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Abstract
This paper presents a semantic space profiler for parallel functional
programs. Building on previous work in sequential profiling, our
tools help programmers to relate runtime resource use back to
program source code. Unlike many profiling tools, our profiler
is based on a cost semantics. This provides a means to reason
about performance without requiring a detailed understanding of
the compiler or runtime system. It also provides a specification
for language implementers. This is critical in that it enables us to
separate cleanly the performance of the application from that of the
language implementation.

Some aspects of the implementation can have significant effects
on performance. Our cost semantics enables programmers to under-
stand the impact of different scheduling policies yet abstracts away
from many of the details of their implementations. We show appli-
cations where the choice of scheduling policy has asymptotic ef-
fects on space use. We explain these use patterns through a demon-
stration of our tools. We also validate our methodology by observ-
ing similar performance in our implementation of a parallelexten-
sion of Standard ML.

Categories and Subject DescriptorsC.4 [Performance of sys-
tems]: Performance attributes; D.3.2 [Language Classifications]:
Parallel languages

General Terms languages, measurement, performance

Keywords profiling, parallelism, cost semantics, Standard ML

1. Introduction
Functional programming languages have been promoted as an at-
tractive means for writing parallel programs. They offer many op-
portunities for parallel evaluation without requiring programmers
to be explicit about concurrency. With a clear semantic definition,
programmers can reason about the results of program evaluation
independently of any particular implementation or target machine.

In reality, achieving better performance through parallelism can
be quite difficult. While the extensional behavior of parallel func-
tional programs does not depend on the language implementation,
their performance certainly does. In fact, even sequentialimplemen-
tations of functional languages can have dramatic and unexpected
effects on performance. To analyze and improve performance, func-
tional programmers often rely upon profilers to analyze resource
use (Appel et al. 1988; Runciman and Wakeling 1993a; Sansom
and Peyton Jones 1995; Röjemo and Runciman 1996). With par-
allel implementations, the need for profilers is magnified bysuch
issues as task granularity, communication, and schedulingpolicy—
all of which can have a significant impact on time and space use.

In this paper, we present asemanticspace profiler for a call-by-
value parallel functional language and relevant to shared memory
architectures. Our tools are the first to allow programmers to reason
about the space use of parallel functional programs. Our method

abstracts away from details of language implementation andyet
allows programmers to reason about asymptotic performance. Be-
cause it is based on a semantics rather than a particular implemen-
tation, our profiling method remains true to the spirit of functional
programming: thinking about program behavior does not require a
detailed understanding of the compiler or target machine.

Our profiling method must account, at least abstractly, for some
parts of the implementation. In this work, we focus on scheduling
policy and its effects on application space use. Because thechoice
of scheduling policy often has dramatic, and even asymptotic, ef-
fects on space use (as detailed in this paper), it is criticalthat a
programmer has the flexibility to choose a policy that is best-suited
to his or her application. This flexibility must be reflected both in
the language implementation and in any profiling tools.

Our profiling tools are based on acost semantics(Sansom and
Peyton Jones 1995; Blelloch and Greiner 1996). A cost semantics
is a dynamic semantics that, in addition to the ordinary extensional
result, yields an abstract measure of cost. In our semantics, this cost
is a pair of directed graphs that capture essential dependencies dur-
ing program execution (Section 3). These graphs are used by our
tools to simulate the behavior of different scheduling policies and
to make predictions about space use. For example, by generating
graphs for a range of inputs, programmers can perform an asymp-
totic analysis of space use. Our profiling tools also allow program-
mers to visualize the parallel execution of programs and compare
scheduling policies (Section 4).

We emphasize that our method allows users to profile parallel
programs. This stands in contrast to many existing profilers, which
only provide a means of profiling a programbased on a particular
implementation. While this leads to some loss of precision, there is
a tradeoff between precision and offering performance results that
can be easily related to the program text. Our cost semanticsis the
fulcrum that allows us to balance this tradeoff.

Our cost semantics also provides a formal specification that
forces language implementations to be “safe-for-space” (Shao and
Appel 1994). Besides acting as a guide for implementers, it main-
tains a clean separation between the performance of a program and
the performance of the language implementation. This ensures that
profiling results are meaningful and that programmers can expect
the same asymptotic performance when moving from one compli-
ant implementation to another.

