
Positively Dependent Types

Daniel R. Licata∗ Robert Harper ∗

Carnegie Mellon University
{drl,rwh}@cs.cmu.edu

Abstract
This paper is part of a line of work on using the logical techniques
of polarity and focusing to design a dependent programming lan-
guage, with particular emphasis on programming with deductive
systems such as programming languages and proof theories. Polar-
ity emphasizes the distinction between positive types, which clas-
sify data, and negative types, which classify computation. In pre-
vious work, we showed how to use Zeilberger’s higher-order for-
mulation of focusing to integrate a positive function space for rep-
resenting variable binding, an essential tool for specifying logical
systems, with a standard negative computational function space.
However, our previous work considers only a simply-typed lan-
guage. The central technical contribution of the present paper is
to extend higher-order focusing with a form of dependency that we
call positively dependent types: We allow dependency on positive
data, but not negative computation. Additionally, we present the
syntax of dependent pair and function types using an iterated in-
ductive definition, mapping positive data to types, which gives an
account of type-level computation. We construct our language in-
side the dependently typed programming language Agda 2, making
essential use of coinductive types and induction-recursion.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
Of Programs]: Studies of Program Constructs—Type structure;
F.3.1 [Logics and Meanings Of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms Languages, Verification

1. Introduction
The type systems of languages such as ML and Haskell have proved
to be effective and scalable formal methods. However, some of this
success has been the result of concentrating on relatively simple
properties that admit automated verification with little programmer
input. Dependent types permit the specification and verification of
more-interesting program properties. The key idea of dependently

∗ This research was sponsored in part by the National Science Foundation
under grant number CCF-0702381 and by the Carnegie Mellon Anonymous
Fellowship in Computer Science. The views and conclusions contained
in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’09, January 20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-330-3/09/01. . . $5.00

typed programming is to allow indexed families of types whose
indices vary with the type’s inhabitants. For example, a simple list
module in ML might have the following signature:

nil : list
cons : elt -> list -> list
append : list -> list -> list
nth : nat -> list -> elt option

Using dependency, we can refine the the type list to a type family
list[n:nat] whose index n represents the length of the list:

nil : list[0]
cons : Πn:nat.elt -> list[n] -> list[n+1]
append : Πn,m:nat.list[n] -> list[m] -> list[n+m]
nth : Πn,m:nat.n<m -> list[m] -> elt

The types of the constructors nil and cons describe how they act
on the list’s length. List operations such as append and nth are
given more precise types, providing more static checks on their im-
plementations and uses. For example, nth is given a precondition
ensuring that n is in bounds, and as a result no longer needs to re-
turn an option.

To support code like this, it is clear that a dependently typed
programming language must provide (1) a class of data that can
be used to index types—above, we used the natural numbers; (2)
computations with such data, such as the function +; and (3) the
ability to form indexed families of types, such as list[n] and
n<m. However, there are tensions on the class of index data and
computation that one provides: On the one hand, it is beneficial to
provide a rich language of index data and computation to make it
easy for programmers to specify and verify code. On the other, type
checking depends on type equality, and type equality depends on
the equality of the indices to families of types. Thus, the language
of type indices is constrained by the need to compare them for
equality; for example, it is difficult to allow programs that use
effects such as non-termination, state, exceptions, IO, etc. at the
index level, because it is difficult to compare programs using such
effects for equality.

This paper is part of a line of work on using the logical tech-
niques of polarity [20] and focusing [2] to design a dependent
programming language, with particular emphasis on programming
with deductive systems such as programming languages and proof
theories. Our long-term goal is to allow programmers to use the
tools provided by a logical framework [23] to define logics for rea-
soning about code, and to permit compile-time and run-time com-
putation with such logics. Polarity emphasizes the distinction be-
tween positive types, which classify data (such as natural num-
bers, products and sums and lists of positive data), and negative
types, which classify computation (such as functions and coinduc-
tive types). In previous work [29], we showed how to use polarity
to integrate a positive function space for representing variable bind-
ing, an essential tool for specifying logical systems, with a standard
negative computational function space.

Our previous work follows Zeilberger’s higher-order formula-
tion of focusing [51, 52]. In this formalism, the syntax of pro-
grams reflects the interplay of focus (choosing patterns) and in-
version (pattern matching), with individual types defined by their
pattern typing rules. The syntax of types is polarized, distinguish-
ing positive data from negative computation. Pattern matching is
represented abstractly by meta-functions—functions in the ambient
mathematical system in which our type theory itself is defined—
from patterns to expressions, and the typing rules are defined by
iterated inductive definitions [31].

However, our previous work considers only a simply-typed lan-
guage. The central technical contribution of the present paper is to
extend higher-order focusing with a form of dependency that we
call positively dependent types:

1. We allow dependency only on positive data, not on negative
computation.

2. The syntax of Π and Σ types is specified using an iterated
inductive definition, mapping positive data to types. This allows
types and indices to be computed by structural recursion.

3. Indexed families of types can be defined as indexed inductive
definitions by giving pattern rules, or by recursion on indices.

Positively dependent types are sufficient for many examples,
such as length-indexed lists and arrays, red-black trees that en-
force the red-black invariant [14], and numbers indexed by sci-
entific units [28]. While we do not consider our previous work’s
types for representing variable binding in this paper, integrating the
positive representational function space with the present account of
positive dependency would allow dependency on data with variable
binding, as in LF [23]. The first author’s thesis proposal describes
applications of this kind of dependency to creating domain-specific
logics for reasoning about code [27].

Positively dependent types make a syntactic phase distinction
between compile-time and run-time computation: equality of types
never depends on the equality of run-time computation [22]. Con-
sequently, run-time computations in our language may make unre-
stricted use of effects, as in ML. This is a difference from phase-
insensitive dependent programming languages, such as Agda [36]
and Coq [5], which must treat effects much more carefully be-
cause they permit dependency on all run-time programs. We leave
to future work the question of whether one can and should account
for phase-insensitive dependency within our polarized formalism.
On the other hand, positively dependent types allow computation
with the same positive data at both compile-time and at run-time.
This is a difference with many phase-sensitive dependent program-
ming languages, such as DML [49] and Ωmega [44], which take
the stance that compile-time data should be computationally irrele-
vant at run-time (though some phase-sensitive languages do allow
computation with static data at both levels [13, 21, 28]). The above
function nth, which is implemented by recursion on the same num-
ber n that appears in the type n<m, provides an example of why this
is useful.

Higher-order focusing relies on an abstract notion of meta-
function, which is an interface that can be realized in various ways.
In this paper, we construct the language inside of Agda: our work
is not just a proposal for a dependently typed programming lan-
guage, but also an application of dependent programming. (The
code is available from http://www.cs.cmu.edu/~drl/.) Our
language definition makes essential use of inductive-recursive defi-
nitions [16] and coinductive types, and demonstrates that the bene-
fits of Zeilberger’s higher-order representation technique carry over
to the dependently typed setting. For example, in a previous tech-
nical report [28], we presented a phase-sensitive language that sup-
ports the same caliber of dependent programming as the language

described here; it required 13,000 lines of Twelf code to verify
the language’s type safety. The present higher-order representa-
tion, which reuses Agda functions for pattern-matching and recur-
sion, requires less than 1000 lines of Agda to verify. As we discuss
briefly below, it may also be possible to implement our design in
GHC, which already implements much of the technology required
to support positively dependent types.

In the remainder of this paper, we first review simply-typed po-
larized type theory and its Agda implementation (Section 2). Next,
we describe the extension to positively dependent types (Section 3),
its metatheory (Section 4), and some simple examples (Section 5).

2. Polarized Type Theory
Natural deduction is organized around introduction and elimina-
tion: For example, the disjoint sum type A⊕ B is introduced
by constructors inl and inr and eliminated by pattern-matching;
the computational function type A→ B is introduced by pattern-
matching on the argument A and eliminated by application. Po-
larized logic [2, 19, 24, 26, 51] partitions types into two classes,
called positive (notated A+) and negative (notated A-). Positive
types, such as ⊕, are introduced by choice and eliminated by
pattern-matching, whereas negative types, such as →, are intro-
duced by pattern-matching and eliminated by choice. More specif-
ically, positive types are constructor-oriented: they are introduced
by choosing a constructor, and eliminated by pattern matching
against constructors, like datatypes in ML. Negative types are
destructor-oriented: they are eliminated by choosing an an ob-
servation, and introduced by pattern-matching against all possible
observations (A→ B is observed by supplying a value of type A,
and therefore defined by matching against such values). Choice
corresponds to Andreoli’s notion of focus, and pattern-matching
corresponds to inversion. These distinctions can be summarized as
follows:

introduce A eliminate A
A is positive by focus by inversion
A is negative by inversion by focus

2.1 Higher-order Focusing
In higher-order focusing [29, 51, 52], types are specified by pat-
terns, which are used in both focus and inversion: focus phases
choose a pattern, whereas inversion phases pattern-match. Simply-
typed polarized type theory is defined in three stages:

• First, we define the syntax of types.
• Next, we define patterns—constructor patterns for positive

types, and destructor patterns for negative types.
• Finally, we define the focusing judgements.

