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Abstract

This paper presents a semantic space profiler for parafietitinal
programs. Building on previous work in sequential profiliogir
tools help programmers to relate runtime resource use back
program source code. Unlike many profiling tools, our profile

is based on a cost semantics. This provides a means to reaso

about performance without requiring a detailed understandf
the compiler or runtime system. It also provides a specitinat
for language implementers. This is critical in that it ereblis to
separate cleanly the performance of the application frahdhthe
language implementation.

Some aspects of the implementation can have significartteffe
on performance. Our cost semantics enables programmensiéo-u
stand the impact of different scheduling policies yet axttr away
from many of the details of their implementations. We shopliap
cations where the choice of scheduling policy has asymp#ti
fects on space use. We explain these use patterns throughcaamde
stration of our tools. We also validate our methodology bgesis-
ing similar performance in our implementation of a paradheten-
sion of Standard ML.

Categories and Subject DescriptorsC.4 [Performance of sys-
temg: Performance attributes; D.3.24nguage Classificatioffts
Parallel languages

General Terms languages, measurement, performance

Keywords profiling, parallelism, cost semantics, Standard ML
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abstracts away from details of language implementation yaatd
allows programmers to reason about asymptotic performéBee
cause it is based on a semantics rather than a particulaemnepl-

t tation, our profiling method remains true to the spirit ofdtianal

programming: thinking about program behavior does notirecu

Iqetailed understanding of the compiler or target machine.

Our profiling method must account, at least abstractly, dones
parts of the implementation. In this work, we focus on scliadu
policy and its effects on application space use. Becausetibiee
of scheduling policy often has dramatic, and even asynptefi
fects on space use (as detailed in this paper), it is critizal a
programmer has the flexibility to choose a policy that is tsested
to his or her application. This flexibility must be reflecteathpin
the language implementation and in any profiling tools.

Our profiling tools are based oncast semantic§Sansom and
Peyton Jones 1995; Blelloch and Greiner 1996). A cost seosant
is a dynamic semantics that, in addition to the ordinaryresitmal
result, yields an abstract measure of cost. In our semattiiscost
is a pair of directed graphs that capture essential depeietedur-
ing program execution (Section 3). These graphs are usediby o
tools to simulate the behavior of different scheduling @eb and
to make predictions about space use. For example, by gewgrat
graphs for a range of inputs, programmers can perform an@sym
totic analysis of space use. Our profiling tools also alloagpam-
mers to visualize the parallel execution of programs andpzom
scheduling policies (Section 4).

We emphasize that our method allows users to profile parallel
programs This stands in contrast to many existing profilers, which
only provide a means of profiling a progradmsed on a particular
implementationWhile this leads to some loss of precision, there is

Functional programming languages have been promoted at an a3 tradeoff between precision and offering performanceltethat

tractive means for writing parallel programs. They offemyap-
portunities for parallel evaluation without requiring grammers
to be explicit about concurrency. With a clear semantic dedim
programmers can reason about the results of program ewaluat
independently of any particular implementation or targathine.

In reality, achieving better performance through paraitelcan
be quite difficult. While the extensional behavior of paghfunc-
tional programs does not depend on the language implen@antat
their performance certainly does. In fact, even sequeintiglemen-
tations of functional languages can have dramatic and woteg
effects on performance. To analyze and improve performdnne-
tional programmers often rely upon profilers to analyze ues®

can be easily related to the program text. Our cost seméastihe
fulcrum that allows us to balance this tradeoff.

Our cost semantics also provides a formal specification that
forces language implementations to be “safe-for-spacka¢&nd
Appel 1994). Besides acting as a guide for implementersaibm
tains a clean separation between the performance of a pnagre
the performance of the language implementation. This esshat
profiling results are meaningful and that programmers cae&x
the same asymptotic performance when moving from one cempli
ant implementation to another.

To demonstrate that this specification does not place amoser
burden on implementers, we present an implementation of-a pa

use (Appel et al. 1988; Runciman and Wakeling 1993a; Sansom gjje| extension of Standard ML (Milner et al. 1997) based an o
and Peyton Jones 1995; Rojemo and Runciman 1996). With par-cost semantics (Section 5). Our framework also extendsherot

allel implementations, the need for profilers is magnifiedsbgh
issues as task granularity, communication, and schedpbiigy—
all of which can have a significant impact on time and space use
In this paper, we presentsemanticspace profiler for a call-by-
value parallel functional language and relevant to sharechany
architectures. Our tools are the first to allow programmergason
about the space use of parallel functional programs. Ouhadet
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parallel extensions of MLd.g.,Fluet et al. (2007)) as well as lan-
guages with eager parallelism such as NESL (Blelloch eta#l4}

and Nepal (Chakravarty and Keller 2000). One advantage of ou
framework is that by factoring out scheduling, we can brimlight
performance issues in languages such as NESL that bake in a pa
ticular scheduling policy.
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Our implementation includes three different schedulinkicpes.
As we also anticipate the need for other policies, we havatisd
the core decisions of such policies behind a simple sigaatur

We implemented several parallel algorithms to validate our
work and measured performance using both our tools and by sam
pling memory use in our implementation. The results show tha
our cost semantics is able to correctly predict asymptogieds in
memory use (Section 6).

In summary, the contributions of our work include:

o the first space profiling tools for parallel functional prags,

e the first cost semantics supporting an analysis of space use
under different scheduling policies,

fun tabulate f n =
let fun loop i j = (x offset i, length j)

if j = 0 then array (0, f 0)
else if j = 1 then array (1, f i)
else let val Ir = {loop i (j div 2),
loop (i + (j div 2)) (j — (j div 2))}

in
append (#1 Ir, #2 Ir) (x line flagged by took)
end
in
loop O n
end

¢ an extensible implementation in MLton (Weeks 2006), a high- fun mmm (m, n) =

performance compiler and runtime system.

In the course of our implementation, we also discovered esspa
leak in one of the optimizations in MLton. As a specificatiamost
semantics determines exactly which performance problenmst m
be blamed on the programmer and which can be attributed to the
language implementation.

2. Motivating Example

let

fun vwm (b, a) =
reduce op+
(fn i = sub (b, i) * sub (a, i)) 0.0 (length a)
fun mvm (n, a) =
tabulate (fn i = vvm (sub (n, i), a)) (length n)

in

tabulate (fn i = mvm (n, sub (m, i))) (length m)

end

In the next section, we introduce a profiling semantics thsigms a
space cost to each program. This cost abstracts away fromaean
tails of the compiler, but enables programmers to predigh{wa
constant factor) the space behavior of different schedylwlicies.
To motivate this work, we present a small example (matrixtiplid
cation), where the choice of scheduling policy has a dranedifiect
on space use. We give a cursory discussion here, and cotisisler
application in further detail in Section 6, along with thiaber ap-
plications (sorting, convex hull, ané-body simulation).

