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Abstract

In earlier work, we used a typed function calculus, XML, with dependent types to analyze
several aspects of the Standard ML type system. In this paper, we introduce a refinement of
XML with a clear compile-time/run-time phase distinction, and a direct compile-time type
checking algorithm. The calculus uses a finer separation of types into universes than XML
and enforces the phase distinction using a nonstandard equational theory for module and
signature expressions. While unusual from a type-theoretic point of view, the nonstandard
equational theory arises naturally from the well-known Grothendieck construction on an
indexed category.



1 Introduction

The module system of Standard ML [HMM86] provides a convenient mechanism for factor-
ing ML programs into separate but interrelated program units. The basic constructs are
structures, which are a form of generalized “records” with type, value and structure compo-
nents, and functors, which may be regarded as parameterized structures or functions from
structures to structures. The types of structures and functors are called signatures. The
signature of a structure lists the component names and their types, while the signature of a
functor also includes the types of all parameters. Typically, program units are represented
as structures that are linked together by functor application. When two structure param-
eters of a functor must share a common substructure, this is specified using a “sharing”
constraint within the functor parameter list. In Standard ML as currently implemented,
there are no functors with functor parameters. In this respect, the current language only
uses “first-order” modules.

There are two formal analyses of the module system, one operational and the other
a syntactic translation leading to a denotational semantics. The structured operational
semantics of [HMT87b, HMT87a, Tof87] includes a computational characterization of the
type checker. This gives a precise, implementation-independent definition of the Standard
ML language that may be used for a variety of purposes. The second formal analysis is a
type-theoretic description of ML, which leads to a denotational semantics to the language.
The second line of work, beginning with [Mac86] and continued in [MH88], uses dependent
sum types Σx:A.B to explain structures and dependent function types Πx:A.B for functors.
In addition to providing some insight into the functional behavior of the module constructs,
the XML calculus introduced in [MH88] establishes a framework for studying a class of
ML-like languages. Because variants of Standard ML may be considered as XML theories,
the emphasis of this approach is on properties of Standard ML that remain invariant under
extensions of the language. In addition, XML is most naturally defined with higher-order
modules, suggesting a useful extension of Standard ML. However, some important aspects
of Standard ML are not accurately reflected in the XML analysis.

Although ML is designed to allow compile-time type checking, it is not clear how to
“statically” type check versions of XML with certain additional type constructors or with
higher-order modules. This is particularly unfortunate for higher-order modules, since these
seem useful in supporting separate compilation or as an alternative to ML’s “sharing” speci-
fications [BL84, Mac86]. In this paper, we redesign XML so that compile-time type checking
is an intrinsic part of the type-theoretic framework. Since it is difficult to characterize the
difference between compile-time and run-time precisely, we focus on establishing a phase
distinction, in the terminology of [Car88]. However, to give better intuition, we generally
refer to these phases as compile-time and run-time. The main benefit of our redesign is that
type checking becomes decidable, even in the presence of higher-order functors and arbitrary
equational axioms between “run-time” expressions.

The main difficulty with higher-order functors may be illustrated by considering an ex-
pression e containing a “functor” variable F which maps type, int pairs (representing struc-
tures) to type, int pairs. Such an expression e might occur as the body of a higher-order
functor, with functor parameter F . In type checking e, we might encounter a type expres-
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sion of the form Fst(F [int ,e1]), referring to the type component of the structure obtained by
applying the functor parameter F to structure [int ,e1]. Since F is a formal parameter, we
cannot hope to evaluate this type expression without performing functor application, which
we consider a “run-time,” or second phase, operation. However, in type checking e, we might
need to decide whether two such type expressions, say Fst(F [int ,e1]) and Fst(F [int ,e2]), are
equal. The natural equality to consider involves deciding whether structure components e1
and e2 are equal. However, if these are complicated integer expression, perhaps containing
recursive functions, then it is impossible to algorithmically compare two such expressions for
equality. While it is possible to simplify type checking using syntactic equality of possibly
divergent expressions, this is too restrictive in practice.

In this paper, we present a typed calculus λML which includes both higher-order modules
and a clear separation into “phases” which correspond intuitively to compile-time and run-
time. The new calculus is at once a refinement and an extension of XML. The universe
structure of XML is refined so that the core language (i.e., the language without modules)
possesses a natural phase distinction. Then the language is extended in a systematic way
to include dependent types for representing structures and functors. In order to preserve
the phase distinction a non-standard formulation of the rules for dependent types is needed.
Rather than restrict the syntax of structures and functors, as one might initially expect, we
adopt non-standard equational axioms that allow us to simplify each structure or functor
into separate “compile-time” and “run-time” parts. Referring back to the example above,
we test whether Fst(F [int ,e1]) and Fst(F [int ,e2]) are equal essentially by simplifying F
to a pair of maps, one compile-time and the other run-time. This allows us to compute
compile-time (type) values of these expressions without evaluating run-time expressions e1
or e2. This approach follows naturally from the development of [Mog89a], which defines the
category of modules over any suitable indexed category representing a typed language. In
categorical terms, the category of modules is the Grothendieck construction on an indexed
category, which is proved relatively cartesian closed when certain natural assumptions about
the indexed category are satisfied. Our λML calculus is a concrete outgrowth of Moggi’s
categorical development, providing an explicit lambda notation for the category of modules.

Like XML, λML may be extended with any typed constants and corresponding equational
axioms. In contrast to XML, constants and non-logical λML axioms only affect the “run-time”
theory of the language and do not interact with type checking. We show that λML typing
is decidable for any variant of the calculus based on any (possibly undecidable) equational
theory for “run-time” expressions. A similar development may be carried out using the
computational λ-calculus approach of [Mog89b] in place of equational axioms, but we will
not go into that in this paper.

The paper is organized as follows. In Section 2 we introduce the core calculus, λML, which
we later extend to include modules. λML is essentially the HML calculus given in [Mog89a]
and closely related to the Core-XML calculus given in [MH88]. In Section 3 we introduce
λML

mod
, the full calculus of higher-order modules. We prove that λML

mod
is a definitional exten-

sion of a simpler “structures-only” calculus and use this result to establish decidability and
compile-time type checking for the full calculus of modules. Brief concluding remarks appear
in Section 4.
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k ∈ kind :: = 1 | T | k1 × k2 | k1 → k2
u ∈ constr :: = v | 1 | × | → | ∗ | 〈u1, u2〉 | πi(u) | (λv:k.u) | u1 u2

σ ∈ type :: = set(u) | σ1 × σ2 | σ1 → σ2 | (∀v:k.σ)
e ∈ term :: = x | ∗ | 〈e1, e2〉 | πi(e) | (λx:σ.e) | e1 e2 | (Λv:k.e) | e[u]
Φ ∈ context :: = ∅ | Φ, v:k | Φ, x:σ

Table 1: λML raw expressions

2 Core Calculus

We begin by giving the definition of the λML core calculus, λML, which is essentially the
calculus HML of [Mog89a]. This calculus captures many of the essential features of the ML
type system, but omits, for the sake of simplicity, ML’s concrete and abstract types (which
could be modeled using existential types [MP88]), recursive types (which can be described
through a λML theory), and record types. We also do not consider pattern matching, or
computational aspects such as side-effects and exceptions. A promising approach toward
integrating these features is described in [Mog89b].

2.1 Syntactic Preliminaries

There are four basic syntactic classes in λML: kinds,constructors,types and terms. The kinds
include T , the collection of all monotypes, and are closed under formation of products and
function spaces. The constructors, which include monotypes such as int, and type construc-
tors such as list, are elements of kinds. The types of λML, whose elements are terms, include
cartesian products, function spaces and polymorphic types. The terms of the calculus cor-
respond to the basic expression forms of ML, but are written in an explicitly-typed syntax,
following [MH88]. It is important to note that our “types” correspond roughly to ML’s “type
schemes,” the essential difference being that we require them to be closed with respect to
quantification over all kinds (not just the kind of monotypes) and function spaces. These
additional closure conditions for type schemes are needed to make the the category of mod-
ules for λML relatively cartesian closed (i.e., closed under formation of dependent products
and sums).