To demonstrate that this specification does not place an onerous
burden on implementers, we present an implementation of a par-
allel extension of Standard ML (Milner et al. 1997) based on our
cost semantics (Section 5). Our framework also extends to other
parallel extensions of ML (e.g.,Fluet et al. (2007)) as well as lan-
guages with eager parallelism such as NESL (Blelloch et al. 1994)
and Nepal (Chakravarty and Keller 2000). One advantage of our
framework is that by factoring out scheduling, we can bring to light
performance issues in languages such as NESL that bake in a par-
ticular scheduling policy.
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Our implementation includes three different scheduling policies.
As we also anticipate the need for other policies, we have isolated
the core decisions of such policies behind a simple signature.

We implemented several parallel algorithms to validate our
work and measured performance using both our tools and by sam-
pling memory use in our implementation. The results show that
our cost semantics is able to correctly predict asymptotic trends in
memory use (Section 6).

In summary, the contributions of our work include:

• the first space profiling tools for parallel functional programs,

• the first cost semantics supporting an analysis of space use
under different scheduling policies,

• an extensible implementation in MLton (Weeks 2006), a high-
performance compiler and runtime system.

In the course of our implementation, we also discovered a space
leak in one of the optimizations in MLton. As a specification,a cost
semantics determines exactly which performance problems must
be blamed on the programmer and which can be attributed to the
language implementation.

2. Motivating Example
In the next section, we introduce a profiling semantics that assigns a
space cost to each program. This cost abstracts away from many de-
tails of the compiler, but enables programmers to predict (within a
constant factor) the space behavior of different scheduling policies.
To motivate this work, we present a small example (matrix multipli-
cation), where the choice of scheduling policy has a dramatic effect
on space use. We give a cursory discussion here, and considerthis
application in further detail in Section 6, along with threeother ap-
plications (sorting, convex hull, andn-body simulation).

Matrix multiplication offers a tremendous amount of potential
parallelism. For inputs of length and widthn, each of then3 scalar
multiplications may be computed in parallel. (Recall that there are
n scalar multiplications for each of then2 elements in the result.)
Figure 1 depicts the code written in our parallel extension of ML.
The functionreduce (not shown) aggregates data in parallel. Note
that recursive calls toloop (shown as{. . . }) in the definition of
tabulate may also be computed in parallel.

Our framework can be used by programmers to predict the
behavior of parallel programs such as matrix multiplication, as
summarized below. In general, a programmer would:

1. Select a program and run it using the profiling interpreterbased
on our cost semantics.

The cost semantics yields a pair of directed graphs. As these
graphs are too detailed to present in their raw form, our tools
summarize these graphs into a more compact form. An exam-
ple of summarized graphs for matrix multiplication is shown
in Figure 2(a). In these graphs, nodes represent sequentialcom-
putation. In the top graph, edges point downward, and an edge
from n1 to n2 indicates thatn1 must be executed beforen2. For
matrix multiplication, we see the regular structure of its paral-
lelism: work is evenly distributed among parallel branches. In
the bottom graph, edges point upward, and an edge fromn2 to
n1 indicates thatn2 depends on the value allocated atn1.

At the first stage of analysis, these graphs allow programmers to
make qualitative statements about their programs and to classify
parallel algorithms visually: algorithms with different parallel
structure will give rise to graphs with different shapes. These
graphs are also used as input in the following step.

2. Use our simulator to predict the space performance for different
scheduling policies and numbers of processors.

fun tabulate f n =
let fun loop i j = (∗ offset i, length j∗)

if j = 0 then array (0, f 0)
else if j = 1 then array (1, f i)
else let val lr = {loop i (j div 2),

loop (i + (j div 2)) (j − (j div 2))}
in

append (#1 lr, #2 lr) (∗ line flagged by tool∗)
end

in
loop 0 n

end

fun mmm (m, n) =
let

fun vvm (b, a) =
reduce op+

(fn i ⇒ sub (b, i) ∗ sub (a, i)) 0.0 (length a)
fun mvm (n, a) =

tabulate (fn i ⇒ vvm (sub (n, i), a)) (length n)
in

tabulate (fn i ⇒ mvm (n, sub (m, i))) (length m)
end

Figure 1. Matrix Multiplication code

Each scheduling policy determines a traversal of the cost graphs.
By fixing a policy and the number of processors, our simulator
uses these graphs to determine the high-water mark for space
use. It also determines the point during execution at which this
mark is reached, as well as where in the source code this data is
allocated and used.