Matrix multiplication offers a tremendous amount of potaht

parallelism. For inputs of length and width each of the:® scalar 3.

multiplications may be computed in parallel. (Recall there are
n scalar multiplications for each of the? elements in the result.)
Figure 1 depicts the code written in our parallel extensibMb.
The functionreduce (not shown) aggregates data in parallel. Note
that recursive calls ttoop (shown as{...}) in the definition of
tabulate may also be computed in parallel.

Our framework can be used by programmers to predict the
behavior of parallel programs such as matrix multiplicatias
summarized below. In general, a programmer would:

1. Select a program and run it using the profiling interpresesed
on our cost semantics.

The cost semantics yields a pair of directed graphs. As these
graphs are too detailed to present in their raw form, ourstool
summarize these graphs into a more compact form. An exam-
ple of summarized graphs for matrix multiplication is shown
in Figure 2(a). In these graphs, nodes represent sequeoiial
putation. In the top graph, edges point downward, and an edge
from n1 tons indicates that; must be executed before. For
matrix multiplication, we see the regular structure of itsgs-

lelism: work is evenly distributed among parallel brancHas 4

the bottom graph, edges point upward, and an edge frpto
n1 indicates that, depends on the value allocatedhat

At the first stage of analysis, these graphs allow programmaeer
make qualitative statements about their programs and$sitja
parallel algorithms visually: algorithms with differenarllel
structure will give rise to graphs with different shapese3é
graphs are also used as input in the following step.

2. Use our simulator to predict the space performance fterdifit
scheduling policies and numbers of processors.
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Figure 1. Matrix Multiplication code

Each scheduling policy determines a traversal of the cogtgy.

By fixing a policy and the number of processors, our simulator
uses these graphs to determine the high-water mark for space
use. It also determines the point during execution at whigh t
mark is reached, as well as where in the source code thisglata i
allocated and used.

Repeat steps 1 and 2 for different inputs. Plot the retutisaw
conclusions about asymptotic performance.

For each input, programmers generate a new pair of graphs.
Our tool can then be used to generate plots such as those
shown in Figure 2(b). These plots show trends in space use as a
function of input size for different schedulers. In this e,

we compare two schedulers each using two processors. The
scheduling policy on the left manages parallel tasks using a
FIFO queue and implements a breadth-first traversal of the
top cost graph. The scheduling policy on the right impleraent

a parallel depth-first traversal (see Section 5.2 for detaif

the top cost graph. Our tools also help explain the space use
through a breakdown according to particular allocatiomfoi

(as shown in the figure) or use points. As the figure shows,
for both schedulers, a significant part of the space use at the
high-water mark can be attributed to the arrays allocateden
implementation ottabulate (i.e., append (...), as marked in
Figure 1). However, for the breadth-first scheduler (on #fig,|
most of the space is attributed to the work queue and two forms
of closure (denoted with “[...]" in the key). These two clossi
appear during the application efduce.

. Reexamine the cost graphs to isolate space use and éducida

the effects of the scheduling policy.

While the plots generated in the previous step depict trémds
space use, they provide little insight into how the schexdli
policy affects these trends. The final step in an analysenat-
quires programmers to revisit the cost graphs, this timkeiihc
ing information about the scheduling policy. In the courkare
alyzing our example applications, we will show how compgtin
the difference between two executions based on differdetdsc
ules can explain why one policy yields better performanat an
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Figure 2. Cost Graphs and Simulated Results for Matrix Multipli-
cation. This figure shows (a) summarized cost graphs, (lespse
as a function of input size for two scheduling policies: litbafirst
(left) and depth-first (right).

how programs can be modified to improve performance. In our
matrix multiplication example (bottom graph of Figure 3(a)
we see that the point where the graph is the widiest, (vhere

the most parallelism is available) also marks a shift in hiog/ t

(expressions) e z|fun fxe|eiex|{e1,ea} | #ie

true | false | if e1 then ez else es | v
(fa.e)" | (v1,02)"
L

(values)

von=
(locations) ¢ €

Figure 4. Language Syntax. We use a call-by-value functional
language with recursive functions, parallel pairs, and|dens.
Components of pairs writtefe:, e2} may be computed in parallel.
We include a separate class of values with annotations tipdtie
sharing explicitly, but these values do not appear in théasar
syntax used by programmers.

program that enables us to construct a model of parallelutisc
and reason about the behavior of different scheduling ieslic

In general, a cost semantics is necessary for any asymatutie
ysis of running time or space use. For sequential implentient
there is an obvious cost semantics that nearly all prograsonme
derstand implicitly. For languages that fix the order of aa#ibn,
the source code contains all the information necessaryasore
about performance.

In this work, we give a cost semantics that serves as a basis fo
the asymptotic analysis qfarallel programs, including their use
of space. We believe that it is important that this semamtssigns
costs to source-level programs. However, since the pedioce of
programs depends on some aspects of the implementationuste m
further interpret the results of the cost semantics, asudssd in
Sections 3.2 and 3.3 below.

Figure 4 shows the fragment of our language we discuss in this
section. In the implementation of our profiler, we extend finag-
ment with integers, floating-point numbers, lists, treesl arrays,
but none of these extensions prove difficult. We also inclive
forms of pair construction in our implementation: one thatays
evaluates components of the pair sequentially and one vdoene
ponents may be evaluated in parallel. Finally, we assumteatha
values are allocated in the heap for the sake of clarity, ltigtas-
sumption may also be relaxed.

3.1 Semantics

A cost semantics is dynamicsemantics and thus yields results
only for closed expressionse. for a given program over a particu-
lar input. Just as in ordinary performance profiling, we musta
program over a series of inputs before we can generalizelta\b
ior.

Our cost semantics is defined by the following judgment, Wwhic
is read,expressiore evaluates to value with computation graph
g and heap grapth.

edvigih
The extensional portions of this judgment are standardenathy

program uses space. From this point on, most of the data allo-that they relate expressions to values. As discussed bettyes in
cated by the program are no longer in use. Our tools can show a computation graph represent control dependencies inxeie

that the high-water mark for space under a breadth-firstypoli

tion of a program, while edges in a heap graph represent depen

arises because all these nodes at the widest point are eoncurcies on and between heap values.

rently active. These nodes represent the evaluation ofdtg b
of vwm and correspond to the top three entries in Figure 2(b).

As in the work of Blelloch and Greiner (1996), computation
graphsg are directed, acyclic graphs with exactly one source node
(with in-degree 0) and one sink node (with out-degreei.@) ¢i-

We have presented a simple example here but the frameworkrected series-parallel graphs). Nodes are denbgeulin (and vari-

and tools also apply to complex programs with irregular fpera
structure.