The type structure of λML is a refinement of that of Core-XML [MH88]. The kind T of
monotypes corresponds directly to the first universe U1 of Core-XML. However, the second
universe, U2, of Core-XML is separated into distinct collections of kinds and types. For
technical reasons, the cumulativity of the Core-XML universes is replaced by the explicit
“injection” of T into the collection of types, written using the keyword set.

2.2 Syntax

The syntax of λML raw expressions is given in Table 1. The collection of term variables,
ranged over by x, and the collection of constructor variables, ranged over by v, are assumed
to be disjoint. The metavariable τ ranges over the collection of monotypes (constructors of
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Φ context Φ is a context
Φ ≫ u : k u is a constructor of kind k
Φ ≫ σ type σ is a type
Φ ≫ e : σ e is a term of type σ

Φ ≫ u1 = u2 k u1 and u2 are equal constructors of kind k
Φ ≫ σ1 = σ2 type σ1 and σ2 are equal types
Φ ≫ e1 = e2 : σ e1 and e2 are equal terms of type schema σ

Table 2: λML judgement forms

kind T ). Contexts consist of a sequence of declarations of the form v:k and x:σ declaring the
kind or type, respectively, of a constructor or term variable. In addition to the context-free
syntax, we require that no variable be declared more than once in a context Φ so that we
may unambiguously regard Φ as a partial function with finite domain Dom(Φ) assigning
kinds to constructor variables and types to term variables.

2.3 Judgement Forms

There are two classes of judgements in λML, the formation judgements and the equality
judgements. The formation judgements are used to define the set of well-formed λML ex-
pressions. With the exception of the kind expressions, there is one formation judgement for
each syntactic category. (Every raw kind expression is well-formed.) The equality judge-
ments are used to axiomatize equivalence of expressions. (There is no equality judgement for
kinds; kind equivalence is just syntactic identity.) The equality judgements are divided into
two classes, the compile-time equations and the run-time equations, reflecting the intuitive
phase distinction: kind and type equivalence are compile-time, term equivalence is run-time.
The judgment forms of λML are summarized in Table 2. The metavariable F ranges over
formation judgements, E ranges over equality judgements, and J ranges over all forms of
judgement. We sometimes write Φ ≫ α to stand for an arbitrary judgement when we wish
to make the context part explicit.

2.4 Formation Rules

The syntax of λML is specified by a set of inference rules for deriving formation judgements.
These resemble rules in [MH88, Mog89a] and are given in Appendix A. We write λML ⊢ F
to indicate that the formation judgement F is derivable using these rules. The formation
rules may be summarized as follows. The constructors and kinds form a simply-typed λ-
calculus (with product and unit types) with base kind T , and basic constructors 1, ×, and
→. The collection of types is built from base types 1 and set(τ), where τ is a constructor
of kind T , using the type constructors × and →, and quantification over an arbitrary kind.
The terms amount to an explicitly-typed presentation of the ML core language, similar to
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that presented in [MH88]. (The let construct is omitted since it is definable here.)

2.5 Equality rules

The rules for deriving equational judgements also resemble rules in [MH88, Mog89a] and
are given in Appendix A. We write λML ⊢ E to indicate that an equation E is derivable in
accordance with these rules. The λML equational rules are formulated so as to ensure that
if an equational judgement is derivable, then it is well-formed, meaning that the evident
associated formation judgements are derivable. For the sake of convenience we give a brief
summary of the equational rules of λML.

2.5.1 Compile-Time Equality

Constructors Equivalence of constructor expressions is the standard equivalence of terms
in the simply-typed λ-calculus based on the following axioms:

(1 η)
Φ ≫ u : 1

Φ ≫ u = ∗ : 1

(× β)
Φ ≫ u1 : k1 Φ ≫ u2 : k2
Φ ≫ πi(〈u1, u2〉) = ui : ki

(i = 1, 2)

(× η)
Φ ≫ u : k1 × k2

Φ ≫ 〈π1(u), π2(u)〉 = u : k1 × k2

(→ β)
Φ ≫ u1 : k1 Φ, v:k1 ≫ u2 : k2

Φ ≫ (λv:k1.u2) u1 = [u1/v]u2 : k2

(→ η)
Φ ≫ u : k1 → k2

Φ ≫ (λv:k1.u v) = u : k1 → k2
(v 6∈ Dom(Φ))

Types The equivalence relation on types includes the following axioms expressing the
interpretation of the basic ML type constructors

(1 T =)
Φ context

Φ ≫ set(1) = 1 type

(× T =)
Φ ≫ τ1 : T Φ ≫ τ2 : T

Φ ≫ set(τ1 × τ2) = set(τ1)× set(τ2) type

(→ T =)
Φ ≫ τ1 : T Φ ≫ τ2 : T

Φ ≫ set(τ1→τ2) = set(τ1)→ set(τ2) type
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2.5.2 Run-Time Equality

Terms There are seven axioms corresponding to the reduction rules associated with each
of the type constructors:

(1 η)
Φ ≫ e : 1

Φ ≫ e = ∗ : 1

(× β)
Φ ≫ e1 : σ1 Φ ≫ e2 : σ2

Φ ≫ πi(〈e1, e2〉) = ei : σi

(i = 1, 2)

(× η)
Φ ≫ e : σ1 × σ2

Φ ≫ 〈π1(e), π2(e)〉 = e : σ1 × σ2

(→ β)
Φ ≫ e1 : σ1 Φ, x:σ1 ≫ e2 : σ2

Φ ≫ (λx:σ1.e2) e1 = [e1/x]e2 : σ2

(→ η)
Φ ≫ e : σ1 → σ2

Φ ≫ (λx:σ1.e x) = e : σ1→ σ2

(x 6∈ Dom(Φ))

(∀ β)
Φ ≫ u : k Φ, v:k ≫ e : σ

Φ ≫ (Λv:k.e)[u] = [u/v]e : [u/v]σ

(∀ η)
Φ ≫ e : (∀v:k.σ)

Φ ≫ (Λv:k.e[v]) = e : (∀v:k.σ)
(v 6∈ Dom(Φ))

2.6 Theories

The λML calculus is defined with respect to an arbitrary theory T = (ΦT ,AT ) consisting
of a well-formed context ΦT and a set AT of run-time equational axioms of the form e1 =
e2 : σ with Φ0 ≫ ei : σ derivable for i = 1, 2. A theory corresponds to the programming
language notion of standard prelude, and might contain declarations such as int : T and
fix : ∀t:T. set((t→ t)→ t), and axioms such as expressing the fixed-point property of fix.
For T = (ΦT ,AT ), we write λML[T ] ⊢ J to indicate that the judgement J is derivable
in λML, taking the variables declared in ΦT as basic constructors and terms, and taking
the equations in ET as non-logical axioms. We write λML[T ] ⊢ct J to indicate that the
judgement J is derivable from theory T using only the compile-time equational rules and
equational axioms of T .
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2.7 Properties of λML

We will describe the phase distinction in λML by separating contexts into sets of “compile-
time” and “run-time” declarations. If Φ is a λML context, we let Φc be the context obtained
by omitting all term variable declarations from Φ and let Φr be the context obtained by
eliminating all constructor variable declarations from Φ. The following lemma expresses the
compile-time type checking property of λML:

Lemma 2.1 Let T be any theory. The following implications hold:

If λML[T ] ⊢ then λML[ΦT , ∅] ⊢ct

Φ context Φc,Φr context
Φ ≫ u : k Φc ≫ u : k
Φ ≫ u1 = u2 : k Φc ≫ u1 = u2 : k
Φ ≫ σ type Φc ≫ σ type
Φ ≫ σ1 = σ2 type Φc ≫ σ1 = σ2 type
Φ ≫ e : σ Φc,Φr ≫ e : σ
Φ ≫ e1 = e2 : σ Φc,Φr ≫ ei : σ

Since the constructors and kinds form a simply-typed λ-calculus, it is a routine matter to
show that equality of well-formed constructors (and, consequently, types) in λML is decidable.
It is then easy to show that type checking in λML is decidable. This is a well-known property
of the polymorphic lambda calculus Fω (c.f. [Gir71, Gir72, Rey74, BMM89]), which may be
seen as an impredicative extension of the λML calculus.