It is important that patterns are defined prior to the focusing judge-
ments, which use an iterated inductive definition quantifying over
them to specify inversion.

In the remainder of this section, we review simply-typed polar-
ized intuitionistic logic, following our previous work [29].

2.1.1 Types
The basic types of polarized type theory are the following:

Type+ A+ ::= X+ | ↓A- | 1 | A+ ⊗ B + | 0 | A+ ⊕ B +

Type- A- ::= X- | ↑A+ | A+ → B - | > | A-NB -

These types represent eager products and sums (1,⊗, 0,⊕),
lazy products (>,N), and functions (→). The shift ↑ includes
positive types into negative types, where ↑A+ is a suspension of an
expression computing an A+. The shift ↓ includes negative values
into positive values. Finally, we have atomic propositions X+ and

Hypothesis α ::= X+ | C-
Conclusion γ ::= X- | C+

Context ∆ ::= · | ∆, x :α

∆
 c :: A+

x : X +
 x :: X + x : A-
 x :: ↓A-

·
 () :: 1

∆1
 c1 :: A+ ∆2
 c2 :: B+

∆1,∆2
 (c1 , c2) :: A+ ⊗ B+

(no rule for 0)
∆
 c :: A+

∆
 inl c :: A+ ⊕ B+
∆
 c :: B+

∆
 inr c :: A+ ⊕ B+

∆
 d :: A- > γ

·
 ε :: X - > X - ·
 ε :: ↑A+ > A+

∆1
 c :: A+ ∆2
 d :: B - > γ

∆1,∆2
 c ; d :: A+ → B - > γ

(no rule for >)

∆
 d :: A- > γ

∆
 fst; d :: A-NB - > γ

∆
 d :: B - > γ

∆
 snd; d :: A-NB - > γ

Figure 1. Pattern rules

X- of each polarity. Below, we will extend this language with
dependency on purely positive types, which are those positive types
that do not mention atoms X+ or shifts ↓.

2.1.2 Patterns
Next, we define the constructor and destructor patterns in Figure 1.
These judgements use the following auxiliary notions:
A hypothesis is a positive atom or a negative type; dually, a conclu-
sion is a negative atom or a positive type. Hypotheses occur at the
leaves of constructor patterns, which are defined by the judgement
∆
 c :: A+. Destructor patterns have hypotheses at the leaves and
additionally produce a conclusion; they are defined by the judge-
ment ∆
 d :: A- > γ.

The constructor patterns ∆
 c :: A+ should be read as follows:
the pattern for ⊗ is a pair of patterns; there are two patterns for ⊕,
inl and inr. The patterns for atoms and shifts are variables, because
no further pattern-matching is possible. Variables are treated lin-
early, because a pattern can bind a variable only once.

The destructor patterns describe the shapes of observations on a
negative type A-: N is observed by observing either the first com-
ponent or the second component; suspensions ↑A+ can be forced;
functions are observed by applying them to an argument (repre-
sented by a constructor pattern) and observing the result.

2.1.3 Focusing Judgements
Next, we define the focusing judgements, presented in Figure 2. In
these rules, Γ stands for a sequence of pattern contexts ∆, but Γ
itself is treated in an unrestricted manner (i.e., variables are bound
once in a pattern, but may be used any number of times within the
pattern’s scope).

The first two judgements define focusing and inversion for pos-
itive types. The judgement Γ ` v + :: C + defines positive values
(right focus): a positive value is a constructor pattern under a substi-
tution for its free variables. The judgement Γ ` k + : γ0 > γ defines
positive continuations (left inversion): The only positive continua-
tion for atomsX- is the identity. A positive continuation forC+ is a

Context2 Γ ::= · | Γ,∆

Right Focus: Γ ` v + :: C +

∆
 c :: C + Γ ` σ : ∆

Γ ` c [σ] :: C +

Left Inversion: Γ ` k + : γ0 > γ

Γ ` ε : X- > X -
(∆
 c :: C + −→ Γ,∆ ` φ+(c) : γ)

Γ ` cont+(φ+) : C+ > γ

Left Focus: Γ ` k - :: C- > γ

∆
 d :: C - > γ0 Γ ` σ : ∆ Γ ` k + : γ0 > γ

Γ ` d [σ]; k + :: C- > γ

Right Inversion: Γ ` v - : α

x : X + ∈ Γ

Γ ` x : X +

(∆
 d :: C - > γ −→ Γ,∆ ` φ-(d) : γ)

Γ ` val-(φ-) : C -

Neutral: Γ ` e : γ

Γ ` v + :: C +

Γ ` v + : C +

x : C - ∈ Γ Γ ` k - :: C- > γ

Γ ` x • k - : γ

Assumptions: Γ ` σ : ∆

(x :α ∈ ∆ −→ Γ ` σ(x) : α)

Γ ` σ : ∆

Figure 2. Focusing rules

case-analysis, specified by a meta-function φ+ mapping patterns to
expressions. We notate a meta-function by a potentially infinite set
of pairs of the form {c1 7→ e1 | . . .}. The premise of the rule asserts
that for all constructor patterns c for C +, applying φ+ to c yields an
expression of type γ using the variables bound by the pattern. We
use the notation (J −→ J ′) for a higher-order premise of an iter-
ated inductive definition [31]; by convention, variables like ∆ and
c that occur first in the premise of an iterated inductive definition
are tacitly universally quantified.

The next two judgements define focusing and inversion for the
negative types. The judgement Γ ` k - :: C- > γ defines negative
continuations (left focus): a negative continuation is a destructor
pattern under a substitution for its free variables followed by a
positive continuation consuming the result of the destructor. The
destructor pattern, filled in by the substitution, decomposes C -

to some conclusion γ0. The positive continuation reflects the fact
that it may take further case-analysis of γ0 to reach the desired
conclusion γ. The judgement Γ ` v - : C - defines negative values
(right inversion): a negative value is specified by a meta-function
φ- that gives an expression responding to every possible destructor.

The judgement Γ ` e : γ types expressions, which are neutral
states: from an expression, one can right-focus and introduce a
value, or left-focus on an assumption in Γ and apply a negative
continuation to it. Finally, a substitution Γ ` σ : ∆ provides a
negative value for each hypothesis.

At this point, the reader may wish to work through some in-
stances of these rules (using the above pattern rules) to see that
they give the expected typings for familiar types. First, the type
(↑A+

1)N(↑A+
2) is inhabited by a lazy pair of expressions:

Γ ` e1 : A+
1 Γ ` e2 : A+

2

Γ ` val-(fst; ε 7→ e1 | snd; ε 7→ e2) : (↑A+
1)N(↑A+

2)

Second, a function (↓A-
1)⊕ (↓A-

2)→ ↑B + is defined by two
cases:

Γ, x1 : A-
1 ` e1 : B+ Γ, x2 : A-

2 ` e2 : B+

Γ ` val-((inl x1 ; ε) 7→ e1 | (inr x2 ; ε) 7→ e2) : (↓A-
1)⊕ (↓A-

2)→ ↑B+

2.2 Agda Implementation
Next, we describe an Agda implementation of the above type the-
ory. We use an intrinsic encoding: rather than first defining raw
syntax (c,d ,v +,k +,. . .) and then defining typing judgements on raw
syntax, we represent only the typing judgements, which correspond
to the well-typed programs.

The correspondence between the above judgements and their
Agda counterparts is as follows:

Informal Agda
∆
 c :: A+ ∆
 A+

∆
 d :: A- > γ ∆
 A- > γ
Γ ` v + :: C + Γ ` RFocC +

Γ ` k + : γ0 > γ Γ ` LInv γ0 γ
Γ ` k - :: C- > γ Γ ` LFocC - γ
Γ ` e : γ Γ ` Neu γ
Γ ` σ : ∆ Γ ` Asms ∆

2.2.1 Types
The syntax of types is a straightforward inductive definition:

Atom : Set
Atom = String

mutual
data Type+ : Set where

X+ : Atom -> Type+
↓ : Type- -> Type+
1+ : Type+
* : Type+ -> Type+ -> Type+
0+ : Type+
+ : Type+ -> Type+ -> Type+

data Type- : Set where
X- : Atom -> Type-
↑ : Type+ -> Type-
→ : Type+ -> Type- -> Type-
> : Type-
& : Type- -> Type- -> Type-

Using an underscore in a name is Agda syntax for mixfix oper-
ators; e.g., & can be used infix.