3. Cost Semantics

The cost semantics (Figure 3) for our language is an evaluati
semantics that computes both a result and an abstract tiestirey
howthat result is obtained. It assigns a single cost to eactedlos
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ants). Edges in the computation graph point forward in tife.
edge fromn; to ny indicates that; must be executed before.
Each computation graph consists of a single-node, or ofethaen-
tial or parallel composition of smaller graphs. Graphs atigen as
tuples such aéns, ne, E) wheren, is the source ostartnode,n.

is the sink oendnode, and¥ is a set of edges. The remaining nodes
of the graph are implicitly defined by the edge set. A graptsisin
ing of a single noden is written (n,n,®) or simply [n]. Graph
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Z - (E-FuN)
fun f(l’) =e ‘U <f£l)€> ; [Z]y {(472 )}K/Elocs(e)
€1 l} <f.;c.63>[1 5915 hi ez U V2; g2; ha [<f.$.63>51/f] [Ug/m]eg l} V33 g3; hs (TL fresh) (E-APP)
e1 ez v3;91 B g2 D [n] ® g3; hi Uhe Uhs U{(n, 1), (n,loc(v))}
el l}lvl; gi;h1 ez va;92;he (€ fresh) (E-ForK)
{e1,e2} I (v1,v2)%591 ® g2 ® [£]; h1 U ha U {(¢,1loc(v1)), (£, loc(v2))}
el (v1,v2)%g;h  (n fresh) . (¢ fresh) ET
#Hielvi;g®[n;hU{(n,0)} (E-PrOJ) true | true’; [¢]; 0 (E-TRuE)
e1 | true® ;9151 ez Jva;g2;he  (n fresh)

: E-IFTRUE
if e1 then es else e3 || v2; 91 ® [n] ® g2;h1 U ha U {(n,£1)} U {(n,£)}ecioos(es) ( )

Figure 3. Profiling Cost Semantics. This semantics yields two graphsdan be used to reason about the parallel performancegrfaons.
Computation graphg record dependencies in time while heap graph®cord dependencies among values. Several omitted relgs (
E-IFFALSE) follow from their counterparts here. The locations of apressiorlocs(e) or a valueloc(v) are the outermost locations of that
expression or value. These auxiliary functions are definespipendix A.

operations are defined below. Operands are shown first wigle t
results are shown both graphically and symbolically belgvere,
a gray diamond stands for an arbitrary subgraph.)

Serial Composition Parallel Composition

g1 D g2 g1®g2
Ns,Ne, B)® (n’. n.. E’ (ns, Me (nl,n.
( ) ) ) ( S () b 7 S 67
(ns,nl, EUE" U{(ne,n.)}) (n,n',EUE'U

{(7% ns), (n,ny),
(ne,n’), (ne,n")})

with n, n’ fresh

In the parallel composition on the right, the nodeés called the
fork point and the node’ is called thgoin point.

We extend the work of Blelloch and Greiner (1996) with heap
graphs. Heap graphs are also directed, acyclic graphs bobido
have distinguished start or end nodes. Each heap graptssitates
with the computation graph arising from the same executiom
sense, computation and heap graphs may be considered ast$wo s

of edges on a shared set of nodes. As above, the nodes of hea

graphs are left implicit.

While edges in the computation graph point forward in time,
edges in the heap graph point backward in time. If there ilge e
fromn to £ thenn depends on the value at locatiérit follows that
any space associated wittannot be reclaimed until after has
executed and any space associated wiltas also been reclaimed.

Edges in the heap graph record both the dependencies among

heap values and dependencies on heap values by other ptrés of
program state. As an example of the first case, in the evaluati
rule for parallel pairs (E-BRK), two edges are added to the heap

edge marks a use of the function. The second edge is more subtl
and denotes possibldast use of the argument. For strict functions,
this second edge is redundant: there will be another edgnigto
the argument when it is used. However, for non-strict fuomj this

is the first point at which the garbage collector might reulahe
space associated with the argument. A similar issue isdtaisene
rules for conditionals. In EATRUE, the semantics must record the
locations that appear in the branch thahat taken. (In this case,
these are the locations ef.) Again, the intuition is that this is
the first point at which the storage corresponding to thesations
might be reclaimed. In a sense, these edges represent aenféatip
knowledge of program behavior at runtime: even thougtwill
never be executed, that fact is not known until the condiigs
executed.

While there is some flexibility in designing these rules irr ou
cost semantics, we choose the versions presented heresbahay
can be implemented in a reasonable way and yet seem to danstra
the implementation sufficiently. Care must be taken, howewe
cause the implications of rules are sometimes subtle—seextm-
ple in Section 7.1.

3.2 Schedules

Together, the computation and heap graphs enable a prognatom
analyze the behavior of her program under a variety of sdheglu
policies and numbers of processors. For a given progranfy eac

[golicy and processor count will give rise to a particularglet

xecution that is determined by the constraints descrilyeth®
computation grapl.

Definition (Schedule) A scheduleof a graphg = (ns,ne, E) isa
sequence of sets of nod®s, . . ., Ni such thatNy = 0, n. € Ny,
and for alli € [0, k),

e N; C Nit1, and
e foralln € N1, predg(n) C N;.

graph to represent the dependencies of the pair on each of itsHere,pred,(n) is the set of nodes’ such that there is an edge

components. Thus, if the pair is reachable, so is each coempon
In the evaluation of a function application (EPA), however, two
edges are added to express tiseof heap values. The first such

Space Profiling for Parallel Functional Programs

(n',n) in g. To restate, a schedule is a traversal of the computation
graph where each node may only be visited after all of itsriare
and where several nodes may be visited in the same step.
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3.3 Roots

To understand the use of space, the programmer must alsoracco
for the structure of the heap graphGiven a schedul@/y, . .., Nk

for a graphg, consider the moment of time represented by some
N;. BecauseV; contains all previously executed nodes and because
edges inh point backward in time, each edge, ¢) in h will fall

into one of the following three categories.

e Bothn, ¢ ¢ N;. As the value associated withhas not yet been
allocated, the edggn, £) does not contribute to the use of space
at times.

e Bothn,¢ € N,. While the value associated withhas been
allocated, the use of this value represented by this edgsds a
in the past. Again, the edde, ¢) does not contribute to the use
of space at time.

e ! € N;, butn ¢ N;. The value associated withhas already
been allocated, and represents a possible use in the future.
Here, the edgén, ¢) doescontribute to the use of space at time
Z.

In the definition below, we must also explicitly account fbet
location of the final value resulting from evaluation. Thbugis
value may never be used in the program itself, we must indiude
when computing space use.

Definition (Roots) Givene | v;g;h and a scheduleV;,i =
0,...,k of g, theroots after the evaluation of the nodes iN;,
written roots, » (NV;), is the set of nodesin N; wherel = loc(v)
or h contains an edge leading from outsidg to £. Symbolically,

rootse,n(Ni) = {€ € Ni | £ = loc(v)V(In.(n,£) € hAn & N;)}

The location of a valuéoc(v) is simply the outermost location
of a value as defined in Appendix A.