Lemma 2.2 There is a straightforward one-pass algorithm which decides, for an arbitrary
well-formed theory T and formation judgement F , whether or not λML[T ] ⊢ F .

The main technical accomplishment of this paper is to present a full calculus encom-
passing the module expressions of ML which has a compile-time decidable type checking
problem.

3 Modules Calculus

3.1 Overview

In the XML account of Standard ML modules [Mac86, MH88] (see also [NPS88, C+86, Mar84]
for related ideas), a structure is an element of a strong sum type of the form Σx:A.B. For
example, a structure with one type and one value component is regarded as a pair [τ, e]
of type S = Σt:T.σ. Although Standard ML structures bind names to their components,
component selection in XML is simplified using the projections Fst and Snd . Functors
are treated as elements of dependent function types of the form Πx:A.B. For example, a
functor mapping structures with signature S to structures with the same signature would
have type Πs:(Σt:T.σ).(Σt:T.σ). In XML, functors are therefore written as λ-terms mapping
structures to structures. As discussed in the introduction, the standard use of dependent
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k ∈ kind :: = . . .
u ∈ constr :: = . . . | sc

σ ∈ type :: = . . .
e ∈ term :: = . . . | sr

S ∈ sig :: = [v:k, σ]
M ∈ mod :: = [u, e]
Φ ∈ context :: = . . . | Φ, s:S

Table 3: λML

str
raw expressions

types conflicts with compile-time type checking since a type expression (which we expect
to evaluate a compile time) may depend on an arbitrary (possibly run time) expression.
For example, if F is a functor variable of signature S → S (where S is as above), then
Fst(F [int , 3]) is an irreducible type expression involving a run-time sub-expression.

In this section we develop a calculus λML

mod
of higher-order modules with a phase distinction

based on the categorical analysis of [Mog89a]. We begin with a simpler “structures-only”
calculus that is primarily a technical device used in the proofs. The full calculus of higher-
order modules has a standard syntax for dependent strong sums and functions, resembling
XML, but a non-standard equational theory inspired by the categorical interpretation of
program modules [Mog89a]. The calculus also employs a single non-standard typing rule
for structures that we conjecture is not needed for decidable typing, but which allows a more
generous (and simple) type-checking algorithm without invalidating the categorical seman-
tics. Although inspired by a categorical construction, we prove our main results directly using
only standard techniques of lambda calculus. The non-standard aspects of λML

mod
calculus are

justified by showing that this calculus is a definitional extension of the “structures-only”
calculus, which itself bears a straightforward relationship to the core calculus. This defini-
tional extension result is used to prove that λML

mod
type equivalence is decidable and that the

language therefore has a practical type checking algorithm.

3.2 The Calculus of Structures

In this section, we extend λML with structures and signatures. The resulting calculus, λML

str
,

has a straightforward phase distinction and forms the basis for the full calculus of modules.
We assume we have some set of structure variables that are disjoint from the constructor and
term variables, and use s, s′, s1, . . . as metavariables for structure variables. The additional
syntax of λML

str
is given in Table 3. Note that contexts are extended to include declarations of

structure identifiers, but structures are required to be in “split” form [u, e]. (A variable s is
not a structure and there is no need for operations to select the components of a structure.)

The judgement forms of λML are extended with two additional formation judgements,
and two additional equality judgements, summarized in Table 4. The rules for deriving
judgements in λML

str
are obtained by extending the rules of λML (taking contexts now in the
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Φ ≫ S sig S is a signature
Φ ≫ M : S M is a structure of signature S

Φ ≫ S1 = S2 sig S1 and S2 are equal signatures
Φ ≫ M1 = M2 : S M1 and M2 are equal modules of signature S

Table 4: λML

str
judgement forms

extended sense) by the rules for structures given in In particular, we have the following two
rules governing the use of structure variables:

([ ] E1)
Φ context

Φ ≫ sc : k
(Φ(s) = [v:k, σ])

([ ] E2)
Φ context

Φ ≫ sr : [sc/v]σ
(Φ(s) = [v:k, σ])

The notion of theory and derivability with respect to a theory are the same as in λML.
The calculus of structures may be understood in terms of a translation into the core

calculus, which amounts to showing that λML

str
may be interpreted into the category of modules

of [Mog89a]. For Φ a λML

str
context, define Φ∗ to be the λML context obtained by replacing all

structure variable declarations s : [v:k, σ] by the pair of declarations sc : k and sr : [sc/v]σ.

Lemma 3.1 Let T be a well-formed λML theory.

1. λML

str
[T ] ⊢ Φ ≫ [v:k, σ] sig iff λML[T ] ⊢ Φ∗, v:k ≫ σ type, and similarly for signature

equality.

2. λML

str
[T ] ⊢ Φ ≫ [u, e] : [v:k, σ] iff λML[T ] ⊢ Φ∗ ≫ u : k and λML[T ] ⊢ Φ∗ ≫ e : [u/v]σ,

and similarly for structure equality.

3. λML

str
[T ] ⊢ Φ ≫ α iff λML[T ] ⊢ Φ∗ ≫ α, for any judgement α other than of the four

forms considered in items 1. and 2. above.

It is an immediate consequence of this lemma and the decidability of λML type equivalence
that λML

str
type equivalence is decidable. This will be important for the decidability of type

checking in the full modules calculus.

3.3 The Calculus of Modules

The relative cartesian closure of Moggi’s category of modules implies that higher-order func-
tors are definable in λML

str
. This may seem surprising, since λML

str
is a rather minimal calculus

of structures, with nothing syntactically resembling lambda abstraction over structures. The
key idea in understanding this phenomenon is to regard all modules as “mixed-phase” enti-
ties, consisting of a compile-time part and a run-time part. For basic structures of the form
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[u, e], the partitioning is clear: u, a constructor, may be evaluated at compile-time, while e,
a term, is left until run-time . For more complex module expressions such as functors, the
separation requires further explanation.

Consider the signature S = [v:T, set(v)], and let F :S → S be a functor. Since this
functor lies within the first-order fragment of λML, we may rely on Standard ML for intuition.
The functor F takes a structure of signature S as argument, and returns a structure, also
of signature S. On the face of it, F might compute the type component of the result
as a function of both the type and term component of the argument. However, no such
computation is possible in ML since there are no primitives for building types from terms.
Thus we may regard F as consisting of two parts, the compile-time part, which computes the
type component of the result as a function of the type component of the argument, and the
run-time part, which computes the term component of the result as a function of both the
type and term component of the argument. (Since we are working in a typed framework with
explicit polymorphism, the term component may contain type information that depends on
the compile-time functor argument.) For a more concrete example, suppose I is the identity
functor λs:S.s. Separated into compile time and run time parts, I becomes the structure

[λsc:T.sc,Λsc:T.λsr:set(sc).sr]

of signature
[f :T→T, ∀sc:T. set(sc→fsc)].

In other words, I may be represented by the structure consisting of the identity constructor
on types, and the polymorphic identity on terms. (A technical side comment is that the
structure corresponding to I has more than one signature, as we shall see.)

With functors represented by structures, functor application becomes a form of “structure
application.” In keeping with the above discussion, structure application is computed by
applying the first component of the functor to the first component of the argument, and the
second component of the functor to both components of the argument. More precisely, if
[u, e] is a structure of signature [f :k′ → k, ∀v′:k′.σ′ → [fv′/v]σ], and [u′, e′] is a structure of
signature [v′:k′, σ′], then the application [u, e] [u′, e′] is defined to be the structure [uu′, eue′]
of signature [v:k, σ]. As we shall see below, the appropriate typing conditions are satisfied
whenever the first structure is the image of a functor under the translation sketched in
the next paragraph. Moreover, both type correctness and equality are preserved under the
translation.