2.2.2 Patterns
On paper, we tacitly included negative types and atoms into the sum
type α; in Agda, we must give injections:

–– α
data Hyp : Set where

_true- : Type- -> Hyp
_atom+ : Atom -> Hyp

–– ∆
Ctx = List Hyp
–– γ
data Conc : Set where
_true+ : Type+ -> Conc
_atom- : Atom -> Conc

Constructor patterns are represented by an indexed inductive
definition, indexed by the context ∆ and the type A+. We write []
for the empty list, ++ for append, and [x] for the singleton list.

data _
_ : Ctx -> Type+ -> Set where
Cx+ : forall {X} -> [X atom+]
 (X+ X)
Cx- : forall {A-} -> [A- true-]
 (↓ A-)
C<> : []
 1+
Cpair : forall {∆1 ∆2 A+ B+}

-> ∆1
 A+ -> ∆2
 B+
-> (∆2 ++ ∆1)
 (A+ * B+)

Cinl : forall {∆ A+ B+}
-> ∆
 A+
-> ∆
 (A+ + B+)

Cinr : forall {∆ A+ B+}
-> ∆
 B+
-> ∆
 (A+ + B+)

data _
> : Ctx -> Type- -> Conc -> Set where
De- : forall {X} -> []
 (X- X) > (X atom-)
De+ : forall {A+} -> []
 (↑ A+) > (A+ true+)
Dapp : forall {∆1 ∆2 A+ B- γ}

-> ∆1
 A+ -> ∆2
 B- > γ
-> (∆2 ++ ∆1)
 (A+ → B-) > γ

Dfst : forall {∆ A- B- γ}
-> ∆
 A- > γ
-> ∆
 (A- & B-) > γ

Dsnd : forall {∆ A- B- γ}
-> ∆
 B- > γ
-> ∆
 (A- & B-) > γ

The Agda syntax for dependent functions may be unfamiliar
to some readers: A dependent function is written (x : A) -> B,
but the -> between successive arguments can be elided, writing,
for example, (x : A) (y : B) -> C. Replacing the parentheses
with curly-braces, as in {x : A} -> B, notates an implicit argu-
ment, whose application will be inferred by unification. The syntax
forall {x1 ... xn} -> A allows the types of the variables to
be elided; it is equivalent to writing {x1 : _} ... {xn : _} ->
A. For example, a typical application of Dapp would have the form
(Dapp c d) where c is a constructor pattern and d is a destructor
pattern; the contexts and types are inferred. A function can be ex-
plicitly applied to implicit arguments by enclosing the arguments
in curly-braces; e.g., (Dapp {∆} {∆’} c d).

2.2.3 Focusing Judgements
Next, we define the focusing judgements in Figure 3. It is conve-
nient to define a sum type FocJudg and then define one datatype
Γ ` J, rather than giving six separate datatypes. Additionally, we
use the auxiliary types α ∈ ∆ for list membership, α ∈∈ Γ for
membership in some list in Γ, and we write :: for consing onto a
list. The list membership types serve as de Bruijn indices: a proof
that α ∈∈ Γ is an index into Γ.

The focusing judgements are defined by an iterated inductive
definition; note the higher-order premises of Cont+ and Val- and
Sub.

2.2.4 Examples
The first of the derived rules suggested above is implemented as
follows:

ex1 : forall {Γ A1+ A2+}
-> ([] :: Γ) ` Neu (A1+ true+)
-> ([] :: Γ) ` Neu (A2+ true+)
-> Γ ` RInv (((↑ A1+) & (↑ A2+)) true-)

ex1 {Γ} {A1+} {A2+} e1 e2 = Val- ex1* where
ex1* : {∆ : Ctx}{γ : Conc}

-> ∆
 ((↑ A1+) & (↑ A2+)) > γ
-> (∆ :: Γ) ` Neu γ

–– Γ
CtxCtx : Set
CtxCtx = List Ctx

data FocJudg : Set where
RFoc : Type+ -> FocJudg
LInv : Conc -> Conc -> FocJudg
LFoc : Type- -> Conc -> FocJudg
RInv : Hyp -> FocJudg
Neu : Conc -> FocJudg
Asms : Ctx -> FocJudg

data _`_ : CtxCtx -> FocJudg -> Set where
–– positive values (v+)
Val+ : forall {Γ ∆ C+}

-> ∆
 C+ -> Γ ` Asms ∆
-> Γ ` RFoc C+

–– positive continuations (k+)
Ke- : forall {Γ X}

-> Γ ` LInv (X atom-) (X atom-)
Cont+ : forall {Γ γ C+}

-> ({∆ : Ctx} -> ∆
 C+ -> ∆ :: Γ ` Neu γ)
-> Γ ` LInv (C+ true+) γ

–– negative continuations (k-)
Cont- : forall {∆ A- γ0 γ Γ}

-> ∆
 A- > γ0 -> Γ ` Asms ∆ -> Γ ` LInv γ0 γ
-> Γ ` LFoc A- γ

–– negative values (v-)
Vx+ : forall {Γ X}

-> (X atom+) ∈∈ Γ -> Γ ` RInv (X atom+)
Val- : forall {Γ C-}

-> ({∆ : Ctx}{γ : Conc}
-> ∆
 C- > γ -> ∆ :: Γ ` Neu γ)

-> Γ ` RInv (C- true-)
–– expressions (e)
R : forall {Γ C+}

-> Γ ` RFoc C+
-> Γ ` Neu (C+ true+)

L : forall {Γ C- γ}
-> ((C- true-) ∈∈ Γ) -> Γ ` LFoc C- γ
-> Γ ` Neu γ

–– substitutions (σ)
Sub : forall {Γ ∆}

-> ({α : Hyp} -> α ∈ ∆ -> Γ ` RInv α)
-> Γ ` Asms ∆

Figure 3. Focusing judgements for simple types

ex1* (Dfst De+) = e1
ex1* (Dsnd De+) = e2

A lazy pair is implemented by pattern-matching against the projec-
tions and satisfying the two possible observations. This is imple-
mented by the Agda function ex1*, which pattern-matches on the
destructor pattern datatype. A few details deserve comment: First,
we require the given expressions e1 and e2 to be in context [] ::
Γ to avoid the need to call a weakening lemma. Second, the curly-
braces surrounding the three arguments to ex1 are Agda syntax for
matching on implicit arguments.

The second derived rule is implemented as follows:

ex2 : forall {Γ A1- A2- B+}
-> ([A1- true-] :: Γ) ` Neu (B+ true+)
-> ([A2- true-] :: Γ) ` Neu (B+ true+)
-> Γ ` RInv ((((↓ A1-) + (↓ A2-)) → (↑ B+)) true-)

ex2 {Γ} {A1-} {A2-} {B+} e1 e2 = Val- ex2* where
ex2* : {∆ : Ctx}{γ : Conc}

-> ∆
 (((↓ A1-) + (↓ A2-)) → (↑ B+)) > γ
-> (∆ :: Γ) ` Neu γ

ex2* (Dapp (Cinl Cx-) De+) = e1
ex2* (Dapp (Cinr Cx-) De+) = e2

A function of type (((↓ A1-) + (↓ A2-)) → (↑ B+)) is im-
plemented by pattern-matching against its destructor patterns, of
which there is one, Dapp, and then further pattern-matching against
the constructor patterns for the argument; there are two in this ex-
ample.

3. Positively Dependent Types
The two key ideas of positively dependent types are:

1. We allow dependency only on the values of purely positive
types—i.e., the shift- and atom-free positive types. Because
shifts and atoms are the only types whose patterns bind vari-
ables, the values of purely positive types are closed patterns.

2. The syntax of Π and Σ types is specified using an iterated
inductive definition, mapping patterns to types. Type-level
pattern-matching permits types to be defined by recursion on
data.

3.1 A First Attempt
We add rules for three new types: Σ+ types; a type nat representing
natural numbers; and a type vec A+ n, representing vectors of
length n with elements of type A+. Here n is a closed nat pattern;
i.e., it has type []
 nat.

Because types are dependent on patterns, and patterns are clas-
sified by types, we at least need to define the syntax of types and
the pattern judgement as a mutual inductive definition.