We use the termootsto evoke a related concept from work in
garbage collection. For the reader who is most comfortélihking
in terms of an implementation, the roots might corresporitidse
memory locations that are reachable directly from the msoe
registers or the call stack. In the case of a parallel impleatisn,
it also includes those locations that are reachable dyréctin the
scheduler queue.

3.4 Provable Implementations

In the following section, we will use cost graphs, schedutesl
roots as a basis for our profiling tools. However, these quisogan
also serve as part of a formal specification and verificatf@gmom-
plementation. For example, one can present an implementafi
our language using a small-step parallel semantics. Suemars
tics is known as grovable implementatio(Blelloch and Greiner
1996) because each transition can be related to a step irdweh
of the corresponding cost graphs.

The definition of schedules given above includes any exacuti
that respects the dependencies present in the originalgamod his
includes schedules that use an unbounded amount of pesralliel
a single step as well as those that stall execution for anundexd
length of time. We can refine this definition to limit oursedvi®
more realistic classes of schedulers and even to partipolaies.
One advantage of using cost graphs is that such refinememts ca
be stated in a simple and clear manner. For exampbebaunded
scheduler uses at mogtprocessors at each step. In terms of the
definition above,

Visuchthab < i <k, [N \N;—1| <p

Similarly, the behavior of a depth-first scheduler shouldegpond
to a depth-first traversal of the computation graph.

In our accompanying technical report (Spoonhower et al8p00
we give several parallel implementations, ranging from a-no
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deterministic semantics that describes every possibilpbeval-
uation to implementations of specific scheduling polickes. each
such implementation, we prove that the cost of evaluatiotefims
of space use) is reflected in the corresponding schedules afobt
graphs.

4. Profiling

We have implemented this cost semantics as an interpratétha
resulting cost graphs are used by the two tools describedvbel

4.1 Parallel Simulation

Our simulator can be instantiated to measure many diffgrerior-
mance characteristics, but each instance can be broken idtovn
three parts: a generic component that maintains informatimut
the graph traversal, an implementation of a schedulingpadind
a function that measures some aspect of program performance

The simulator is a sequential program so implementing sdhed
ing policies in the simulator requires no synchronizatiorother
concurrency control. The breadth- and depth-first scheguoli-
cies mentioned above can each be implemented with a simgle li
of SML using standard list primitives.

We focus on the high-water mark of memory use as the primary
measure of performance. As described aboverdbts of the heap
graph at an intermediate point during execution repredevget
values that are immediately reachable by the program .itSak
total space in use at one point during execution is deteminirye
the set of all nodes in the heap graph reachable from thege. roo
We use the size of the set of reachable nodes in the heap ggaph a
the measure of space use.

By iterating over different inputs, we can compute the high-
water mark as a function of the input size. This allows us ti pl
results such as those shown in Figure 2(b).

4.2 Visualization

The cost graphs given by our semantics are often quite larde a
difficult to process visually. We have implemented a methuat t
distills these graphs and yields their essential compaenéd the
goal is to produce a meaningful visual output, we associaieea
and color with each node and edge. (In this write-up, we igtstr
ourselves to black and shades of gray.) As the computatidn an
heap graphs share nodes, we show one superimposed over the
other. The resulting graph can then be rendered into vaiiage
formats by a freely available graph layout packagell of the
graphs shown in this paper are mechanically generated fram o
cost semantics and an implementation of the following nuetdbe
rules. We determined these rules in part through experitient
but in a large part upon the principles discussed below.

We are most interested in the parallel structure of program e
ecution. Thus a series of nodes that describes sequentiglute-
tion can be rendered as a single node. We use node size tatimdic
the amount of sequential computation and node positiordicéate
computational dependencies.

1. For each node in the computation graph if 1) has out-degree
one, 2)n has in-degree one, and 3) the (sole) predecessor of
also has out-degree one, then coalesagith its predecessor.
The area of the resulting node is the sum of the area of the two
coalesced nodes. Nodes in the original graph are assigried un
area.

. Remove edges between coalesced nodes in both the computa-
tion and heap graphs. (There are no self-edges in the desult.

3. Constrain the layout so that the vertical position of rsode

spects the partial order determined by computation edges.

1Graphviz - Graph Visualization Softwaie;tp: //www.graphviz.org/
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In the output graph, we draw computation edges in a light gray profiling results and demonstrate that implementationsuospec-

as the structure of the computation graph can be roughlyetbri
from the layout of the nodes: among vertically aligned notesse

closer to the top of the graph must be executed first. We alsb om

arrowheads on edges as they add to visual clutter. An exaofiple
node coalescing is shown here.

\idlsmllﬁto%

Due to the structure of the cost graphs, coalescing will neve

create non-unique edges in the computation graph hore than
one edge between the same pair of nodes). On the other hauild, it
often be the case that there are sevieealpedges between the same
pair of nodes. We considered trying to represent these chipli

ification can achieve good parallel speed-ups.

Our implementation is an extension of MLton (Weeks 2006),
a whole-program, optimizing compiler for Standard ML (Min
et al. 1997). This is the first parallel implementation of Mht In
keeping with the philosophy that performance-critical€adn be
written in a high-level language, we implemented as muchhas t
runtime support for parallelism in SML as we could. That said
we were also required to make some changes and additions to th
existing runtime system, which is written in C.

5.1 Runtime System

MLton is comprised of a compiler, a set of libraries, and gum
cessor runtime system. Our first task was to make modification
to the runtime to ensure that shared resources would bey safel
cessed by concurrently executing processors. In ourlinéigsion,

we added a global mutex around all accesses to these shared re
sources. We then found the hottest code paths and replaised th

heap edges, for example, by weighting heap edges in the toutpu mutex.wnh Ilghter.-wellght mechanisms or restructured.t.bdec
according to number of duplicates. This, however, ignoneg a o avoid synchronization altogether. In some cases, thjsired
sharing among these heap edges and may lead to confusirag visu adding per-processor state. For example, each processutaima
results €.g.,a group of heavy edges that represents a relatively @ local allocation pool that it may use to satisfy allocatiequests

small amount of heap space). For graphs distilled indepehyde
of a particular point in time, duplicate heap edges are redpand
all heap edges are given the same weight.

If we restrict ourselves to a single moment in time, we can

overcome the difficulties with representing sharing and &sus
on the behavior of a specific scheduling policy and its effact

without synchronization. When the local pool is exhaustiee run-
time uses an atomic compare-and-swap operation to clairtiapo
of memory from the global pool. We were also required to make
some minor changes to the compiler and standard basisylitoar
ensure thread safety.

We have not yet addressed the issue of parallel garbage col-

memory use. We use the color of both nodes and heap edgeéection in our implementation. However, we believe thatvires

to highlight the behavior of the scheduling policy at timethe
moment when memory use reaches it high-water mark.