Although λML

str
already “has” higher-order modules, the syntax for representing them

forces the user to explicitly decompose every functor into distinct compile-time and run-time
parts, even for the first-order functors of Standard ML. This is syntactically cumbersome.
In keeping with the syntax of Standard ML, and practical programming considerations, we
will consider a more natural notation based on [Mac86, MH88]. However, our calculus will
nonetheless respect the phase distinction inherent in representing functors as structures.
This is achieved by employing a non-standard equational theory that, when used during
type checking, makes explicit the underlying “split” interpretation of module expressions,
and hence eliminates apparent phase violations. For example, if A is a functor of signature
[t:T, set(int)]→[t:T, 1], then the type expression σ = Fst(A [int , 3]) is equal, using the non-
standard rules, to Fst(A) int , which is free of run-time subexpressions. As a result, if e is a
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k ∈ kind :: = . . .
u ∈ constr :: = . . . | Fst(M)
σ ∈ type :: = . . .
e ∈ term :: = . . . | Snd(M)
S ∈ sig :: = [v:k, σ] | 1 | (Σs:S1.S2) | (Πs:S1.S2)
M ∈ mod :: = s | [u, e] | ∗ | 〈M1,M2〉 | πi(M) | (λs:S.M) | M1 M2

Φ ∈ context :: = . . . | Φ, s:S

Table 5: λML

mod
raw expressions

(1 >)
Φ context

Φ ≫ 1 = [v:1, 1] sig

(Σ >)
Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ (Σs:[v1:k1, σ1].[v2:k2, [Fst(s)/v1]σ2]) = [v:k1× k2, [π1v/v1]σ1×[π1v, π2v/v1, v2]σ2] sig

(Π >)
Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ (Πs:[v1:k1, σ1].[v2:k2, [Fst(s)/v1]σ2]) = [v:k1→ k2, (∀v1:k1.σ1→[v v1/v2]σ2)] sig

Table 6: Non-standard equational rules for signatures

term of type σ, then the application

(λx: set(Fst(A [int , 5])).x) e

is type-correct, whereas in the absence of the non-standard equations this would not be so
(assuming 3 6= 5 : int).

The raw syntax of λML

mod
is an extension of that of λML; the extensions are given in Table 5.

The judgement forms are the same as for λML

str
, and are axiomatized by the structure rules

of Appendix B together with the rules of Appendix C. The λML

mod
calculus is parametric in

a theory, defined as in λML (i.e., we do not admit module constants, or axioms governing
module expressions.)

The formation rules of λML

mod
are essentially the standard rules for dependent strong sums

and dependent function types. The equational rules include the expected rules for dependent
types, together with the non-standard rules summarized in Tables 6 and 7.

Beside the non-standard equational rules (and “orthogonal” to them), there is also a
non-standard typing rules for structures:

Φ ≫ M : [v:k, σ]

Φ, v:k ≫ σ′ type

Φ ≫ Snd M : [Fst M/v]σ′

Φ ≫ M : [v:k, σ′]

11



(1 I >)
Φ context

Φ ≫ ∗ = [∗, ∗] [v:1, 1]

(Σ I >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ u1 : k1 Φ ≫ e1 : [u1/v1]σ1

Φ ≫ u2 : k2 Φ ≫ e2 : [u1, u2/v1, v2]σ2
Φ ≫ 〈[u1, e1], [u2, e2]〉 = [〈u1, u2〉, 〈e1, e2〉] : [v:k1× k2, [π1v/v1]σ1×[π1v, π2v/v1, v2]σ2]

(Σ E1 >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ u : k1× k2 Φ ≫ e : [π1u/v1]σ1×[π1u, π2u/v1, v2]σ2
Φ ≫ π1[u, e] = [π1u, π1e] : [v1:k1, σ1]

(Σ E2 >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ u : k1× k2 Φ ≫ e : [π1u/v1]σ1×[π1u, π2u/v1, v2]σ2
Φ ≫ π2[u, e] = [π2u, π2e] : [v2:k2, [π1u/v1]σ2]

(Π I >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ, v1:k1 ≫ u : k2 Φ, v1:k1, x:σ1 ≫ e : [u/v2]σ2
Φ ≫ (λs:[v1:k1, σ1].[Fst s,Snd s/v1, x][u, e]) = [(λv1:k1.u), (Λv1:k1.λx:σ1.e)] :

[v:k1→ k2, (∀v1:k1.σ1→[v v1/v2]σ2)]

(Π E >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ u1 : k1 Φ ≫ e1 : [u1/v1]σ1

Φ ≫ u : k1→ k2 Φ ≫ e : (∀v1:k1.σ1→[v v1/v2]σ2)

Φ ≫ [u, e] [u1, e1] = [uu1, e[u1] e1] : [v2:k2, [u1/v1]σ2]

Table 7: Non-standard equational rules for modules

12



expression translation induction hypotheses

Fst(M) u where M ♭ = [u, e]

Snd(M) e where M ♭ = [u, e]

s [sc, sr]

[v:k, σ] [v:k, [v/v]σ♭]

1 [v:1, 1]

(Σs:S1.S2) [v:(k1× k2), ([π1v/v]σ1×[π1v, π2v/s
c,v]σ2)] where S♭

i = [v:ki, σi]

(Πs:S1.S2) [v:(k1→ k2), ∀s
c:k1.[s

c/v]σ1→[v sc/v]σ2] where S♭
i = [v:ki, σi]

∗ [∗, ∗]

〈M1,M2〉 [〈u1, u2〉, 〈e1, e2〉] where M ♭
i = [ui, ei]

πiM [πiu, πie] where M ♭ = [u, e]

(λs:S.M) [(λsc:k.u), (Λsc:k.λsr:[sc/v]σ.e)] where S♭ = [v:k, σ] and M ♭ = [u, e]

M1M2 [u1 u2, e1[u2] e2] where M ♭
i = [ui, ei]

Table 8: Translation of λML

mod
into λML

str

The non-standard typing rule is consistent with the interpretation in the category of mod-
ules [Mog89a], but (we conjecture that) without it the main properties of λML

mod
, namely the

compile-time type checking theorem and the decidability of typing judgements, would still
hold. The reason for having such rule is mainly pragmatic: to have a simple type checking
algorithm (see Definition 3.9). Moreover, this additional typing rule captures a particu-
larly natural property of Σ-types (once uniqueness of type has been abandoned), namely
that a structure M should be identified with its expansion [Fst M, Snd M ]. A typical ex-
ample of typing judgement derivable by the non-standard typing rule is s:[v:k, σ] ≫ s :
[v:k, [Fst s/v]σ].

3.4 Translation of λML
mod into λML

str

The non-standard equational theory used in the definition of λML

mod
is justified by proving

that λML

mod
is a definitional extension of λML

str
, in a sense to be made precise below. This

definitional extension result will then play an important role in establishing the decidability
and compile-time type checking property of λML

mod
.

We begin by giving a translation ♭ from raw λML

mod
expressions into raw λML

str
expressions.

This translation is defined by induction on the structure of λML

mod
expressions. Apart from the

cases given in Table 8, the translation is defined to commute with the expression constructors.
For the basis we associate with every module variable s a constructor variable sc and a term
variable sr in λML

str
. For convenience in defining the translation we fix a constructor variable

v that may occur in expressions of λML

str
, but not in expressions of λML

mod
. Signatures of

λML

mod
will be translated to λML

str
signatures of the form [v:k, σ]. The translation is extended

“declaration-wise” to contexts: Φ♭ is obtained from Φ by replacing declarations of the form
x:σ by x:σ♭, and declarations of the form s:S by s:S♭. Note that the translation leaves λML

expressions fixed; consequently, the translation need not be extended to theories.

13



Lemma 3.2 (Substitutivity) The translation ♭ commutes with substitution.
In particular if M ♭ = [u, e], then ([M/s] )♭ = [u, e/sc, sr]( ♭).

Theorem 3.3 ( ♭ interpretation) Let T be a well-formed theory, and let J be a λML

mod

judgement. If λML

mod
[T ] ⊢ J , then λML

str
[T ] ⊢ J ♭.