The new types are specified as follows:

mutual
data Type+ : Set where

––- above constructors plus ...
Σ+ : (A+ : Type+) -> ([]
 A+ -> Type+) -> Type+
nat : Type+
vec : Type+ -> []
 nat -> Type+

Note the higher-order premise of Σ+.
Next, we add pattern constructors for these types:

data _
_ : List Hyp -> Type+ -> Set where
––- above constructors plus ...
Cdpair : forall {∆ A+} {τ+ : ([]
 A+ -> Type+)}

(c : []
 A+) -> ∆
 (τ+ c)
-> ∆
 (Σ+ A+ τ+)

Czero : []
 nat
Csucc : {∆ : Ctx}

-> ∆
 nat
-> ∆
 nat

Cnil : forall {A+}
-> []
 vec A+ Czero

Ccons : forall {A+ ∆1 ∆2}
-> (n : []
 nat) -> ∆1
 A+ -> ∆2
 vec A+ n
-> ∆2 ++ ∆1
 vec A+ (Csucc n)

A pattern for (Σ+ A+ τ +) consists of a closed pattern c for A+, as
well as a pattern for (τ + c)—i.e., the type determined for c by
the meta-function τ +. Meta-function application plays the role that
substitution takes in the standard intro rule for Σ-types.

To illustrate type-level computation, we can define a type Σ+

n:nat.iszero n that is inhabited only when the first component
of the pair is 0.

zpair : Type+
zpair = Σ+ nat iszero*

where iszero* : []
 nat -> Type+
iszero* Czero = 1+
iszero* (Csucc n) = 0+

The body of the Σ+-type is defined by pattern-matching on nat,
mapping 0 to the unit type, and successor of anything to the void

type. Thus, it will only be possible to give a value for the second
component when the first component is Czero.

While this definition captures the kind of dependency we want,
it is not accepted by Agda because it is not strictly positive:

1. The types Type+ and ∆
 A+ are defined mutually inductively.

2. The premise of the constructor Σ+ quantifies over patterns,
which a negative occurrence.

Thus, it is not clear whether this definition is sensible.

3.2 Induction-Recursion
It is possible to make sense of the above definition. They key
observation is that, in the syntax Σ+A+τ +, the meta-function τ + only
quantifies over the patterns for a smaller type A+. So the definition
is staged as follows:

1. First, the type A+.

2. Then, the patterns for A+.

3. Then, the type Σ+A+τ +, which quantifies over the patterns for
A+.

4. Then, the patterns for Σ+A+τ +.

5. . . .

This “weave” between types and their inhabitants is common in
the semantics of dependent type theories (see, e.g., Constable et al.
[12]); here, we use it to construct the syntax.

This can be formalized in Agda using a simultaneous inductive-
recursive definition: we define the syntax of Type+ inductively,
while simultaneously defining a function mapping a Type+ to the
Agda Set classifying its patterns.

3.2.1 Positive Pattern Data
It will be useful to use a simple kinding discipline to distinguish
the purely positive types, which can never have negative subcom-
ponents embedded in them, from the positive types, which can. We
write PPos for purely positive and Pos for positive, and we allow
dependency only on the patterns of purely positive types.

data PKind : Set where
PPos : PKind
Pos : PKind

Now, we define the Agda Sets used to form patterns, with
one datatype for each type. The constructors are essentially those
for the datatype ∆
 A+ defined before, but abstracted over the
types of the subpatterns. Because we have not yet defined the
syntax of types, we use a module parametrized by the Agda Set’s
representing them.

module CPats (Type+ : PKind -> Set) (Type- : Set) where

data Hyp : Set where
_true- : Type- -> Hyp
_atom+ : Atom -> Hyp

Ctx = List Hyp

data CPatX+ : Atom -> Ctx -> Set where
Cx+ : forall {X} -> CPatX+ X [X atom+]

data CPat↓ : Type- -> Ctx -> Set where
Cx- : forall {A-} -> CPat↓ A- [A- true-]

data CPat* (_`A+ : Ctx -> Set) (_`B+ : Ctx -> Set)
: Ctx -> Set where

Cpair : forall {∆1 ∆2}
-> ∆1 `A+ -> ∆2 `B+
-> CPat* _`A+ _`B+ (∆2 ++ ∆1)

data CPatΣ+(_`A+ : Ctx -> Set)
(_`τ+_ : Ctx -> [] `A+ -> Set)

: Ctx -> Set where
Cdpair : forall {∆}

-> (c : [] `A+) -> ∆ `τ+ c
-> CPatΣ+ _`A+ _`τ+_ ∆

data CPat1+ : Ctx -> Set where
C<> : CPat1+ []

data CPat0+ : Ctx -> Set where
data CPat+ (_`A+ : Ctx -> Set) (_`B+ : Ctx -> Set)

: Ctx -> Set where
Cinl : forall {∆} -> ∆ `A+ -> CPat+ _`A+ _`B+ ∆
Cinr : forall {∆} -> ∆ `B+ -> CPat+ _`A+ _`B+ ∆

data CPatnat : Ctx -> Set where
Czero : CPatnat []
Csucc : forall {∆} -> CPatnat ∆ -> CPatnat ∆

data CPatvec (_`A+ : Ctx -> Set)
: Ctx -> CPatnat [] -> Set where

Cnil : CPatvec _`A+ [] Czero
Ccons : forall {∆1 ∆2} {n : CPatnat []}

-> ∆1 `A+ -> CPatvec _`A+ ∆2 n
-> CPatvec _`A+ (∆2 ++ ∆1) (Csucc n)

data CPatdom (A- : Type-) : Ctx -> Set where
Cdom : CPatdom A- [A- true-]

open CPats using (_true- ; _atom+)

3.2.2 Types and Patterns
Next, we define the syntax of types and the positive patterns, using
induction-recursion. There are a few differences from above. First,
Type+ is indexed by kinds. Second, we add two new types: Π-,
whose formation rule is parallel to that for Σ+, and dom, which will
represent the recursive type µ D. D → D. Its pattern rule is:

dom→ ↑ dom
 dom

mutual
data Type+ : PKind -> Set where

X+ : Atom -> Type+ Pos
↓ : Type- -> Type+ Pos
1+ : {K : PKind} -> Type+ K
* : {K : PKind} -> Type+ K -> Type+ K -> Type+ K
Σ+ : {K : PKind}

(A+ : Type+ PPos) -> ([]
 A+ -> Type+ K) -> Type+ K
0+ : {K : PKind} -> Type+ K
+ : {K : PKind} -> Type+ K -> Type+ K -> Type+ K
nat : {K : PKind} -> Type+ K
vec : {K : PKind} (A+ : Type+ K) -> CPatnat [] -> Type+ K
dom : Type+ Pos

data Type- : Set where
X- : Atom -> Type-
↑ : Type+ Pos -> Type-
→ : Type+ Pos -> Type- -> Type-
Π- : (A+ : Type+ PPos) -> ([]
 A+ -> Type-) -> Type-
> : Type-
& : Type- -> Type- -> Type-

The Sets of patterns are defined by instantiating the above
datatypes with the Sets determined by the recursive calls:

_
_ : {K : PKind} -> List Hyp -> Type+ K -> Set
∆
 (X+ X) = CPatX+ X ∆
∆
 (↓ A-) = CPat↓ A- ∆
∆
 1+ = CPat1+ ∆
∆
 (A+ * B+) =

CPat* (\∆1 -> ∆1
 A+) (\∆2 -> ∆2
 B+) ∆
∆
 (Σ+ A+ τ+) =

CPatΣ+ (\∆ -> ∆
 A+) (\∆ c -> ∆
 (τ+ c)) ∆
∆
 0+ = CPat0+ ∆
∆
 (A+ + B+) =

CPat+ (\∆ -> ∆
 A+) (\∆ -> ∆
 B+) ∆

∆
 nat = CPatnat ∆
∆
 (vec A+ n) = CPatvec (\∆ -> ∆
 A+) ∆ n
∆
 dom = CPatdom (dom → ↑ dom) ∆

The type dom is the recursive type µdom.↓(dom → ↑ dom).
The pattern for dom is a base case, with only one pattern; Cdom
is essentially (roll x) for a variable x. We do not define the
patterns for dom in terms of functions from the patterns for dom
to the patterns for dom—the polarity shift caused by the ↓ halts the
semantic interpretation of patterns.

3.2.3 Destructor Patterns
Next, we define the destructor patterns inductively, as before. The
Ddapp rule is analogous to Cdpair: to use Π- A+ τ -, give a con-
structor c for A+, and use (τ - c).

data Conc : Set where
_true+ : {K : PKind} -> Type+ K -> Conc
_atom- : Atom -> Conc

data _
> : Ctx -> Type- -> Conc -> Set where
De- : forall {X} -> []
 (X- X) > (X atom-)
De+ : {A+ : Type+ Pos} -> []
 (↑ A+) > (A+ true+)
Dapp : forall {∆1 ∆2 B- γ} {A+ : Type+ Pos}

-> ∆1
 A+ -> ∆2
 B- > γ
-> (∆2 ++ ∆1)
 ((A+ → B-)) > γ

Ddapp : forall {∆ γ} {A+ : Type+ PPos}
{τ- : ([]
 A+ -> Type-)}

-> (c : []
 A+) -> ∆
 (τ- c) > γ
-> ∆
 (Π- A+ τ-) > γ

Dfst : forall {∆ A- B- γ}
-> ∆
 A- > γ -> ∆
 (A- & B-) > γ

Dsnd : forall {∆ A- B- γ}
-> ∆
 B- > γ -> ∆
 (A- & B-) > γ

3.2.4 Focusing Rules
The focusing rules are essentially unchanged from the simply-
typed case. The differences are confined to the implicit arguments
to the constructors: every rule that binds a positive type C+ now also
binds a kind K classifying it. We present the code in Figure 4.