4. Fill nodes with black if they are executed at or before time
and gray otherwise.

5. Draw heap edges that determine roots at tinire black and
other heap edges in gray.

When coloring nodes and edges according to these rules, we mu

work in parallel collection for SML (Cheng and Blelloch 2001
could be carried over in a straightforward manner.

Our extended runtime supports an additional runtime paterme
that indicates how many processors to figer each processor,
the runtime sets up the local processor state and invokes e
scheduling loop. The remaining parallel functionalitgliding the
scheduling loop, is handled by a set of SML modules, desdribe
below.

be careful about which nodes we coalesce, as we expectteape h 5.2 Scheduling Policies

edges that determine roots to connect only executed ane cuiexi
nodes.

6. Avoid coalescing two nodes if one has been executed at or

before time; and the other has not.

Finally, now that we have restricted ourselves to a singlenert
in time, we can properly account for sharing in the heap graph

7. Weight each heap edge according to its share of the totalaim
of heap space reachable from that edge at time

Thus the total space use at the high-water mark may be detedmi
from the total weight of the black heap edgés.(those represent-
ing the roots). Generally, the above rules mean that thevigop-
erties of distilled graphs can be interpreted accordingédollow-
ing table.

The greater the .. | then the more. ..
graph height sequential dependencies

graph width possible parallelism
node size computation
edge thickness space use

5. Implementation

In this section we describe an implementation of a parallatf
tional language based on our semantics. This serves tatalidir

Space Profiling for Parallel Functional Programs

At the core of our parallel library is the scheduler loop. Toep
is run in parallel by each processor and repeatedly exethées
highest priority task that is ready to be run. It is the rolethod
scheduling policy to determine the highest priority taskofder
to plug-and-play with different schedulers, we developeihgple
signature that any scheduling policy must implement (Fédi)t
Given the purpose of scheduling policies, the functiadsd
and get should be self-explanatory. THeish function is called
once for each task removed from the queue. For many schgdulin
policies, finish does nothing. The final functioshouldYield is
used to avoid some non-trivial thread operations in casesrevh
they are unnecessary. This operation is discussed in maad de
in the description of the work-stealing scheduler belowoUdh
we present this interface as an SML signature, we believetisa
abstraction would be useful for other data parallel impletatons.
We include three scheduling policies in our analysis andemp
mentation: depth-first, breadth-first, and work-steal{igch is be-
tween 50 and 125 lines of SML in our implementation.) Each of
these policies igreedy in that processors will not be kept idle if
there are available tasks. Moreover, each permits resthgaunly
at fork points and join points. These are features of thequaatr
schedulers we study and not limitations of our framework.

2We envision a version that allows users to dynamically adtiramove
processors from the active set, but in the current impleatient, this set
remained fixed.
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signature SCHEDULING_POLICY =
sig
(* processor identifiek)
type proc = int
(x abstract type of work, defined elsewhere as unitinit )
type work

(x these take the identifier of the current processor as their
first argument)
(* add new work to the queue; highest priority appears fi)st
val add : proc — work list — unit
(* remove the next, highest priority work
val get : proc — work option
(x mark the most recent unit of work as dofe
val finish : proc — unit
(x is there higher priority work for the given processor)?
val shouldYield : proc — bool
end

Figure 5. Signature for Scheduling Policies. Scheduling policies
are defined by implementing this signature.

Breadth-First Scheduling The breadth-first policy is the simplest
policy in our implementation. It maintains a single FIFO gee
and uses a global lock to serialize concurrent access touteeq
This scheduling policy is equivalent to a left-to-rightebdth-first
traversal of the computation graph. It is the “fairest” oé tihree
schedulers we implemented.

Depth-First Scheduling The parallel depth-first policy (Blelloch

et al. 1999) prioritizes tasks according to a left-to-righpth-first
traversal of the computation graph. Our implementations use
single global queue and runs tasks from the front of the queue
This it not strictly a LIFO queue, however. To ensure that our
implementation obeys the global left-to-right depth-fipsiority,

the children of the leftmost task must be prioritized morghhy
than the children of nodes further to the right. (In a senserity

is inherited.) To assign proper priorities, our impleméotaalso
maintains one “finger” for each processor that indicatesreshew
tasks should be inserted into the queue (Blelloch et al. 190t
finish function is used to clean up any state associated with this
finger.

Work-Stealing Scheduling The work-stealing policy (Blumofe
and Leiserson 1999) maintains a separate queue for eackspoyc
Locally, each queue is maintained using a LIFO disciplinewH
ever, if one of the processors should exhaust its own quetem-
domly selects another processor to “steal” from and theroves

MLton's user-level thread library.This wrapper adds the proper
calls to the scheduling policy to ensure that tasks areabei in
the proper order anfinished correctly. This interface, however, is
not intended for programmers. Instead, we also provideinesit
for parallel pairs, futures, and array manipulation basedhese
primitives. For example, the parallel pair construct usedur cost
semantics is implemented by the following function.

(* run two functions, possibly in parallel, and return theistdts
as a pairx)
val fork : (unit — «a) * (unit —» 3) — a * 3

This function is implemented by (possibly) suspending tineent
computation and adding two new parallel tasks, one for eeantich

of the fork. Through the use of shared state and an atomic amnp
and-swap operation, these tasks agree which of the two didish
second. This task is responsible for adding a third task whilat
resume the suspended computation with the new pair. The othe
routines in our library are implemented in a similar manwoety
building upon functions such dsrk.

5.4 Space Profiling in MLton

In the course of gathering our empirical results, we needed t
measure space use for applications compiled with MLtoneLik
many garbage collectors, the MLton implementation canlyeasi
compute and report the live data after each collection ans &m
approximation of the high-water mark. However, given thiadk
behavior of the collector, there is no way to understand tcaracy

of that approximation. In fact, using the collector to detire the
high-water mark of space use with perfect accuracy wouldireq

a collection after every allocation or pointer update. Msild be
prohibitively expensive.

However, if we accepboundederrors in our measurement, we
use the collector to measure this quantity with relativittieleffect
on performance. To measure the high-water mark of space use
within a fraction R of the true value, we restrict the amount of
space available for new allocations as follows. At the endaufh
collection, given that the current high-water mark\s bytes and
there are currenthyl, bytes of live data in the heap, we restrict
allocation so that so more thal/ * (1 + R) — L bytes will
be allocated before the next collection. In the interim lestw
collections {.e., between measurements) the high-water mark will
be no more thad/ * (1 + R) bytes. Since the collector will report
at leastM bytes, it will achieve the desired level of accuracy.

As we report in the section on empirical results below, this
technique has enabled us to measure space use with low aderhe
and predicable results and without any additional efforttiy
programmer.