3. Repeat steps 1 and 2 for different inputs. Plot the resultsto draw
conclusions about asymptotic performance.

For each input, programmers generate a new pair of graphs.
Our tool can then be used to generate plots such as those
shown in Figure 2(b). These plots show trends in space use as a
function of input size for different schedulers. In this example,
we compare two schedulers each using two processors. The
scheduling policy on the left manages parallel tasks using a
FIFO queue and implements a breadth-first traversal of the
top cost graph. The scheduling policy on the right implements
a parallel depth-first traversal (see Section 5.2 for details) of
the top cost graph. Our tools also help explain the space use
through a breakdown according to particular allocation points
(as shown in the figure) or use points. As the figure shows,
for both schedulers, a significant part of the space use at the
high-water mark can be attributed to the arrays allocated inthe
implementation oftabulate (i.e., append (. . . ), as marked in
Figure 1). However, for the breadth-first scheduler (on the left),
most of the space is attributed to the work queue and two forms
of closure (denoted with “[. . . ]” in the key). These two closures
appear during the application ofreduce.

4. Reexamine the cost graphs to isolate space use and elucidate
the effects of the scheduling policy.

While the plots generated in the previous step depict trendsin
space use, they provide little insight into how the scheduling
policy affects these trends. The final step in an analysis often re-
quires programmers to revisit the cost graphs, this time includ-
ing information about the scheduling policy. In the course of an-
alyzing our example applications, we will show how computing
the difference between two executions based on different sched-
ules can explain why one policy yields better performance and
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(a) summarized cost graphs for4×4 matrix multiplication
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Figure 2. Cost Graphs and Simulated Results for Matrix Multipli-
cation. This figure shows (a) summarized cost graphs, (b) space use
as a function of input size for two scheduling policies: breadth-first
(left) and depth-first (right).

how programs can be modified to improve performance. In our
matrix multiplication example (bottom graph of Figure 2(a)),
we see that the point where the graph is the widest (i.e.,where
the most parallelism is available) also marks a shift in how the
program uses space. From this point on, most of the data allo-
cated by the program are no longer in use. Our tools can show
that the high-water mark for space under a breadth-first policy
arises because all these nodes at the widest point are concur-
rently active. These nodes represent the evaluation of the body
of vvm and correspond to the top three entries in Figure 2(b).

We have presented a simple example here but the framework
and tools also apply to complex programs with irregular parallel
structure.

3. Cost Semantics
The cost semantics (Figure 3) for our language is an evaluation
semantics that computes both a result and an abstract cost reflecting
how that result is obtained. It assigns a single cost to each closed

(expressions) e ::= x | fun f.x.e | e1 e2 | {e1, e2} | #i e
true | false | if e1 then e2 else e3 | v

(values) v ::= 〈f.x.e〉ℓ | 〈v1, v2〉
ℓ

(locations) ℓ ∈ L

Figure 4. Language Syntax. We use a call-by-value functional
language with recursive functions, parallel pairs, and booleans.
Components of pairs written{e1, e2} may be computed in parallel.
We include a separate class of values with annotations that capture
sharing explicitly, but these values do not appear in the surface
syntax used by programmers.

program that enables us to construct a model of parallel execution
and reason about the behavior of different scheduling policies.

In general, a cost semantics is necessary for any asymptoticanal-
ysis of running time or space use. For sequential implementations,
there is an obvious cost semantics that nearly all programmers un-
derstand implicitly. For languages that fix the order of evaluation,
the source code contains all the information necessary to reason
about performance.

In this work, we give a cost semantics that serves as a basis for
the asymptotic analysis ofparallel programs, including their use
of space. We believe that it is important that this semanticsassigns
costs to source-level programs. However, since the performance of
programs depends on some aspects of the implementation, we must
further interpret the results of the cost semantics, as discussed in
Sections 3.2 and 3.3 below.

Figure 4 shows the fragment of our language we discuss in this
section. In the implementation of our profiler, we extend this frag-
ment with integers, floating-point numbers, lists, trees, and arrays,
but none of these extensions prove difficult. We also includetwo
forms of pair construction in our implementation: one that always
evaluates components of the pair sequentially and one wherecom-
ponents may be evaluated in parallel. Finally, we assume that all
values are allocated in the heap for the sake of clarity, but this as-
sumption may also be relaxed.

3.1 Semantics

A cost semantics is adynamicsemantics and thus yields results
only for closed expressions,i.e. for a given program over a particu-
lar input. Just as in ordinary performance profiling, we mustrun a
program over a series of inputs before we can generalize its behav-
ior.