4. Properties
The focusing rules described above allow only canonical programs
(long βη-normal forms). For example there is no way to a apply
a value v : · ` RInv A- to a continuation k : · ` LFocA- γ; it is
only possible to write the canonical result of this computation.
Similarly, it is not obvious that it is possible to use an assumption
of A- as a negative value—i.e., to prove A- ` RInv A-. These
considerations motivate the cut and identity procedures, which
define a canonization method for our language; they correspond
to β-reduction and η-expansion, respectively.

4.1 Identity
There are two main identity principles, which are defined mutu-
ally. The negative identity says that an assumption of C- can be ex-
panded into a negative value (right inversion). The positive identity
says that there is an identity continuation (left inversion) from C+ to
C+. There are also three auxiliary principles: The first defines iden-
tity for assumptions α, by delegating either to the negative identity
theorem, or to the primitive rule Vx+ for atoms. The second maps
this across all assumptions in a context, producing a substitution.
The third expands conclusions γ, by delegating either to positive
identity or to the rule Ke- for atoms.

The positive identity is defined to be a continuation that, when
given a constructor pattern, forms the value composed of that pat-
tern under the identity substitution (a recursive call). The negative

CtxCtx : Set
CtxCtx = List Ctx

data FocJudg : Set where
RFoc : {K : PKind} -> Type+ K -> FocJudg
LInv : Conc -> Conc -> FocJudg
LFoc : Type- -> Conc -> FocJudg
RInv : Hyp -> FocJudg
Neu : Conc -> FocJudg
Asms : Ctx -> FocJudg

codata _`_ : CtxCtx -> FocJudg -> Set where
–– positive values (v+)
Val+ : forall {Γ K ∆} {C+ : Type+ K}

-> ∆
 C+ -> Γ ` Asms ∆
-> Γ ` RFoc C+

–– positive continuations (k+)
Ke- : forall {Γ X }

-> Γ ` LInv (X atom-) (X atom-)
Cont+ : forall {Γ K γ} {C+ : Type+ K}

-> ({∆ : Ctx} -> ∆
 C+ -> ∆ :: Γ ` Neu γ)
-> Γ ` LInv (C+ true+) γ

–– negative continuations (k-)
Cont- : forall {∆ C- γ0 γ Γ}

-> ∆
 C- > γ0 -> Γ ` Asms ∆ -> Γ ` LInv γ0 γ
-> Γ ` LFoc C- γ

–– negative values (v-)
Vx+ : forall {Γ X}

-> (X atom+) ∈∈ Γ -> Γ ` RInv (X atom+)
Val- : forall {Γ C-}

-> ({∆ : Ctx}{γ : Conc}
-> ∆
 C- > γ -> ∆ :: Γ ` Neu γ)

-> Γ ` RInv (C- true-)
–– expressions (e)
R : forall {Γ K} {C+ : Type+ K}

-> Γ ` RFoc C+
-> Γ ` Neu (C+ true+)

L : forall {Γ C- γ}
-> ((C- true-) ∈∈ Γ) -> Γ ` LFoc C- γ
-> Γ ` Neu γ

–– substitutions (σ)
Sub : {Γ : CtxCtx} -> {∆ : Ctx}

-> ({α : Hyp} -> α ∈ ∆ -> Γ ` RInv α)
-> Γ ` Asms ∆

Figure 4. Focusing Rules

identity is defined to be a value that, when given a destructor pat-
tern, observes the designated variable with that destructor, under
the identity substitution, and followed by the identity left-inversion
(both recursive calls).

Here we write s0 and sS as constructors for de Bruijn indices
into Γ:

s0 : α ∈ ∆ -> α ∈∈ (∆ :: Γ)
sS : α ∈ Γ -> α ∈ (∆ :: Γ)

The identity principles are defined as follows:

mutual
Ke+ : forall {K Γ} {C+ : Type+ K}

-> Γ ` LInv (C+ true+) (C+ true+)
Ke+ ~ Cont+ (\c -> R (Val+ c (Ids s0)))

Vx- : forall {Γ C-}
-> ((C- true-) ∈∈ Γ) -> Γ ` RInv (C- true-)

Vx- x ~ Val- (\d -> L (sS x) (Cont- d (Ids s0) Ke))

Vx : forall {Γ α} -> (α ∈∈ Γ) -> Γ ` RInv α
Vx {α = x+ atom+} x ~ Vx+ x
Vx {α = C- true-} x ~ Vx- x

Ids : forall {∆ Γ}
-> ({α : Hyp} -> (α ∈ ∆) -> (α ∈∈ Γ))
-> Γ ` Asms ∆

Ids subset ~ Sub (\{α} i -> Vx (subset i))

Ke : forall {Γ γ} -> Γ ` LInv γ γ
Ke {γ = x- atom-} ~ Ke-
Ke {γ = C+ true+} ~ Ke+

Do these functions terminate? There are several circumstances
in which we can answer this question:

First, if the pattern judgements have the property that they
decompose a type into syntactically smaller types (i.e., whenever
∆
 A+, every negative type in ∆ is a subexpression of A+,
and similarly for destructor patterns), then identity is total. This
is because the proofs of identity make recursive calls only on the
assumptions and conclusions coming from patterns. We proved this
theorem in previous work [29].

However, not all types have this property. For example, dom
violates it, because dom is decomposed into dom → ↑ dom. This
property is also violated by more innocuous types, such as streams
specified as an inductive type with a suspended tail—i.e. the so-
lution to str ∼= elt * ↓↑(str). The patterns for str produce
assumptions of ↑str. And indeed, these types pose a problem for
the identity theorem as described above: for example, the negative
identity at (dom → ↑ dom) makes a recursive call to the negative
identity at (dom → ↑ dom)!

One solution is to disallow these types. A better solution is
to treat the focusing judgement Γ ` J coinductively, following
Girard [19], in which case identity is productive. The η-expansions
for types like dom and streams are infinitely deep, but they always
respond to a single observation in a finite amount of time. We
have taken this solution in the Agda code: In Figure 4, we used
an Agda codata declaration for the focusing judgement. Above,
we used ~ instead of = for the equations defining identity, which is
Agda syntax for a function whose termination should be checked
by coinduction towards the result, rather than induction over the
argument. Agda successfully checks these definitions, because all
of the recursive calls occur under constructors.

4.2 Cut
We present the code for cut admissibility in Figure 5. We first
require a weakening lemma, whose code we elide; the type Γ ⊆SS
Γ’ classifies proofs that Γ is a subset of Γ’.

The most fundamental cuts, Cut+ and Cut-, put a value up
against a continuation. A positive cut is reduced by applying the
meta-function given in the continuation to the constructor pattern
given in the value, and then applying the value’s substitution to
the result. A negative cut is reduced by applying the meta-function
given in the value to the destructor pattern given in the continu-
ation, and then (1) substituting into the result and (2) composing
the resulting expression substitution with the positive continuation.
The next three cut principles, EK+ and K-K+ and K+K+, compose ex-
pressions and continuations. Finally, we have a substitution lemma;
note that Γ - i removes the element of Γ given by the index, and
that List.SW.here? tests whether the index into Γ is in the ∆
being substituted for, and in the first case gives the index into ∆,
and in the second case gives the index into Γ - i. We elide the
straightforward cases of substitution. Both composition and substi-
tution refer back to the principal cuts: composing a value with a
positive continuation causes a positive cut, whereas substituting a
negative value in for a variable causes a negative cut.