6. Empirical Results

theoldesttask from that queue. In the common case, each processorWe performed our experiments on a four-way dual-core x86-64
only accesses its own queue, So we can use a more finely-graine machine with 32 GBs of physical RAM running version 2.6.21

synchronization mechanism than in the other two schedydoig
cies to serialize concurrent access.

Because a work-stealing policy favors local work, a dequeue
that immediately follows an enqueue will always return thekt
that was enqueued. Our implementation avoids these twaoper
tions (and also avoids suspending the current thread) bgyalw
returningfalse as the result oéhouldYield. The remainder of the
parallel library checks the result of this function in casdgere a
dequeue will follow an enqueue.

5.3 Parallel Library

The lowest-level parallel interface in our library provédeneth-
ods for suspending and resuming computation along withnaddi
new tasks to the work queue. It is built as a thin wrapper atoun

Space Profiling for Parallel Functional Programs

of the GNU/Linux kernel. Each of the four processor chips is a
3.4 GHz Intel Xeon, and together they provide eight independ
execution units. In the remainder of this section, we wifereo

each execution unit as a processor. We focus on measurements
of space use, but also report on scalability. Each appticaits
described in more detail below.

6.1 Space Use

For each application, we report the effect of schedulingcgol
and number of processors on the amount of memory required by

3MLton’s thread library implements one-time continuatiami¢h function-
ality similar callcc andthrow, except that the argument to “callcc” must
return another thread to switch to, and a “continuation” raly be thrown
to once.
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Figure 6. Space Use vs. Input Size. Each plot shows the high-water ofaskace use for Figure 7. Cost Graphs for Quicksort.
one of four applications. We tested three scheduling pegictlepth-first-(), breadth-first These summarized graphs show the point

(x), and work-stealing[{), with up to four processors. (Larger symbols indicate thate

at which the program reaches the high-

processors were used.) Different scheduling policieslydehmatically different performance, water mark of space use under a depth-first

as discussed in the text.

the application. We measured the high-water mark of spaee us
including both stacks and reachable objects in the heapsivieg
this quantity with complete accuracy would require trawveysall
reachable objects in the heap after every allocation andteroi
mutation. Instead, we use the technique described in $ebtid
to measure this quantity within a tunable bound. Figure Gvsho
the high-water mark of space use for four of the applicatiorur
study. Smaller values indicate better performance. We iffezaht
shapes to represent different policies:for breadth first,+ for
depth-first, and for work-stealing. Larger symbols indicate more
processors were made available.

Matrix Multiplication The analysis in Section 2 (recall Fig-
ure 2(b)) predicts that the breadth-first scheduling polisgs
asymptotically more space than the depth-first policy. Ailsim
analysis predicts that breadth-first is far worse than vatelaling.
Both these predictions are confirmed by the space use in qleim
mentation, as plotted in Figure 6(a).

Sorting We implemented several sorting algorithms including
quicksort, mergesort, insertion sort, and selection $agure 6(b)
shows the space use of a functional implementation of gaitks
where data are represented as binary trees with lists ofeslsnat
the leaves. This plot shows the behavior for the worst-cageti
the input elements are given in reverse order. While we wewid
pect quicksort to take time quadratic in the size of the inpuhis
case, it is perhaps surprising that it also requires quiadspace.
This behavior is also predicted by the cost semantics. Toehe-
low shows the consumers of space for the depth-first polithieat
high-water mark.

Space Profiling for Parallel Functional Programs

scheduling policy.

8000
7000 |

tail xs

head xs
isnil xs
filter xs
[xs,filter,f]
(fn ...) rest
if £ x then ...
<remainder>

6000 |
5000
4000 |
3000 -
2000 -
1000 |

5 10

15 20

The plot shows that this space is referenced by various péarts
the filter function. The graph in Figure 7 shows that the high-
water mark for this policy occurs after the left branch of keac
parallel fork has executed. As expected, there are few dppities
for parallel execution with this input because at each lefdahe
recursion, quicksort splits its input into a single elementthe
right and all the remaining elements on the left. Howevetjl un
the partition is complete each branch on the right-hand sde
still holding on to the recursive input. This analysis sugjgean
alternative implementation. If we introduce a join pointveeen
partitioning the elements and recursively sorting them, caa
avoid the asymptotic increase in space use.

Convex Hull This application computes the convex hull in two
dimensions using the quickhull algorithm. We again showltss
for the worst-case input: the input points are arranged iircec
and so every point in the input is also in the hull. Figure 8f@ws
the high-water mark of space use, which again matches otir cos
semantics-based predictions (not shown).

Unlike in the quicksort case, there is still significant dedle
parallelism in this example. However, it is more constrditiean
the parallelism available in matrix multiplication. Thegatithm
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proceeds by partitioning the point set by dividing the plankalf
(in parallel) and then recursively processing each halpérallel).
Between these two phases there is a synchronization. T$tiign
through the widening and narrowing of the graph below.

Nodes are colored to illustrate one point in the executiothef
work-stealing scheduling policy. In this case, the workading
policy performs more poorly than either of the other two piel
because it starts, but does not finish, computing thesetipasti
The point labeled “A’ represents the code that allocatessehef
points. The black lines extending to the right of this pomdicate
part of the program that will compute one half of a partitidthese
nodes. The circled nodes labeled “B” also compute half atjmart
but have already completed their work and have allocateckthét.
At this point in time, the program is holding onto the entirgimal

set plus half of the resulting partition. The same pattepeaps for
each processor. Neither of the other two scheduling psliekibit
this behavior.

n-Body Simulation Figure 6(d) shows space use for our imple-
mentation of the Barnes-Hut simulation. This algorithm ragp
mates the gravitational force among particles in 3-spake.fdrce

on each particle is calculated either by computing the pagw
force between two particles or by approximating the efféet dis-
tant set of particles as a single, more massive particléicRerare
organized using an octree. This algorithm and representatie
easily adapted to a parallel setting: not only can the footesach
particle be computed in parallel, but the individual comgmais of
this force can also be computed in parallel.

Like the matrix multiplication example, the breadth-firsihedul-
ing policies performs poorly due to the large amount of azé
parallelism and the size of the intermediate results. Thatsgper-
formance is not as bad as in the multiplication example, stils
significantly worse than the other two policies.

6.2 Overhead of Space Measurements

Measuring space use precisely can be expensive. Using ¢he te
nique described above, however, we can measure the high-wat
mark of space use within a fixed bound. Here, we compare the
quality and cost of these measurements with those derized &
hand instrumented version. In Figure 8(a), we show spacenese
surements for the matrix multiplication example, but meegdour
different ways. All these data series use the breadth-fitetculer
and one processor. The first serieg 6hows the measurements ob-
tained when additional garbage collections are explicitiged by
the programmer. The other three series show the resultg tisn
restricted allocation technique with a bound of 10%, 209, 50?5,
respectively. These bounds are shown with error bars, bhyposi-
tive errors are shown (as the true high-water mark cannariadier
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than the reported value). The reported values appear abttenb
of the indicated ranges.