Proof. By induction on the derivation of J in λML

mod
. The crucial points are

1. The non-standard equations become identities under translation.

2. Occurrences of Fst( ) and Snd( ) are eliminated; in particular, redices are contracted.

3. The module-level β and η redices become pairs of constructor- and term-level β and η
redices.

Conversely, λML

str
is essentially a sub-calculus of λML

mod
, differing only in the treatment of

structure variables. To make this precise, define the embedding e of λML

str
raw expressions

into λML

mod
raw expressions by replacing all occurrences of sc by Fst(s), and all occurrences

of sr by Snd(s).

Theorem 3.4 ( e interpretation) Let T be a well-formed theory, and let J be a λML

str

judgement. If λML

str
[T ] ⊢ J , then λML

mod
[T ] ⊢ J e.

Theorem 3.5 (Definitional extension) Let T be a well-formed theory.

• For any formation judgement F of λML

str
, if λML

str
[T ] ⊢ F , then (F e)♭ is syntactically

equal to F , modulo the names of bound variables.

• If λML

mod
[T ] ⊢ Φ ≫ M : S, then the following equality judgements are derivable in

λML

mod
[T ]:

– Φs ≫ Φ(s) = (Φ(s)♭)e sig, for all s ∈ Dom(Φ), where Φ ≡ Φs, s:Φ(s),Φ
s (and

similarly for x and v in Dom(Φ))

– Φ ≫ S = (S♭)e sig

– Φ ≫ M = (M ♭)e : S

(and similarly for the other formation judgements.)

Proof. The first statment it is obvious, since ( e)♭ is Syntactically equal to (up to
α-conversion), for any λML

str
raw expression .

The second statment is proved by induction on the derivation of a formation judgement.
Note that in the case of rules (type eq) and (sig eq) one uses the induction hypothesis plus
rules (type eq =) and (sig eq =) respectively.

Corollary 3.6 (Conservative extension) Let T be an arbitrary well-formed theory. For
any λML

str
judgement J , λML

mod
[T ] ⊢ J e iff λML

str
[T ] ⊢ J .

14



3.5 Compile-Time Type Checking for λML
mod

The compile-time equational theory of λML

mod
and λML

str
is determined using a restricted equa-

tional proof system, defined as follows.

Definition 3.7 (Compile-time calculus) Compile-time provability in λML

mod
and λML

str
is

defined by disallowing the use of all β and η rules for term equivalence, and all β and η rules
for module equivalence, apart from those related to “basic” signatures [v:k, σ].

Let us designate the β and η axioms for terms of λML by βη, then the full λML

mod
calculus

may be recovered by working in the theory (∅, βη), since the β and η axioms for modules
are derivable in such a theory.

It may be easily verified that the variants of Theorems 3.3, 3.4 and 3.5 obtained by
considering compile-time derivability hold.

Theorem 3.8 (Compile-time type checking) Given any well-formed theory T = (ΦT ,AT ),
the following implications hold:

If λML

mod
[T ] ⊢ then λML

mod
[ΦT , ∅] ⊢ct

Φ context Φ context
Φ ≫ σ type Φ ≫ σ type
Φ ≫ S sig Φ ≫ S sig
Φ ≫ u : k Φ ≫ u : k
Φ ≫ e : σ Φ ≫ e : σ
Φ ≫ M : S Φ ≫ M : S

If λML

mod
[T ] ⊢ then λML

mod
[ΦT , ∅] ⊢ct

Φ ≫ σ1 = σ2 type Φ ≫ σ1 = σ2 type
Φ ≫ S1 = S2 sig Φ ≫ S1 = S2 sig
Φ ≫ u1 = u2 : k Φ ≫ u1 = u2 : k
Φ ≫ e1 = e2 : σ Φ ≫ ei : σ
Φ ≫ M1 = M2 : S Φ ≫ Mi : S

Φ ≫ [Fst M1, Snd M1]
= [Fst M2, Snd M1] : S

3.6 Decidability of λML
mod

The decidability of λML

mod
is proved by giving an algorithm that “flattens” structures and

signatures during type checking. As a result, checking signature equivalence is reduced to
checking type equivalence in λML

str
, and this is, as we have already argued, decidable. The

main complication in the algorithm stems from the failure of unicity of types. For example,
the structure [int , 3] has both of the inequivalent signatures [t:T, set(t)] and [t:T, int ]. Our
approach is to compute the “most specific” signature for a structure (in the foregoing example
this would be the second) which will always have the form [v:k, σ] where v does not occur
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free in σ. As a notational convenience, we will usually omit explicit designation of the non-
occurring variable, and write such signatures in the form [:k, σ]. The algorithm defined below
takes as input a raw context Φ and, for instance, a raw module expression M of λML

mod
and

produces one of the following results:

• The context Φ♭ and M ♭ ≡ [u, e]:[:k, σ], meaning that Φ ≫ M : [:k, σ] is derivable in
λML

mod
.

• An error, meaning that Φ context is not derivable in λML

mod
or that Φ ≫ M : S is not

derivable in λML

mod
for any S.

Definition 3.9 (Type-checking algorithm) The type-checking algorithm TC is given by
a deterministic set of inference rules to derive judgements of the following form:

input output

Φ →→ Φ♭ context

Φ ≫ σ →→ Φ♭ ≫ σ♭ type

Φ ≫ S →→ Φ♭ ≫ S♭ sig

Φ ≫ u →→ Φ♭ ≫ u♭ : k

Φ ≫ e →→ Φ♭ ≫ e♭ : σ

Φ ≫ M →→ Φ♭ ≫ M ♭ : [:k, σ]

In the last three cases TC not only computes the translation, but also a kind/type/signature.
A sample of the inference rules that constitute the algorithm is given in Table 9.

TC is parametric in a theory T , and we write TC[T ] for the instance of the algorithm
in which the constants declared in ΦT are regarded as variables. More precisely, Φ →→
Φ♭ context in TC[T ] iff ΦT ,Φ →→ ΦT ,Φ♭ context in TC.

Theorem 3.10 (Soundness) Let T be a well-formed theory. The following implications
hold:

If TC[T ] ⊢ then λML

mod
[T ] ⊢ct

Φ →→ Φ♭ context Φ context

Φ ≫ σ →→ Φ♭ ≫ σ♭ type Φ ≫ σ type

Φ ≫ S →→ Φ♭ ≫ S♭ sig Φ ≫ S sig

Φ ≫ u →→ Φ♭ ≫ u♭ : k Φ ≫ u : k

Φ ≫ e →→ Φ♭ ≫ e♭ : σ Φ ≫ e : σe

Φ ≫ M →→ Φ♭ ≫ [u, e] : [:k, σ] Φ ≫ M : [:k, σe]
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(Φ, s:S)
Φ ≫ S →→ Φ♭ ≫ S♭ sig

Φ, s:S →→ Φ♭, s:S♭ context
(s 6∈ Dom(Φ))

([ ] sig)
Φ, v:k ≫ σ →→ Φ♭, v:k ≫ σ♭ type

Φ ≫ [v:k, σ] →→ Φ♭ ≫ [v:k, σ♭] : sig

([ ] I)
Φ ≫ u →→ Φ♭ ≫ u♭ : k Φ ≫ e →→ Φ♭ ≫ e♭ : σ

Φ ≫ [u, e] →→ Φ♭ ≫ [u, e] : [:k, σ]

([ ] E1)
Φ ≫ M →→ Φ♭ ≫ [u, e] : [:k, σ]

Φ ≫ Fst(M) →→ Φ♭ ≫ u : k

([ ] E2)
Φ ≫ M →→ Φ♭ ≫ [u, e] : [:k, σ]

Φ ≫ Snd(M) →→ Φ♭ ≫ e : σ

(var)
Φ →→ Φ♭ context

Φ ≫ s →→ Φ♭ ≫ [sc, sr] : [:k, [sc/v]σ]
(Φ♭(s) = [v:k, σ])

(1 I)
Φ context →→ Φ♭ context

Φ ≫ ∗ →→ Φ♭ ≫ [∗, ∗] : [:1, 1]