This cut admissibility procedure does not always terminate,
corresponding to the fact that our language admits non-terminating
run-time programs. We show an example of a looping program
using dom below.

weaken : { Γ Γ’ : CtxCtx } { J : FocJudg }
-> Γ ⊆SS Γ’ -> Γ ` J -> Γ’ ` J

mutual
Cut+ : forall {Γ K γ} {C+ : Type+ K}

-> Γ ` RFoc C+
-> Γ ` LInv (C+ true+) γ
-> Γ ` Neu γ

Cut+ (Val+ c σ) (Cont+ ϕ+) ~ [i0 ← σ] (ϕ+ c)

Cut- : forall {Γ C- γ}
-> Γ ` RInv (C- true-) -> Γ ` LFoc C- γ
-> Γ ` Neu γ

Cut- (Val- ϕ-) (Cont- d σ k+) ~
EK+ ([i0 ← σ] (ϕ- d)) k+

EK+ : forall {Γ γ0 γ}
-> Γ ` Neu γ0 -> Γ ` LInv γ0 γ
-> Γ ` Neu γ

EK+ (R v) k+ ~ Cut+ v k+
EK+ (L x k-) k+ ~ L x (K-K+ k- k+)

K+K+ : forall {γ0 γ1 γ Γ}
-> Γ ` LInv γ0 γ1 -> Γ ` LInv γ1 γ
-> Γ ` LInv γ0 γ

K+K+ (Cont+ ϕ+) k2
+ ~

Cont+ (\c -> EK+ (ϕ+ c) (weaken sS k2
+))

K+K+ Ke- k2
+ ~ k2

+

K-K+ : forall {C- γ0 γ Γ}
-> Γ ` LFoc C- γ0 -> Γ ` LInv γ0 γ
-> Γ ` LFoc C- γ

K-K+ (Cont- d σ k+) k2
+ ~ (Cont- d σ (K+K+ k+ k2

+))

[_←_]_ : forall {∆ Γ J} -> (i : ∆ ∈ Γ)
-> (Γ - i) ` Asms ∆ -> Γ ` J
-> (Γ - i) ` J

[x0 ← σ0] L y k- with List.SW.here? x0 y | σ0

... | Inl newy | Sub f ~ Cut- (f newy) ([x0 ← σ0] k-)

... | Inr newy | _ ~ L newy ([x0 ← σ0] k-)

Figure 5. Cut admissibility procedure

Because cut is defined on well-typed syntax, it intrinsically
ensures subject reduction, and the fact that cut can only fail by
non-termination (i.e., that it coverage checks) is tantamount to a
progress lemma. It is simple to adapt the cut admissibility proce-
dure to an operational semantics on closed terms [27].

4.3 Type Equality
The focusing rules have the property that two flows of type infor-
mation never meet, except at atomic propositions X+ and X-: in fully
η-expanded form, all of the type equality tests are pushed down to
base type. (For related phenomena, see LFR [30], where subtyp-
ing at higher types is characterized by an identity coercion, and
OTT [1], where an η-expanded identity coercion is induced by
proofs of type equality). The cut principles described above have
too little type information: the principal type of the cut must be an-
notated or guessed. On the other hand, the identity principles may
be used in a situation where two different flows of type information
meet. In such a circumstance, for example, we may desire a more
general positive identity that LInv γ γ, if the surrounding context
requires LInv γ γ’, for two different types γ and γ’. But when
does the identity coercion defined above suffice to map one type to
a different type?

For our language’s types, this happens when there is an inten-
sional mismatch in the Agda functions used to specify Σ+ and Π-.

For example, given an addition function plus* on two patterns of
type nat, the types

Σ+ nat \n -> Σ+ nat \m -> vec nat (plus* m n)
and

Σ+ nat \n -> Σ+ nat \m -> vec nat (plus* n m)

will be intensionally different, but extensionally equal, in the sense
that they have the same patterns. In this case, the same implemen-
tation of Ke+ that we gave above will work as a coercion from one
of these types to the other.

We codify this with a subtyping relation that is sufficient to
define the identity coercion. Informally, the subtyping relation for
positive types is defined as follows: A1+ <: A2+ iff for every pat-
tern ∆1
 A1+, the same pattern has type ∆2
 A2+ where ∆1
<: ∆2. The definition is then extended to contexts, assumptions,
conclusions, and negative types (which have a contravariant flip).
What does it mean for the same pattern to have two different types?
If we annotated the pattern judgement with raw proof terms (e.g.,
∆
 c : A+), then we would require the same proof term c in both
cases. In our intrinsic encoding, we can define an auxiliary judge-
ment EqCPat c1 c2 which relates two patterns, with two different
types, as long as they have the same structure. We also require a
similar judgement for destructor patterns. The two important cases
of subtyping are the following:

codata _<:+_ : {K : PKind} -> Type+ K -> Type+ K -> Set
where
Sub+ : forall {K} {A1+ A2+ : Type+ K} ->
({ ∆1 : Ctx} (c1 : ∆1
 A1+) ->

Σ \ ∆2 -> Σ \(c2 : ∆2
 A2+)
-> EqCPat{∆1}{∆2}{K}{K}{A1+}{A2+} c1 c2
× ∆1 <:∆ ∆2)

-> A1+ <:+ A2+
codata _<:-_ : Type- -> Type- -> Set where

Sub- : forall {A1- A2- } ->
({∆2 : Ctx} {γ2 : Conc} (d2 : ∆2
 A2- > γ2)
-> Σ \∆1 -> Σ \γ1 -> Σ \(d1 : ∆1
 A1- > γ1) ->

EqDPat d1 d2
× ((∆1 , γ1) <:∆γ (∆2 , γ2)))

-> A1- <:- A2-

We elide the definitions of the auxiliary judgements <:∆ and
<:∆γ, which define subtyping for contexts and pairs of contexts
and conclusions, respectively.

The subtyping relation suffices to define the identity coercion;
the code is essentially the same as above, aside from the need to
push the subtyping proofs through.

Ke+ : forall {K Γ} {C1+ C2+ : Type+ K}
-> C1+ <:+ C2+
-> Γ ` LInv (C1+ true+) (C2+ true+)

Vx- : forall {Γ C1- C2- }
-> C1- <:- C2-
-> ((C1- true-) ∈∈ Γ) -> Γ ` RInv (C2- true-)

In summary, our focused formalism has squeezed the balloon
so that proofs of equality are only needed in one spot: to show
that an identity coercion exists between apparently different types.
So far, we have manually constructed the subtyping proofs when
necessary. However, we have also proved that the subtyping proofs
are unique, in the sense that any two proofs of A <: B determine
the same identity coercion (where “same” means structural equality
of proof terms—a judgement similar to EqCPat but for the focusing
judgement). This licenses the use of theorem proving to find proofs
of subtyping, as the code determined by the proofs will be the same.
We intend to explore ways of exploiting this in future work.

5. Examples
5.1 Derived Forms
First, we define some derived forms that will make writing the
examples easier.

We define shorthands for case-analyzing an expression with a
positive continuation, and for right-focusing on a value:

case_of_ : forall {Γ γ} {C+ : Type+ Pos}
-> Γ ` Neu (C+ true+)
-> ({∆ : Ctx} -> ∆
 C+ -> ∆ :: Γ ` Neu γ)
-> Γ ` Neu γ

case e of k+ = EK+ e (Cont+ k+)

rfv : forall {Γ K ∆} {C+ : Type+ K}
-> ∆
 C+ -> Γ ` Asms ∆
-> Γ ` Neu (C+ true+)

rfv c σ = R (Val+ c σ)

We define utilities for creating common substitutions (defini-
tions elided):

σe : (Γ : CtxCtx) -> Γ ` Asms []

σid : forall {Γ ∆} -> (∆ :: Γ) ` Asms ∆

σ1 : forall {Γ α} -> Γ ` RInv α -> Γ ` Asms [α]

The meta-functions necessary for introducing a negative value
have type:

{∆:Ctx}{γ:Conc} -> ∆
 A- > γ -> (∆ :: Γ) ` γ

It is convenient to define a short-hand for matching on destructor
patterns. For example, for the type (A+ → B+ → ↑ C+), we will
write an Agda function that takes two constructor patterns, one for
A+ and one for B+, rather than a function taking both constructor
patterns packed as a destructor pattern. The Agda type of these con-
venient meta-functions is defined by induction on negative types:

IMetaFn- : CtxCtx -> Type- -> Set
IMetaFn- Γ (↑ A+) = Γ ` Neu (A+ true+)
IMetaFn- Γ (A+ → B-) =

{∆ : Ctx} -> ∆
 A+ -> IMetaFn- (∆ :: Γ) B-
IMetaFn- Γ (Π- A+ τ-) = (p : []
 A+) -> IMetaFn- Γ (τ- p)
IMetaFn- Γ (X- X) = Γ ` Neu (X atom-)
IMetaFn- Γ > = Unit
IMetaFn- Γ (A- & B-) = IMetaFn- Γ A- × IMetaFn- Γ B-

These convenient meta-functions suffice to define a negative
value:

ival- : forall {Γ A} -> IMetaFn- Γ A -> Γ ` RInv (A true-)

5.2 Tail
First, we define a tail function on vectors of length at least one:

tailtp = Π- nat (\n -> (vec nat (Csucc n)) → ↑(vec nat n))
tail : forall {Γ} -> Γ ` RInv (tailtp true-)
tail {Γ} = ival- tail* where
tail* : IMetaFn- Γ tailtp
tail* n (Ccons x xs) = rfv xs (Ids {! !})

The negative value is defined by a two-argument meta-function,
which takes a nat pattern n and pattern for vec nat (Csucc n).
In the Ccons case, we return the tail under the identity substitu-
tion. Agda’s exhaustiveness checker verifies that the Cnil case is
impossible for a vector this length.