We take the measurements derived from the explicit garbage
collection to be the most accurate measurement of memorylase
each case, this technique reported the greatest values figire
shows that the restricted allocation measurements are mocé
accurate than we might expect. For example, the 50% boumdssee
to be overly conservative: the actual measurements aréwilifi%o
of the measurement derived using explicit garbage codlasti

In addition to requiring less knowledge on the part of the-pro
grammer and yielding measurements with a bounded errar, thi
technique requires less time to perform the same measutemen
Figure 8(b) shows the execution time of these four instrusten
versions. Values are normalized to the execution time ofran-u
strumented version and shown on a logarithmic scale.

6.3 Scalability

As the purpose of parallelism is to improve performance, ige a
report on scalability. While we are still working to improtree per-
formance of our implementation, these data should be serffi¢o
convince the reader that we have not “cooked” our impleni@mta
simply to match the space use predictions of our semantfdqaro

Figure 9 shows normalized parallel overhead for one to eight
processors for several different applications. Paralelrleead is
defined as (execution time number of processors). We normalize
this value to the execution time of the sequential versionalir
values are better. A value of 1.0 is an ideal value indicapiedect
speed-up. A value of 2.0 indicates, for example, that a fooces-
sor execution would take 50% of the time of the sequentiadivar
or that an eight processor execution would take 25% of the tim
the sequential version.

In these plots, we do not include the cost of garbage cotlecti
As we argued above, previous work has shown that garbage col-
lection can be performed efficiently in parallel. We do, heere
include overhead due to synchronization and contentiorottoer
shared resources.

Though the ideal value is 1.0, we generally expect some over-
head from parallel execution. Practically speaking, wel@m&ing
for applications (and scheduling policies) where poiniisfaa line
with a slope close to zero. This indicates that adding aatutidi pro-
cessors will continue to improve performance at roughlysime
rate.

We chose benchmarks for this set of measurements not based
on interesting space use patterns, but instead by lookingde
plications with a reasonable potential for parallel ex@gutPart
(a) shows overhead for a blocked version of matrix multggiian.
Part (b) shows overhead for parallel mergesort on uniforraty
domly distributed input. Part (c) shows the overhead of kfuid
for points distributed uniformly a circle. Part (d) shows tbver-
head for the Barnes-Hut simulation with points distributed-
formly randomly.

7. Discussion
7.1 Alternative Rules

There are a number of design choices latent in the rules given
Figure 3. Different rules would have led to constraints thate
either too strict (and unimplementable) or too lax.

Consider as an example the following alternative rule fa th
evaluation of function application. The premises remaamshme,
and the only difference from the conclusion in Figure 3 ishhig
lighted with a rectangle.

er I (fx.es) 59150 ez b vasg2ihe

erez Jv3591 g2 ®| gz d[n] |

hi U hs Uhg U{(n, 1), (n,loc(v2))}
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Figure 8. Profiling Space Use. Four dif-time x number of processors), normalized to the sequential eiectitne. Smaller
ferent measurements are shown on the lefalues are better with the ideal being 1.0. As an examplelue \&f 2.0 indicates that an
(a). On the right (b), we show the cost of8 processor execution achieves a 4X speed-up over a seajuexgcution, a 4 processor
obtaining these measurements. Executiogxecution achieves a 2X speed-up, etc. Overhead does hadéngarbage collection.

times are normalized to an uninstrumented
version and shown on a logarithmic scale.

This rule yields the same extensional result as the verdi@mdn
Figure 3, but it admits more implementations. Recall thatttbap
edges(n, ¢1) and (n,loc(v2)) represent possible last uses of the
function and its argument, respectively. This variatiorttad rule
moves those dependencies uaftkerthe evaluation of the function
body.

This rule allows implementations to preserve these vakiemn
in the case where they are not used during the function agijaic
or in subsequent evaluation. This includes the case wheseth
values are bound to variables that do not appear in the progmet
of the function body or after the application. This is pretjsthe
constraint described by Shao and Appel (1994) as “safsgace.”

In contrast, the original version of this rule requires ttietse
values be considered for reclamation by a garbage collastsoon
as the function is applied. Note, however, that the semauibes
not specifyhow the implementation makes these values available
for reclamation: it is left to the implementer to determinkether
this is achieved through closure conversion, by cleariatssh the
stack frame, or by some other means.

As this example suggests, there is some leeway in the chbice o
the semantics itself. Our goal was to find a semantics thatites
a set of common implementation techniques. When they fail to
align, our experience suggests that either the semantidheor
implementation can be adjusted to allow them to fit together.

7.2 Program Optimizations
In the course of validating our work, we discovered one examp

instead of one policy leading to linear use of space and tier dd
quadratic use of space, the program required quadratie spater
bothpolicies.

Some investigation revealed that the problem was not ineur s
mantics or our parallel implementation, but in an existip§raiza-
tion in MLton: reference flattening. Analogously to tuplettien-
ing, references that appear in a heap-allocated data \steufe.g.
a record) may béattenedor treated as a mutable field within that
structure. At run time, such a reference is represented amgep
to the containing structure. Accesses to the reference coagpute
an offset from that pointer.

This optimization can save some space by eliminating the-mem
ory cell associated with the reference. However, it canials@ase
the use of space. As the reference is represented as a {oitter
entire structure, all of the elements of the structure wéllrbach-
able anywhere the reference is reachable. If the referenctdw
have outlived its enclosing structure then flattening witead the
lifetime of the other components.

To avoid asymptotically increasing the use of space, ML&e#sU
the types of the other components of the structure to coateely
estimate the size of each component. If any component ceutd b
unbounded size then the reference is not flattened. Thegonolvhs
that this analysis was not sufficiently conservative inrigatment
of recursive types. Though a single value of a recursive tyitle
only require bounded space, an unbounded number of thasesval
may be reachable through a single pointer. Based on ourthegor
this problem has been corrected in a recent version in theoMLt

where we were required to change the implementation. We cameSource repository.

across an example where our implementation failed to djsti
two scheduling policies as our profiler had predicted. Sjumadiy,

Space Profiling for Parallel Functional Programs
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7.3 Nested Parallelism

Another form of “flattening” appears in implementations ekted
parallelism such as NESL (Blelloch et al. 1994) or Nepal (Chearty
and Keller 2000). Here, flattening refers to a compilatiahteque
where by nested parallelism (where parallel tasks may speemn
parallel tasks) is transformed into flat parallelism (whpagallel
tasks are spawned only at the top level). This automatidzly
ances work by exposing all available parallelism at the stime.
Though this technique is largely implemented by the comjgitel
less so by the language runtime, we can still reason abow-it u
ing cost graphs and our scheduling formalism. This is diseds
in more detail in the accompanying technical report (Spoarer
et al. 2008).