(Σ I)
Φ ≫ M1 →→ Φ♭ ≫ [u1, e1] : [:k1, σ1] Φ ≫ M2 →→ Φ♭ ≫ [u2, e2] : [:k2, σ2]

Φ ≫ 〈M1,M2〉 →→ Φ♭ ≫ [〈u1, u2〉, 〈e1, e2〉] : [:k1× k2, σ1×σ2]

(Σ Ei)
Φ ≫ M →→ Φ♭ ≫ [u, e] : [:k1× k2, σ1×σ2]

Φ ≫ πiM →→ Φ♭ ≫ [πiu, πie] : [:ki, σi]

(Π I)
Φ, s:S1 ≫ M →→ Φ♭, s:[v:k1, σ1] ≫ [u, e] : [:k2, σ2]

Φ ≫ (λs:S1.M) →→ Φ♭ ≫ [(λsc:k1.u), (Λs
c:k1.λs

r:[sc/v]σ1.e)] :
[:k1→ k2, ∀s

c:k1.[s
c/v]σ1→σ2]

(Π E)

Φ ≫ M →→ Φ♭ ≫ [u, e] : [:k1→ k2, ∀v:k1.σ1→σ2]

Φ ≫ M1 →→ Φ♭ ≫ [u1, e1] : [:k1, σ]

Φ ≫ M M1 →→ Φ♭ ≫ [uu1, e[u1] e1] : [:k2, [u1/v]σ2]
λML
str ⊢ Φ♭ ≫ σ = [u1/v]σ1 type

Table 9: Type checking algorithm (selected rules)
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Theorem 3.11 (Completeness) Let T be any well-formed theory. The following implica-
tions hold:

If λML

mod
[T ] ⊢ct then TC[T ] ⊢ & λML

str
[T ] ⊢ct

Φ context Φ →→ Φ♭ context

Φ ≫ σ type Φ ≫ σ →→ Φ♭ ≫ σ♭ type

Φ ≫ S sig Φ ≫ S →→ Φ♭ ≫ S♭ sig

Φ ≫ u : k Φ ≫ u →→ Φ♭ ≫ u♭ : k

Φ ≫ e : σ Φ ≫ σ →→ Φ♭ ≫ σ♭ type
Φ ≫ e →→ Φ♭ ≫ e♭ : σ′

Φ♭ ≫ σ♭ = σ′ type

Φ ≫ M : S Φ ≫ S →→ Φ♭ ≫ [v:k, σ] sig
Φ ≫ M →→ Φ♭ ≫ [u, e] : [:k, σ′]
Φ♭ ≫ σ′ = [u/v]σ type

If λML

mod
[T ] ⊢ct then TC[T ] ⊢ & λML

str
[T ] ⊢ct

Φ ≫ σ1 = σ2 type Φ ≫ σi →→ Φ♭ ≫ σ♭
i type

Φ♭ ≫ σ♭
1 = σ♭

2 type

Φ ≫ S1 = S2 sig Φ ≫ Si →→ Φ♭ ≫ S♭
i sig

Φ♭ ≫ S♭
1 = S♭

2 sig

Φ ≫ u1 = u2 : k Φ ≫ ui →→ Φ♭ ≫ u♭
i : k

Φ♭ ≫ u♭
1 = u♭

2 : k

Φ ≫ e1 = e2 : σ Φ ≫ σ →→ Φ♭ ≫ σ♭ type
Φ ≫ ei →→ Φ♭ ≫ e♭i : σi

Φ♭ ≫ σ♭ = σi type
Φ♭ ≫ e♭1 = e♭2 : σ

♭

Φ ≫ M1 = M2 : S Φ ≫ S →→
Φ♭ ≫ [v:k, σ] sig

Φ ≫ Mi →→
Φ♭ ≫ [ui, ei] : [:k, σi]

Φ♭ ≫ u1 = u2 : k
Φ♭ ≫ σ = [ui/v]σi type
Φ♭ ≫ e1 = e2 : σ

Theorem 3.12 (Decidability) It is decidable whether a raw type-checking judgement lhs →
→ rhs is derivable using the inference rules in Definition 3.9.

Proof. By lexicographic induction on 〈size(lhs), length(Φ)〉.

Corollary 3.13 Given any well-formed theory T , the derivability of formation judgements
in λML

mod
[T ] is decidable and does not depend on run-time axioms nor the axioms in T .

4 Conclusion

Although the relatively straightforward ML-like function calculus XML of [MH88] illustrates
some important properties of ML-like languages, it does not provide an adequate basis for the
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design of a compile-time type checker. Similar problems arise in other programming language
models based on dependent types. To address this pragmatic issue, we have developed
an alternate form of the XML calculus in which there is a clear compile-time/run-time
distinction. Essentially, our technique is to add equational axioms that allow us to decompose
structures and functors into separate compile-time and run-time components. While the
phase distinction in λML reduces to the syntactic difference between types and their elements,
the general technique seems applicable to other forms of phase distinction.

The basis for our development is the “category of modules” over an indexed category,
which is an instance of the Grothedieck construction. General properties of the category
of modules are explained in the companion paper [Mog89a]. In the specific case of λML,
our non-standard equational axioms lead to a calculus which bears a natural relationship
to the category of modules. In future work, it would be interesting to explore the exact
connection between our calculus and the categorical construction, and to develop phase
distinctions for languages whose type expressions may contain “run-time” subexpressions in
more complicated ways.
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A Core calculus

Contexts: Φ context

(Φ = ∅)
∅ context

(Φ, v:k)
Φ context

Φ, v:k context
(v 6∈ Dom(Φ))

(Φ, x:σ)
Φ ≫ σ type

Φ, x:σ context
(x 6∈ Dom(Φ))
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Constructors: Φ ≫ u : k

(var)
Φ context

Φ ≫ v : k
(Φ(v) = k)

(1 T )
Φ context

Φ ≫ 1 : T

(× T )
Φ context

Φ ≫ × : T →T →T

(→ T )
Φ context

Φ ≫ → : T →T →T

(1 I)
Φ context

Φ ≫ ∗ : 1

(× I)
Φ ≫ u1 : k1 Φ ≫ u2 : k2
Φ ≫ 〈u1, u2〉 : k1× k2

(× E)
Φ ≫ u : k1× k2
Φ ≫ πi(u) : ki

(i = 1, 2)

(→ I)
Φ, v:k1 ≫ u : k2

Φ ≫ (λv:k1.u) : k1→ k2

(→ E)
Φ ≫ u1 : k1→ k2 Φ ≫ u2 : k1

Φ ≫ u1 u2 : k2

Types: Φ ≫ σ type

(T ⊆ type)
Φ ≫ τ : T

Φ ≫ set(τ) type

(1 type)
Φ context

Φ ≫ 1 type

(× type)
Φ ≫ σ1 type Φ ≫ σ2 type

Φ ≫ σ1×σ2 type

(→ type)
Φ ≫ σ1 type Φ ≫ σ2 type

Φ ≫ σ1→σ2 type

(∀ type)
Φ, v:k ≫ σ type

Φ ≫ (∀v:k.σ) type

21



Terms: Φ ≫ e : σ

(var)
Φ context

Φ ≫ x : σ
(Φ(x) = σ)

(∀ I)
Φ, v:k ≫ e : σ

Φ ≫ (Λv:k.e) : (∀v:k.σ)

(∀ E)
Φ ≫ e : (∀v:k.σ) Φ ≫ u : k

Φ ≫ e[u] : [u/v]σ

(1 I)
Φ context

Φ ≫ ∗ : 1

(× I)
Φ ≫ e1 : σ1 Φ ≫ e2 : σ2
Φ ≫ 〈e1, e2〉 : σ1×σ2

(× E)
Φ ≫ e : σ1×σ2
Φ ≫ πie : σi

(i = 1, 2)