To make the examples more readable, we leave a hole marked
by {! !} or ? for simple list subset relationships, which are easy
but verbose to fill in; in this case, the obligation is to prove that
every assumption in ∆2 is in (∆2 ++ ∆1) :: Γ. We would
like to try deploying reflective theorem proving to discharge these
obligations automatically.

5.3 Append
Next, we define an append function on vectors. We require an
addition function on nat patterns:

plus* : {K : PKind}
-> []
 nat{K} -> []
 nat{K} -> []
 nat{K}

plus* Czero n = n
plus* {K} (Csucc m) n = Csucc (plus*{K} m n)

appendtype = (Π- nat (\n -> Π- nat \m ->
vec nat n → vec nat m → ↑ (vec nat (plus*{PPos} n m))))

append : forall {Γ} -> Γ ` RInv (appendtype true-)
append {Γ} = ival- append* where

append* : IMetaFn- Γ appendtype
append* Czero m Cnil l2 = rfv l2 σid
append* (Csucc n) m (Ccons x l1) l2 =

case (weaken {! !} (append* n m l1 l2)) of
\l12 -> rfv (Ccons x l12) (Ids {! !})

The meta-function append* is defined recursively: we are using
induction in Agda to do induction in the object language. The
focusing syntax makes the evaluation-order explicit in the second
case: do the recursive call, and then compose the result with a
continuation that conses x onto the result.

5.4 Map
We define a function that maps a two-argument function across two
lists of the same length:

map2type = Π- nat (\n -> (↓ (nat → nat → ↑ nat) →
vec nat n → vec nat n → ↑ (vec nat n)))

map2 : forall {Γ} -> Γ ` RInv (map2type true-)
map2 {Γ} = ival- map2* where

map2* : IMetaFn- Γ map2type
map2* Czero Cx- Cnil Cnil = rfv Cnil (σe _)
map2* (Csucc n) Cx- (Ccons x xs) (Ccons y ys) =

case weaken {! !} (map2* n Cx- xs ys) of
\t ->

L (sS (sS (sS (s0 i0))))
(Cont- (Dapp x (Dapp y De+)) (Ids {! !})

(Cont+ (\h -> rfv (Ccons h t) (Ids {! !}))))

In the second case, we let t be the result of mapping the given
function across the tails of the lists, then we let h be the result
of calling the function on the heads, and finally we cons h onto
t. Agda’s exhaustiveness checker verifies that the nil/cons and
cons/nil cases are impossible because the lists have the same length.

5.5 Map2app
To illustrate the need for proofs of type equality, we implement a
function map2app of type

map2apptp =
Π- nat (\n -> Π- nat (\m ->
↓ (nat → nat → ↑ nat)
→ vec nat n → vec nat m
→ ↑ (vec nat (plus*{PPos} n m))))

Informally, this function is defined as follows:

map2app n m f l1 l2 =
case (append n m l1 l2) of

app1 => case (append m n l2 l1) of
app2 => map2 (plus* n m) f app1 app2

I.e., we map the given function across the results of appending
the two lists in both orders. However, the second list app2 has
type vec nat (plus* m n), whereas it is expected to have type
vec nat (plus* n m). Consequently, it is necessary to prove a
subtyping relationship inductively:

comm : {A+ : Type+ Pos} (n m : []
 nat{PPos}) ->
(vec A+ (plus*{PPos} m n))

<:+ (vec A+ (plus*{PPos} n m))

commext : {A+ : Type+ Pos} ->
(Σ+ nat \n -> Σ+ nat \m -> (vec A+ (plus*{PPos} m n)))

<:+ (Σ+ nat \n -> Σ+ nat \m -> (vec A+ (plus*{PPos} n m)))

Then we coerce app2 by cutting with the identity coercion
induced by this subtyping proof, and call the result app2’:

map2app : forall {Γ} -> Γ ` RInv (map2apptp true-)
map2app {Γ} = ival- map2app* where
map2app* : IMetaFn- Γ map2apptp
map2app* n m Cx- l1 l2 =
Cut- append
(Cont- (Ddapp n (Ddapp m (Dapp l1 (Dapp l2 De+))))

(Ids {! !}) (Cont+ (\app1 ->
Cut- append
(Cont- (Ddapp m (Ddapp n (Dapp l2 (Dapp l1 De+))))

(Ids {! !}) (Cont+ (\app2 ->
case (Cut+ (Val+ app2 (Ids {! !}))

(Ident.Ke+ (comm {nat} n m))) of
\app2’ ->
Cut- map2

(Cont- (Ddapp (plus* n m)
(Dapp Cx-
(Dapp app1 (Dapp app2’ De+))))

(Ids ?) Ke)))))))

5.6 Loop
To illustrate that our language is compatible with effects such as
non-termination, we write a loop using dom. The essential idea is a
variation of (λx.x x)(λx.x x):

loop (Cdom f) = f (Cdom f)
explode = loop (Cdom loop)

This code is represented as follows:

loop : forall {Γ} -> Γ ` RInv ((dom → ↑ dom) true-)
loop {Γ} = ival- (\{_} -> loop*) where

loop* : IMetaFn- Γ (dom → ↑ dom)
loop* Cdom = L (s0 i0)

(Cont- (Dapp Cdom De+)
(σ1 (Vx (s0 i0))) Ke)

explode : [] ` Neu (dom true+)
explode = Force.force
(Cut- loop (Cont- (Dapp Cdom De+) (σ1 loop) Ke))

The function Force.force pattern-matches on the focusing term,
which causes Agda to evaluate it and loop.

6. Related Work
There has been a great deal of work on integrating various forms
of dependent types into practical programming languages and their
implementations [3, 8, 9, 10, 11, 15, 17, 18, 32, 35, 36, 37, 42,
43, 44, 45, 47, 48, 50, 53], building on dependently typed proof
assistants such as NuPRL [12] and Coq [5]. Our central technical
contribution relative to these type theories is to show how to sup-
port a form of dependency within the formalism of higher-order
focusing.

Positively dependent types are slightly more parsimonious than
those phase-sensitive languages which duplicate types like the nat-
ural numbers at the static and dynamic levels [8, 9, 15, 18, 37, 42,
44, 47, 48, 50, 53]. On the other hand, the reason for this dupli-
cation is that these languages commit to the computational irrel-
evance of static data, which gives programmers a way, albeit rel-
atively coarse-grained, to indicate what data should be passed at

run-time. We plan to address this issue both with compiler opti-
mizations that require no programmer input (see Brady [6]) and by
integrating proof irrelevance [4, 33, 38] into the type structure of
our language, which will provide more fine-grained control. Other
languages, such as Delphin [41] and Beluga [39], allow dependency
on LF terms, and allow run-time computation with this data, but do
not provide for compile-time computation with it.

Unlike phase-insensitive languages [3, 17, 32, 35, 36, 45], pos-
itively dependent types make a syntactic distinction between run-
time and compile-time computations, and thus are compatible with
standard treatments of effects, as in ML. Positively dependent types
are thus a useful first step that can be taken while research on meth-
ods of encapsulating effects progresses. One relatively coarse solu-
tion is to confine all effects, including non-termination, to an IO
monad. Many more-refined treatments are possible, based on sep-
arating different effects into different monads [40], treating some
effects comonadically [34], reasoning about effects using purely
functional models [46], and reasoning about effects using specifica-
tion logics [35]. None of these approaches yet provide a satisfactory
account of benign effects, where effects are used under-the-hood to
implement a pure interface (e.g., splay trees).

Polarized intuitionistic logic has the same basic type structure
as call-by-push-value [25], but the programs of our calculus are
different than those of CBPV, which are not fully focalized. Polar-
ized classical logical has been applied to programming in a variety
of ways; e.g, to analyze evaluation order [51] and to emphasize
connections with game-theoretic semantics [24]. However, none of
these polarized type theories consider dependent types.

7. Conclusion
In this paper, we have demonstrated how to support a simple but
useful form of dependency, positively dependent types, within the
formalism of higher-order focusing. There are many directions for
future work. One is to integrate the dependency considered here
with our previous work [29], which considers a positive function
space used to represent variable binding. This would allow depen-
dency on data with variable binding, as in LF, which is useful for
representing logical systems. Another direction is to extend our po-
larized type theory with ways of encapsulating effects. This would
provide an account of total programming and proof alongside our
current computational language, which allows unrestricted effects,
and is necessary for considering dependency on negative computa-
tions.