This characterization of the form of breadth-first schetuli

agrees with our experience in NESL: examples such as matrix

multiplication required so much space that they were urmblen
for even moderately sized inputs, requiring the user toesbatk
parallelism explicitly. These space use problems in NESLar
important part of the motivation for the current work.

8. Related Work

Parallelism and Concurrency Many researchers have studied
how to improve performance by exploiting the parallelisnplicit

in side-effect free languages. This includes work on data-fan-
guages €.g9., Arvind et al. (1989)), lazy parallel functional lan-
guages €.9., Aditya et al. (1995)), and nested data parallel lan-
guagesé€.g.,Blelloch et al. (1994), Chakravarty and Keller (2000)).
Like these languages, we provide a deterministic semaantidsely

on the language implementation to spawn new tasks and synchr
nize on results. Unlike languages such as Concurrent ML giRep

1999) or JoCaml (Conchon and Fessant 1999), we provide no ex-

plicit concurrency constructs to the programmer. Mango@tuet

Evaluation strategies (Trinder et al. 1998) enable the narog
mer to explicitly control the parallel evaluation strucug.g,
divide-and-conquer). Like much of the work on profiling dara
lel functional programs, this focuses on when to spawn talfedr
tasks and how much work to perform in each task (granularity)
instead of the order in which parallel tasks are evaluated.

In the course of their profiling work, Hammond and Peyton
Jones (1992) considered two different scheduling polidiékile
one uses a LIFO strategy and the other FIFO, both use an éealua
strategy that shares many attributes with a work-stealiolicyp
These authors found that for their implementation, the ahaif
policy did not usually affect the running time of programsthahe
exception in the case where they also throttled the creafioew
parallel threads. In this case, the LIFO scheme gave betseits.
Except for the size of the thread pool itself, they did notsider
the effect of policy on space use.

Cost Semantics A cost semantics was first used as a basis for
profiling by Sansom and Peyton Jones (1995). They describe a
method of profiling both time and space for programs written i

a sequential, lazy language. As in our work, they use the cost
semantics as a formal specification of performance. Howévey

use the semantics only as guide for their profiler: profiliagults

are derived from an instrumented version of the actual laggu
implementation.

A cost semantics similar to the one used here was introduced
by Blelloch and Greiner (1996). That work gave an upper bound
on space use and assumed a fixed scheduling policy (de@h-firs
Our semantics extends this work by adding heap edges to #te co
associated with each closed program. This enables us torreas
about different scheduling policies and attribute spaee tasdif-
ferent parts of the program.

Lazy, purely functional programs can be evaluated in mafiy di
ferent ways, and different strategies for evaluation catdywildly

et al. 2007) subsumes both paradigms and provides for both im different performance results. Ennals (2004) uses a cosarsécs

plicit parallelism and explicit concurrency.

Profiling In their seminal work on space profiling for lazy func-
tional programs, Runciman and Wakeling (1993a) demorstieat
use of a profiler to reduce the space use of a functional pmogra
by more than two orders of magnitude. Like the current wdrkyt

to compare the work performed by a range of sequential evalua
tion strategies, ranging from lazy to eager. Like the curweork,
he also uses cost graphs with distinguished types of eduasgh
his edges serve different purposes. He does not formaleedh
of space by these different strategies. Likewise, programsfor-
mations that change the order of evaluation can also affeébmp

measure space use by looking at live data in the heap. Howevermance. Gustavsson and Sands (1999) give a semantic defioitio

their tool is tied to a particular sequential implementati®an-

what it means for a transformation to be “safe-for-spac&a(sand

som and Peyton Jones (1993, 1995) extend this work with a no-Appel 1994). They provide several laws to help prove thaveryi

tion of “cost center” that enables the programmer to deseghaw
resource use is attributed to different parts of the sourogram.

There has been a series of works on profiling methods and

tools for parallel functional programs (Hammond and Peyimes
1992; Runciman and Wakeling 1993b; Hammond et al. 1995;
Charles and Runciman 1998). This work focuses on the ovdrhea
of parallel execution instead of how different parallel iempenta-
tions affect the performance of the application. None of thork
measures how different scheduling policies affect the spse of
applications.

Scheduling Scheduling policies and their effects on space use
have been studied extensively in the algorithms commueity. (
Blumofe and Leiserson 1998; Blelloch et al. 1999). Our repne
tation of parallel tasks as directed graphs is inspired s/iork.
However, we use these graphs as part of a formal semanties rat
than simply an abstract model of computation.

Most implementations of data parallel languages have deali
only a single scheduling policy that is either left unspecifior
fixed as part of a compilation technique. In contrast, Fluetle
(2007) make scheduling policies explicit using@ordination lan-
guage It would be interesting to see how our cost semantics could
serve as a specification for schedulers written in this laggu

Space Profiling for Parallel Functional Programs

transformation does not asymptotically increase the spsage of
sequential, call-by-need programs.

Jay et al. (1997) describe a static framework for reasoriiogia
the costs of parallel execution using a monadic languagsicSt
cost models have also been used to automatically choosaléepar
implementation at compile-time based on hardware perfooma
parameters (Hammond et al. 2003) and to inform the gramylafi
scheduling (Loidl and Hammond 1996). This work complements
ours in that it focuses on how the sizes of program data strest
affect parallel executiore(g, through communication costs), rather
than how different execution models affect the use of spae a
given point in time.

9. Conclusion

We have described and demonstrated the use of a semant& spac
profiler for parallel functional programs. One beauty ofdtional
programming is that it isolates programmers from grittyadietof

the implementation and the target architecture, whetharatchi-
tecture is sequential or parallel. However, when profilingctional
programs, and especialparallel functional programs, there is a
tension between providing information that relates to tberce
code and information that accurately reflects the impleateont.
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In our profiling framework, a cost semantics plays a criticdé in
balancing that tradeoff.

We have focused on using our framework to measure and rea-

son about the performance effects of different scheduloiies.
One possible direction for future work is to study other impot
aspects of a parallel implementation such as task grahulsye
believe there is a natural way to fit this within our framewdolg
viewing task granularity as an aspect of scheduling policy.
We invite readers to download and experiment with our proto-

type implementation, available from the first author’s wetisor

the shared-heap-multicore branch of the MLton repository.
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A. Definitions

Locations The location of a value is the outermost label of that valu an
serves to uniquely identify that value. The locations ofgression are the
labels of any values that appear in that expression.

loc({f.xz.e)t) = /

loc((v1,vz>2) = /

loc(true’ ) = /

loc(false®) = /

locs(fun f.z.e) = locs(e)

locs(e1 e2) = locs(e1) Ulocs(e2)
locs({e1, e2}) = locs(e1) Ulocs(e2)
locs(#i e) = locs(e)

locs(true) = 0

locs(false) = 0

( =

locs(if e1 then es else e3) locs(e1) Ulocs(e2) U locs(es)
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