(→ I)
Φ, x:σ1 ≫ e : σ2

Φ ≫ (λx:σ1.e) : σ1→σ2

(→ E)
Φ ≫ e2 : σ1→σ2 Φ ≫ e1 : σ1

Φ ≫ e2 e1 : σ2

(type eq)
Φ ≫ e : σ1 Φ ≫ σ1 = σ2 type

Φ ≫ e : σ2

Constructors: Φ ≫ u1 = u2 : k

(refl)
Φ ≫ u : k

Φ ≫ u = u : k

(symm)
Φ ≫ u1 = u2 : k

Φ ≫ u2 = u1 : k

(trans)
Φ ≫ u1 = u2 : k Φ ≫ u2 = u3 : k

Φ ≫ u1 = u3 : k
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(1 η)
Φ ≫ u : 1

Φ ≫ u = ∗ : 1

(× I =)
Φ ≫ u1 = u′1 : k1 Φ ≫ u2 = u′2 : k2
Φ ≫ 〈u1, u2〉 = 〈u′1, u

′
2〉 : k1× k2

(× E =)
Φ ≫ u = u′ : k1× k2

Φ ≫ πi(u) = πi(u
′) : ki

(i = 1, 2)

(× β)
Φ ≫ u1 : k1 Φ ≫ u2 : k2
Φ ≫ πi(〈u1, u2〉) = ui : ki

(i = 1, 2)

(× η)
Φ ≫ u : k1× k2

Φ ≫ 〈π1(u), π2(u)〉 = u : k1× k2

(→ I =)
Φ, v:k1 ≫ u = u′ : k2

Φ ≫ (λv:k1.u) = (λv:k1.u
′) : k1→ k2

(→ E =)
Φ ≫ u = u′ : k1→ k2 Φ ≫ u1 = u′1 : k1

Φ ≫ uu1 = u′ u′1 : k2

(→ β)
Φ ≫ u1 : k1 Φ, v:k1 ≫ u2 : k2

Φ ≫ (λv:k1.u2)u1 = [u1/v]u2 : k2

(→ η)
Φ ≫ u : k1→ k2

Φ ≫ (λv:k1.u v) = u : k1→ k2
(v 6∈ Dom(Φ))

Types: Φ ≫ σ1 = σ2 type

(refl)
Φ ≫ σ type

Φ ≫ σ = σ type

(symm)
Φ ≫ σ1 = σ2 type

Φ ≫ σ2 = σ1 type

(trans)
Φ ≫ σ1 = σ2 type Φ ≫ σ2 = σ3 type

Φ ≫ σ1 = σ3 type
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(T ⊆ type =)
Φ ≫ τ = τ ′ : T

Φ ≫ set(τ) = set(τ ′) type

(× type =)
Φ ≫ σ1 = σ′

1 type Φ ≫ σ2 = σ′
2 type

Φ ≫ σ1×σ2 = σ′
1×σ′

2 type

(→ type =)
Φ ≫ σ1 = σ′

1 type Φ ≫ σ2 = σ′
2 type

Φ ≫ σ1→σ2 = σ′
1→σ′

2 type

(∀ type =)
Φ, v:k ≫ σ = σ′ type

Φ ≫ (∀v:k.σ) = (∀v:k.σ′) type

(1 T =)
Φ context

Φ ≫ set(1) = 1 type

(× T =)
Φ ≫ τ1 : T Φ ≫ τ2 : T

Φ ≫ set(τ1 × τ2) = set(τ1)× set(τ2) type

(→ T =)
Φ ≫ τ1 : T Φ ≫ τ2 : T

Φ ≫ set(τ1→τ2) = set(τ1)→ set(τ2) type

Terms: Φ ≫ e1 = e2 : σ

(refl)
Φ ≫ e : σ

Φ ≫ e = e : σ

(symm)
Φ ≫ e1 = e2 : σ

Φ ≫ e2 = e1 : σ

(trans)
Φ ≫ e1 = e2 : σ Φ ≫ e2 = e3 : σ

Φ ≫ e1 = e3 : σ

(type eq =)
Φ ≫ e1 = e2 : σ1 Φ ≫ σ1 = σ2 type

Φ ≫ e1 = e2 : σ2

(1 η)
Φ ≫ e : 1

Φ ≫ e = ∗ : 1
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(× I =)
Φ ≫ e1 = e′1 : σ1 Φ ≫ e2 = e′2 : σ2
Φ ≫ 〈e1, e2〉 = 〈e′1, e

′
2〉 : σ1×σ2

(× E =)
Φ ≫ e = e′ : σ1×σ2

Φ ≫ πi(e) = πi(e
′) : σi

(i = 1, 2)

(× β)
Φ ≫ e1 : σ1 Φ ≫ e2 : σ2
Φ ≫ πi(〈e1, e2〉) = ei : σi

(i = 1, 2)

(× η)
Φ ≫ e : σ1×σ2

Φ ≫ 〈π1(e), π2(e)〉 = e : σ1×σ2

(→ I =)
Φ ≫ σ1 = σ′

1 type Φ, x:σ1 ≫ e = e′ : σ2
Φ ≫ (λx:σ1.e) = (λx:σ′

1.e
′) : σ1→σ2

(→ E =)
Φ ≫ e = e′ : σ1→σ2 Φ ≫ e1 = e′1 : σ1

Φ ≫ e e1 = e′ e′1 : σ2

(→ β)
Φ ≫ e1 : σ1 Φ, x:σ1 ≫ e2 : σ2

Φ ≫ (λx:σ1.e2) e1 = [e1/x]e2 : σ2

(→ η)
Φ ≫ e : σ1→σ2

Φ ≫ (λx:σ1.e x) = e : σ1→σ2
(x 6∈ Dom(Φ))

(∀ I =)
Φ, v:k ≫ e = e′ : σ

Φ ≫ (Λv:k.e) = (Λv:k.e′) : (∀v:k.σ)

(∀ E =)
Φ ≫ e = e′ : (∀v:k.σ) Φ ≫ u1 = u′1 : k

Φ ≫ e[u] = e′[u′] : [u/v]σ

(∀ β)
Φ ≫ u : k Φ, v:k ≫ e : σ

Φ ≫ (Λv:k.e)[u] = [u/v]e : [u/v]σ

(∀ η)
Φ ≫ e : (∀v:k.σ)

Φ ≫ (Λv:k.e[v]) = e : (∀v:k.σ)
(v 6∈ Dom(Φ))
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B Common Rules for Structures

Contexts: Φ context

(Φ, s:S)
Φ ≫ S sig

Φ, s:S context
(s 6∈ Dom(Φ))

Signatures: Φ ≫ S sig

([ ] sig)
Φ, v:k ≫ σ type

Φ ≫ [v:k, σ] : sig

Modules: Φ ≫ M : S

([ ] I)
Φ, v:k ≫ σ type Φ ≫ u : k Φ ≫ e : [u/v]σ

Φ ≫ [u, e] : [v:k, σ]

(sig eq)
Φ ≫ M : S1 S1 = S2 sig

Φ ≫ M : S1

Signatures: Φ ≫ S1 = S2 sig

(refl)
Φ ≫ S sig

Φ ≫ S = S sig

(symm)
Φ ≫ S1 = S2 sig

Φ ≫ S2 = S1 sig

(trans)
Φ ≫ S1 = S2 sig Φ ≫ S2 = S3 sig

Φ ≫ S1 = S3 sig

([ ] sig =)
Φ, v:k ≫ σ = σ′ type

Φ ≫ [v:k, σ] = [v:k, σ′] sig

Modules: Φ ≫ M1 = M2 : S

(refl)
Φ ≫ M : S

Φ ≫ M = M : S

(symm)
Φ ≫ M1 = M2 : S

Φ ≫ M2 = M1 : S
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(trans)
Φ ≫ M1 = M2 : S Φ ≫ M2 = M3 : S

Φ ≫ M1 = M3 : S

(sig eq =)
Φ ≫ M1 = M2 : S1 Φ ≫ S1 = S2 sig

Φ ≫ M1 = M2 : S2

([ ] I =)
Φ, v:k ≫ σ type Φ ≫ u = u′ : k Φ ≫ e = e′ : [u/v]σ

Φ ≫ [u, e] = [u′, e′] : [v:k, σ]

