof of correctness for the cps transformation that we give here
does not appear to extend easily to a language with control operators such
as call/cc (Clinger & Rees, 1991; Harper et al. , 1993). The reason is
that we rely on a \uniformity" property of the evaluation relation which
states that evaluation steps are parametric in the evaluation context |
if Efeg 7! Efe0g, then E0feg 7! E0fe0g | that fails in the presence of
call/cc. It is also unclear whether our proof can be extended to a lan-
guage with mutable storage. One possible approach may be to consider a
store-passing transformation in which the store is represented by a value of
a recursive type, and then to apply the methods considered here to com-
plete the proof of correspondence between the original program and its cps
transformation.

The treatment of cps conversion given here invites generalization to an
arbitrary syntactically-de�nable monad for the language. Filinski's disserta-
tion (Filinski, 1996) is a �rst step towards a general theory of representation
of computational e�ects. Filinski's work suggests that one could give a fairly
general correctness proof along the lines suggested here for a wide variety of
de�nable e�ects.

Acknowledgements

We are grateful to John Mitchell and Andy Pitts for many useful discussions
and for their suggestions on this paper. We also thank Mart��n Abadi, Furio
Honsell, S�ren Lassen and the referees for their very helpful comments. The
work described here was carried out in part at the Isaac Newton Institute
for Mathematical Sciences of Cambridge University in the autumn of 1995.
We are grateful to the Newton Institute and the organizers of the program
on Semantics of Computation for their support.

Robert Harper is supported by the National Science Foundation under
Grant No. CCR-95-2674. Lars Birkedal is supported in part by the Danish

72

National Research Council and in part by the National Science Foundation
under Grant No. CCR-9409997.

References

Appel, Andrew W. 1992. Compiling with Continuations. Cambridge Uni-
versity Press.

Clinger, William, & Rees, Jonathan. 1991. Revised4 Report on the Algo-
rithmic Language Scheme. LISP Pointers, IV(3), 1{55.

Davey, B. A., & Priestley, H. A. 1990. Introduction to Lattices and Order.
Cambridge University Press.

Filinski, Andrzej. 1996 (May). Controlling E�ects. CMU{CS{96{119, School
of Computer Science, Carnegie Mellon University.

Fischer, Michael J. 1993. Lambda-Calculus Schemata. LISP and Symbolic

Computation, 6(3/4), 259{288.

Girard, Jean-Yves. 1972. Interpr�etation Fonctionnelle et �Elimination des

Coupures dans l'Arithm�etique d'Ordre Sup�erieure. Ph.D. thesis, Uni-
versit�e Paris VII.

Gunter, Carl A. 1992. Semantics of Programming Languages. Structures

and Techniques. MIT Press.

Harper, Robert, Duba, Bruce, & MacQueen, David. 1993. Typing First-
Class Continuations in ML. Journal of Functional Programming, 3(4),
465{484.

Mason, Ian A., Smith, Scott F., & Talcott, Carolyn L. 1995. From Opera-
tional Semantics to Domain Theory. Information and Computation. To
Appear.

Meyer, Albert R., & Wand, Mitchell. 1985. Continuation Semantics in
Typed Lambda Calculi (Summary). Pages 219{224 of: Parikh, Ro-
hit (ed), Logics of Programs. Lecture Notes in Computer Science, vol.
193. Springer-Verlag.

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. 1997.
The De�nition of Standard ML (Revised). MIT Press.

73

Morrisett, John Gregory. 1995 (December). Compiling with Types. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA. (Available as Carnegie Mellon University School of Com-
puter Science technical report CMU{CS{95{226.).

Pitts, Andrew M. 1995 (Sept.). Operationally-Based Theories of Program
Equivalence. In: In Proc. of Summer School on Semantics and Logics

of Computation. ESPRIT CLiCS-II. University of Cambridge. Isaac
Newton Institute for Mathematical Sciences.

Pitts, Andrew M. 1996. Relational Properties of Domains. Information and

Computation, 127(2), 66{90.

Plotkin, Gordon. 1975. Call-by-Name, Call-by-Value, and the Lambda Cal-
culus. Theoretical Computer Science, 1, 125{159.

Plotkin, Gordon. 1977. LCF Considered as a Programming Language. The-
oretical Computer Science, 5, 223{257.

Plotkin, Gordon. 1983. Domains. Department of Computer Science. Uni-
versity of Edinburgh.

Reppy, John H. 1991 (June). CML: A Higher-Order Concurrent Language.
Pages 293{305 of: Proc. 1991 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation.

Reynolds, John C. 1972 (August). De�nitional Interpreters for Higher-Order
Programming Languages. Pages 717{740 of: Conference Record of the

25th National ACM Conference. ACM, Boston.

Reynolds, John C. 1974a. On The Relation Between Direct and Contin-
uation Semantics. Pages 141{156 of: Loeckx, J. (ed), Proceedings

of the Second Colloquium on Automata, Languages and Programming,

Saarbr�ucken. Lecture Notes in Computer Science, vol. 174. Springer-
Verlag.

Reynolds, John C. 1974b. Towards a Theory of Type Structure. Pages

408{423 of: Colloq. sur la Programmation. Lecture Notes in Computer
Science, vol. 19. Springer-Verlag.

Scott, Dana S. 1982. Domains for Denotational Semantics. Pages 577{

613 of: Nielsen, M., & Schmidt, E. M. (eds), Proceedings of the 9th
International Colloquium on Automata, Languages and Programming.
Lecture Notes in Computer Science, vol. 140. Springer-Verlag.

74

Shao, Zhong, League, Christopher, & Monnier, Stefan. 1998 (Septem-
ber). Implementing Typed Intermediate Languages. Pages 313{323

of: Proceedings of the 1998 ACM SIGPLAN International Conference

on Functional Programming. ACM SIGPLAN, Baltimore, MD.

Statman, Richard. 1985. Logical Relations and the Typed �-Calculus. In-
formation and Control, 65, 85{97.

Steele, Jr., Guy L. 1978. RABBIT: A Compiler for SCHEME. Tech. rept.
Memo 474. MIT AI Laboratory.

Tarditi, David, Morrisett, Greg, Cheng, Perry, Stone, Chris, Harper, Robert,
& Lee, Peter. 1996 (May). TIL: A Type-Directed Optimizing Compiler
for ML. Pages 181{192 of: ACM SIGPLAN Conference on Program-

ming Language Design and Implementation.

75