Finally, we may consider an implementation of positively de-
pendent types as an extension of ML or Haskell. GHC already im-
plements much of the technology necessary: Associated type syn-
onyms [7] provide a notion of type-level functions which could be
used to realize type-level meta-functions, and of course Haskell
supports run-time functions defined by pattern-matching, which
can realize the value-level meta-functions. GHC also implements
indexed datatypes (GADTs), but at present these datatypes can only
be indexed by constructors of kind type. Our proposal is to allow
these datatypes to additionally be indexed by the values of purely
positive types. The primary difficulty is that positive types are hard
to come by in Haskell: tuples are more N-like than ⊗-like, and
sums build in shifts (Either A- B - can be read as ↑(↓A- ⊕ ↓B -)).
One solution would be to allow dependency only on datatypes with
strictness annotations at each recursive call (data Nat = Z | S
!Nat) and to treat the dependent function type Π- as call-by-value,
rather than call-by-name. Adding positively dependent types to ML
would be easier, as ML sums and products of purely positive types
are purely positive.

Acknowledgements
We thank Noam Zeilberger for discussions about this work, and we
thank the anonymous reviewers for their helpful feedback.

References
[1] T. Altenkirch, C. McBride, and W. Swierstra. Observational

equality, now! In Programming Languages meets Program
Verification Workshop, 2007.

[2] J.-M. Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):297–
347, 1992.

[3] L. Augustsson. Cayenne - a language with dependent types. In
International Conference on Functional Programming, 1998.

[4] S. Awodey and A. Bauer. Propositions as [types]. Journal of
Logic and Computation, 14(4):447–471, 2004.

[5] Y. Bertot and P. Castéran. Interactive Theorem Proving
and Program Development: Coq’Art: The Calculus of Induc-
tive Constructions. Texts in Theoretical Computer Science.
Springer, 2004.

[6] E. Brady. Practical Implementation of a Dependently Typed
Functional Programming Language. PhD thesis, Durham
University, 2005.

[7] M. Chakravarty, G. Keller, and S. P. Jones. Associated type
synonyms. In ACM SIGPLAN International Conference on
Functional Programming, 2005.

[8] C. Chen and H. Xi. Combining programming with theorem
proving. In International Conference on Functional Program-
ming, 2005.

[9] J. Cheney and R. Hinze. Phantom types. Technical Report
CUCIS TR20003-1901, Cornell University, 2003.

[10] B. Chin, S. Markstrum, and T. Millstein. Semantic type quali-
fiers. In Programming Language Design and Implementation,
2005.

[11] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula.
Dependent types for low-level programming. In European
Symposium on Programming, 2007.

[12] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing Mathematics with the NuPRL Proof Develop-
ment System. Prentice Hall, 1986.

[13] K. Crary and S. Weirich. Flexible type analysis. In Interna-
tional Conference on Functional Programming, 1999.

[14] J. Dunfield. A Unified System of Type Refinements. PhD thesis,
Carnegie Mellon University, August 2007. CMU-CS-07-129.

[15] J. Dunfield and F. Pfenning. Tridirectional typechecking. In
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2004.

[16] P. Dybjer and A. Setzer. Indexed induction-recursion. In Proof
Theory in Computer Science, pages 93–113. Springer, 2001.

[17] C. Flanagan. Hybrid type checking. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 245–256, 2006.

[18] S. Fogarty, E. Pasalic, J. Siek, and W. Taha. Concoqtion:
indexed types now! In ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, pages
112–121, New York, NY, USA, 2007. ACM Press.

[19] J.-Y. Girard. Locus solum: From the rules of logic to the logic
of rules. Mathematical Structures in Computer Science, 11
(3):301–506, 2001.

[20] J.-Y. Girard. On the unity of logic. Annals of pure and applied
logic, 59(3):201–217, 1993.

[21] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In Symposium on Principles of
Programming Languages, 1995.

[22] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order mod-
ules and the phase distinction. In Symposium on Principles of
Programming Languages, 1990.

[23] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the Association for Computing
Machinery, 40(1), 1993.

[24] O. Laurent. Etude de la polarisation en logique. Thèse de
doctorat, Université Aix-Marseille II, Mar. 2002.

[25] P. B. Levy. Call-by-push-value. PhD thesis, Queen Mary,
University of London, 2001.

[26] C. Liang and D. Miller. Focusing and polarization in intu-
itionistic logic. In J. Duparc and T. A. Henzinger, editors,
CSL 2007: Computer Science Logic, volume 4646 of LNCS,
pages 451–465. Springer-Verlag, 2007.

[27] D. R. Licata. Dependently typed programming with
domain-specific logics (thesis proposal). Available from
http://www.cs.cmu.edu/~drl, 2008.

[28] D. R. Licata and R. Harper. A formulation of Dependent ML
with explicit equality proofs. Technical Report CMU-CS-
05-178, Department of Computer Science, Carnegie Mellon
University, 2005.

[29] D. R. Licata, N. Zeilberger, and R. Harper. Focusing on
binding and computation. In IEEE Symposium on Logic in
Computer Science, 2008.

[30] W. Lovas and F. Pfenning. A bidirectional refinement type
system for LF. Electronic Notes in Theoretical Computer
Science, 196:113–128, 2008.

[31] P. Martin-Löf. Hauptsatz for the intuitionistic theory of iter-
ated inductive definitions. In J. E. Fenstad, editor, Proceedings
of the Second Scandinavian Logic Symposium, pages 179–
216, Amsterdam, 1971. North Holland.

[32] C. McBride and J. McKinna. The view from the left. Journal
of Functional Programming, 15(1), 2004.

[33] A. Miquel. The implicit calculus of constructions: Extending
pure type systems with an intersection type binder and subtyp-
ing. In International Conference on Typed Lambda Calculi
and Applications, 2001.

[34] A. Nanevski. A modal calculus for exception handling. In
Intuitionistic Modal Logic and Applications, 2005.

[35] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism
and separation in Hoare Type Theory. In ACM SIGPLAN
International Conference on Functional Programming, pages
62–73, Portland, Oregon, 2006.

[36] U. Norell. Towards a practical programming language based
on dependent type theory. PhD thesis, Chalmers University of
Technology, 2007.

[37] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn.
Simple unification-based type inference for GADTs. In ACM
SIGPLAN International Conference on Functional Program-
ming, 2006.

[38] F. Pfenning. Intensionality, extensionality, and proof irrele-
vance in modal type theory. In IEEE Symposium on Logic in
Computer Science, 2001.

[39] B. Pientka. A type-theoretic foundation for programming with
higher-order abstract syntax and first-class substitutions. In
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 371–382, 2008.

[40] G. Plotkin and J. Power. Notions of computation determine
monads. In Proc. FOSSACS 2002, Lecture Notes in Computer
Science 2303, pages 342–356. Springer, 2002.

[41] A. Poswolsky and C. Schürmann. Practical programming with
higher-order encodings and dependent types. In European
Symposium on Programming, 2008.

[42] S. Sarkar. A cost-effective foundational certified code system.
Thesis Proposal, Carenegie Mellon University, 2005.

[43] Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type sys-
tem for certified binaries. ACM Transactions on Programming
Languages and Systems, 27(1):1–45, 2005.

[44] T. Sheard. Languages of the future. In Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, 2004.

[45] M. Sozeau. PROGRAM-ing finger trees in Coq. In ACM SIG-
PLAN International Conference on Functional Programming.
Association for Computing Machinery, 2007.

[46] W. Swierstra and T. Altenkirch. Beauty in the beast: A func-
tional semantics of the awkward squad. In ACM SIGPLAN
Workshop on Haskell, pages 25–36, 2007.

[47] E. Westbrook, A. Stump, and I. Wehrman. A language-based
approach to functionally correct imperative programming. In
International Conference on Functional Programming, 2005.

[48] H. Xi and F. Pfenning. Eliminating array bound checking
through dependent types. In Conference on Programming
Language Design and Implementation, 1998.

[49] H. Xi and F. Pfenning. Dependent types in practical program-
ming. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 1999.

[50] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype con-
structors. In ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, 2003.

[51] N. Zeilberger. On the unity of duality. Annals of Pure and
Applied Logic, 153(1–3), 2008. Special issue on “Classical
Logic and Computation”.

[52] N. Zeilberger. Focusing and higher-order abstract syntax. In
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 359–369, 2008.

[53] C. Zenger. Indizierte Typen. PhD thesis, Universit at Karl-
sruhe, 1998.