Our cost semantics is defined by the following judgment, which
is read,expressione evaluates to valuev with computation graph
g and heap graphh.

e ⇓ v; g;h

The extensional portions of this judgment are standard in the way
that they relate expressions to values. As discussed below,edges in
a computation graph represent control dependencies in the execu-
tion of a program, while edges in a heap graph represent dependen-
cies on and between heap values.

As in the work of Blelloch and Greiner (1996), computation
graphsg are directed, acyclic graphs with exactly one source node
(with in-degree 0) and one sink node (with out-degree 0) (i.e. di-
rected series-parallel graphs). Nodes are denotedℓ andn (and vari-
ants). Edges in the computation graph point forward in time.An
edge fromn1 to n2 indicates thatn1 must be executed beforen2.
Each computation graph consists of a single-node, or of the sequen-
tial or parallel composition of smaller graphs. Graphs are written as
tuples such as(ns, ne, E) wherens is the source orstart node,ne

is the sink orendnode, andE is a set of edges. The remaining nodes
of the graph are implicitly defined by the edge set. A graph consist-
ing of a single noden is written (n, n, ∅) or simply [n]. Graph
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e ⇓ v; g; h

(ℓ fresh)

fun f(x) = e ⇓ 〈f.x.e〉ℓ; [ℓ]; {(ℓ, ℓ′)}ℓ′∈locs(e)

(E-FUN)

e1 ⇓ 〈f.x.e3〉
ℓ1 ; g1; h1 e2 ⇓ v2; g2; h2 [〈f.x.e3〉

ℓ1/f ][v2/x]e3 ⇓ v3; g3; h3 (n fresh)

e1 e2 ⇓ v3; g1 ⊕ g2 ⊕ [n] ⊕ g3; h1 ∪ h2 ∪ h3 ∪ {(n, ℓ1), (n, loc(v2))}
(E-APP)

e1 ⇓ v1; g1; h1 e2 ⇓ v2; g2; h2 (ℓ fresh)

{e1, e2} ⇓ 〈v1, v2〉
ℓ; g1 ⊗ g2 ⊕ [ℓ]; h1 ∪ h2 ∪ {(ℓ, loc(v1)), (ℓ, loc(v2))}

(E-FORK)

e ⇓ 〈v1, v2〉
ℓ; g;h (n fresh)

#i e ⇓ vi; g ⊕ [n]; h ∪ {(n, ℓ)}
(E-PROJi)

(ℓ fresh)

true ⇓ trueℓ; [ℓ]; ∅
(E-TRUE)

e1 ⇓ trueℓ1 ; g1; h1 e2 ⇓ v2; g2; h2 (n fresh)

if e1 then e2 else e3 ⇓ v2; g1 ⊕ [n] ⊕ g2; h1 ∪ h2 ∪ {(n, ℓ1)} ∪ {(n, ℓ)}ℓ∈locs(e3)

(E-IFTRUE)

Figure 3. Profiling Cost Semantics. This semantics yields two graphs that can be used to reason about the parallel performance of programs.
Computation graphsg record dependencies in time while heap graphsh record dependencies among values. Several omitted rules (e.g.,
E-IFFALSE) follow from their counterparts here. The locations of an expressionlocs(e) or a valueloc(v) are the outermost locations of that
expression or value. These auxiliary functions are defined in Appendix A.

operations are defined below. Operands are shown first while the
results are shown both graphically and symbolically below.(Here,
a gray diamond stands for an arbitrary subgraph.)

Serial Composition Parallel Composition
g1 ⊕ g2 g1 ⊗ g2

(ns, ne, E) ⊕ (n′

s, n
′

e, E
′) (ns, ne, E) ⊗ (n′

s, n
′

e, E
′)

g1

g2

g1 g2

(ns, n
′

e, E ∪ E′ ∪ {(ne, n
′

s)}) (n, n′, E ∪ E′∪

{(n, ns), (n, n′

s),

(ne, n
′), (n′

e, n
′)})

with n, n′ fresh

In the parallel composition on the right, the noden is called the
fork point and the noden′ is called thejoin point.

We extend the work of Blelloch and Greiner (1996) with heap
graphs. Heap graphs are also directed, acyclic graphs but donot
have distinguished start or end nodes. Each heap graph shares nodes
with the computation graph arising from the same execution.In a
sense, computation and heap graphs may be considered as two sets
of edges on a shared set of nodes. As above, the nodes of heap
graphs are left implicit.