C Module Calculus

Constructors: Φ ≫ u : k

([ ] E1)
Φ ≫ M : [v:k, σ]

Φ ≫ Fst(M) : k

Terms: Φ ≫ e : σ

([ ] E2)
Φ ≫ M : [v:k, σ]

Φ ≫ Snd(M) : [Fst(M)/v]σ

Signatures: Φ ≫ S sig

(1 sig)
Φ context

Φ ≫ 1 sig

(Σ sig)
Φ, s:S1 ≫ S2 sig

Φ ≫ (Σs:S1.S2) sig

(Π sig)
Φ, s:S1 ≫ S2 sig

Φ ≫ (Πs:S1.S2) sig

Modules: Φ ≫ M : S

(var)
Φ context

Φ ≫ s : S
(Φ(s) = S)

(1 I)
Φ context

Φ ≫ ∗ : 1
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(Σ I)
Φ, s:S1 ≫ S2 sig Φ ≫ M1 : S1 Φ ≫ M2 : [M1/s]S2

Φ ≫ 〈M1,M2〉 : (Σs:S1.S2)

(Σ E1)
Φ ≫ M : (Σs:S1.S2)

Φ ≫ π1M : S1

(Σ E2)
Φ ≫ M : (Σs:S1.S2)

Φ ≫ π2M : [π1M/s]S1

(Π I)
Φ, s:S1 ≫ M : S2

Φ ≫ (λs:S1.M) : (Πs:S1.S2)

(Π E)
Φ ≫ M : (Πs:S1.S2) Φ ≫ M1 : S1

Φ ≫ M M1 : [M1/s]S2

Non-standard typing rule for structures

Φ ≫ M : [v:k, σ]

Φ, v:k ≫ σ′ type

Φ ≫ Snd M : [Fst M/v]σ′

Φ ≫ M : [v:k, σ′]

Constructors: Φ ≫ u1 = u2 : k

([ ] E1 =)
Φ ≫ M = M ′ : [v:k, σ]

Φ ≫ Fst(M) = Fst(M ′) : k

([ ] β1)
Φ, v:k ≫ σ type Φ ≫ u : k Φ ≫ e : [u/v]σ

Φ ≫ Fst([u, e]) = u : k

Terms: Φ ≫ e1 = e2 : σ

([ ] E2 =)
Φ ≫ M = M ′ : [v:k, σ]

Φ ≫ Snd(M) = Snd(M ′) : [Fst(M)/v]σ

([ ] β2)
Φ, v:k ≫ σ type Φ ≫ u : k Φ ≫ e : [u/v]σ

Φ ≫ Snd([u, e]) = e : [u/v]σ
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Signatures: Φ ≫ S1 = S2 sig

(Σ sig =)
Φ ≫ S1 = S′

1 sig Φ, s:S1 ≫ S2 = S′
2 sig

Φ ≫ (Σs:S1.S2) = (Σs:S′
1.S

′
2) sig

(Π sig =)
Φ ≫ S1 = S′

1 sig Φ, s:S1 ≫ S2 = S′
2 sig

Φ ≫ (Πs:S1.S2) = (Πs:S′
1.S

′
2) sig

Non-standard equational rules for signatures

(1 >)
Φ context

Φ ≫ 1 = [v:1, 1] sig

(Σ >)
Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ (Σs:[v1:k1, σ1].[v2:k2, [Fst(s)/v1]σ2]) = [v:k1× k2, [π1v/v1]σ1×[π1v, π2v/v1, v2]σ2] sig

(Π >)
Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ (Πs:[v1:k1, σ1].[v2:k2, [Fst(s)/v1]σ2]) = [v:k1→ k2, (∀v1:k1.σ1→[v v1/v2]σ2)] sig

Modules: Φ ≫ M1 = M2 : S

([ ] η)
Φ ≫ M : [v:k, σ]

Φ ≫ 〈Fst(M),Snd(M)〉 = M : [v:k, σ]

(1 η)
Φ ≫ M : 1

Φ ≫ M = ∗ : 1

(Σ I =)
Φ, s:S1 ≫ S2 sig Φ ≫ M1 = M ′

1 : S1 Φ ≫ M2 = M ′
2 : [M1/s]S2

Φ ≫ 〈M1,M2〉 = 〈M ′
1,M

′
2〉 : (Σs:S1.S2)

(Σ E1 =)
Φ ≫ M = M ′ : (Σs:S1.S2)

Φ ≫ π1(M) = π1(M
′) : S1

(Σ E2 =)
Φ ≫ M = M ′ : (Σs:S1.S2)

Φ ≫ π2(M) = π2(M
′) : [π1(M)/s]S2

(Σ β1)
Φ, s:S1 ≫ S2 sig Φ ≫ M1 : S1 Φ ≫ M2 : [M1/s]S2

Φ ≫ π1(〈M1,M2〉) = M1 : S1

(Σ β2)
Φ, s:S1 ≫ S2 sig Φ ≫ M1 : S1 Φ ≫ M2 : [M1/s]S2

Φ ≫ π2(〈M1,M2〉) = M2 : [M1/s]S2
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(Σ η)
Φ ≫ M : (Σs:S1.S2)

Φ ≫ 〈π1(M), π2(M)〉 = M : (Σs:S1.S2)

(Π I =)
Φ ≫ S1 = S′

1 sig Φ, s:S1 ≫ M = M ′ : S2

Φ ≫ (λs:S1.M) = (λs:S′
1.M

′) : (Πs:S1.S2)

(Π E =)
Φ ≫ M = M ′ : (Πs:S1.S2) Φ ≫ M1 = M ′

1 : S1

Φ ≫ M M1 = M ′M ′
1 : [M1/s]S2

(Π β)
Φ ≫ M1 : S1 Φ, s:S1 ≫ M2 : S2

Φ ≫ (λs:S1.M2)M1 = [M1/s]M2 : [M1/s]S2

(Π η)
Φ ≫ M : (Πs:S1.S2)

Φ ≫ (λs:S1.M s) = M : (Πs:S1.S2)
(s 6∈ Dom(Φ))

Non-standard equational rules for modules

(1 I >)
Φ context

Φ ≫ ∗ = [∗, ∗] [v:1, 1]

(Σ I >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ u1 : k1 Φ ≫ e1 : [u1/v1]σ1

Φ ≫ u2 : k2 Φ ≫ e2 : [u1, u2/v1, v2]σ2
Φ ≫ 〈[u1, e1], [u2, e2]〉 = [〈u1, u2〉, 〈e1, e2〉] : [v:k1× k2, [π1v/v1]σ1×[π1v, π2v/v1, v2]σ2]

(Σ E1 >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ u : k1× k2 Φ ≫ e : [π1u/v1]σ1×[π1u, π2u/v1, v2]σ2
Φ ≫ π1[u, e] = [π1u, π1e] : [v1:k1, σ1]

(Σ E2 >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ u : k1× k2 Φ ≫ e : [π1u/v1]σ1×[π1u, π2u/v1, v2]σ2
Φ ≫ π2[u, e] = [π2u, π2e] : [v2:k2, [π1u/v1]σ2]

(Π I >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ, v1:k1 ≫ u : k2 Φ, v1:k1, x:σ1 ≫ e : [u/v2]σ2
Φ ≫ (λs:[v1:k1, σ1].[Fst s,Snd s/v1, x][u, e]) = [(λv1:k1.u), (Λv1:k1.λx:σ1.e)] :

[v:k1→ k2, (∀v1:k1.σ1→[v v1/v2]σ2)]

(Π E >)

Φ, v1:k1 ≫ σ1 type Φ, v1:k1, v2:k2 ≫ σ2 type

Φ ≫ u1 : k1 Φ ≫ e1 : [u1/v1]σ1

Φ ≫ u : k1→ k2 Φ ≫ e : (∀v1:k1.σ1→[v v1/v2]σ2)

Φ ≫ [u, e] [u1, e1] = [uu1, e[u1] e1] : [v2:k2, [u1/v1]σ2]
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