While edges in the computation graph point forward in time,
edges in the heap graph point backward in time. If there is an edge
from n to ℓ thenn depends on the value at locationℓ. It follows that
any space associated withℓ cannot be reclaimed until aftern has
executed and any space associated withn has also been reclaimed.

Edges in the heap graph record both the dependencies among
heap values and dependencies on heap values by other parts ofthe
program state. As an example of the first case, in the evaluation
rule for parallel pairs (E-FORK), two edges are added to the heap
graph to represent the dependencies of the pair on each of its
components. Thus, if the pair is reachable, so is each component.
In the evaluation of a function application (E-APP), however, two
edges are added to express theuseof heap values. The first such

edge marks a use of the function. The second edge is more subtle
and denotes apossiblelast use of the argument. For strict functions,
this second edge is redundant: there will be another edge leading to
the argument when it is used. However, for non-strict functions, this
is the first point at which the garbage collector might reclaim the
space associated with the argument. A similar issue is raised in the
rules for conditionals. In E-IFTRUE, the semantics must record the
locations that appear in the branch that isnot taken. (In this case,
these are the locations ofe3.) Again, the intuition is that this is
the first point at which the storage corresponding to these locations
might be reclaimed. In a sense, these edges represent our imperfect
knowledge of program behavior at runtime: even thoughe3 will
never be executed, that fact is not known until the conditional is
executed.

While there is some flexibility in designing these rules in our
cost semantics, we choose the versions presented here because they
can be implemented in a reasonable way and yet seem to constrain
the implementation sufficiently. Care must be taken, however, be-
cause the implications of rules are sometimes subtle–see the exam-
ple in Section 7.1.

3.2 Schedules

Together, the computation and heap graphs enable a programmer to
analyze the behavior of her program under a variety of scheduling
policies and numbers of processors. For a given program, each
policy and processor count will give rise to a particular parallel
execution that is determined by the constraints described by the
computation graphg.

Definition (Schedule). A scheduleof a graphg = (ns, ne, E) is a
sequence of sets of nodesN0, . . . , Nk such thatN0 = ∅, ne ∈ Nk,
and for all i ∈ [0, k),

• Ni ⊆ Ni+1, and
• for all n ∈ Ni+1, predg(n) ⊆ Ni.

Here,predg(n) is the set of nodesn′ such that there is an edge
(n′, n) in g. To restate, a schedule is a traversal of the computation
graph where each node may only be visited after all of its parents
and where several nodes may be visited in the same step.
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3.3 Roots

To understand the use of space, the programmer must also account
for the structure of the heap graphh. Given a scheduleN0, . . . , Nk

for a graphg, consider the moment of time represented by some
Ni. BecauseNi contains all previously executed nodes and because
edges inh point backward in time, each edge(n, ℓ) in h will fall
into one of the following three categories.

• Bothn, ℓ 6∈ Ni. As the value associated withℓ has not yet been
allocated, the edge(n, ℓ) does not contribute to the use of space
at timei.

• Both n, ℓ ∈ Ni. While the value associated withℓ has been
allocated, the use of this value represented by this edge is also
in the past. Again, the edge(n, ℓ) does not contribute to the use
of space at timei.

• ℓ ∈ Ni, but n 6∈ Ni. The value associated withℓ has already
been allocated, andn represents a possible use in the future.
Here, the edge(n, ℓ) doescontribute to the use of space at time
i.

In the definition below, we must also explicitly account for the
location of the final value resulting from evaluation. Though this
value may never be used in the program itself, we must includeit
when computing space use.

Definition (Roots). Given e ⇓ v; g;h and a scheduleNi, i =
0, . . . , k of g, the roots after the evaluation of the nodes inNi,
written rootsv,h(Ni), is the set of nodesℓ in Ni whereℓ = loc(v)
or h contains an edge leading from outsideNi to ℓ. Symbolically,

rootsℓ,h(Ni) = {ℓ ∈ Ni | ℓ = loc(v)∨(∃n.(n, ℓ) ∈ h∧n 6∈ Ni)}

The location of a valueloc(v) is simply the outermost location
of a value as defined in Appendix A.

We use the termroots to evoke a related concept from work in
garbage collection. For the reader who is most comfortable thinking
in terms of an implementation, the roots might correspond tothose
memory locations that are reachable directly from the processor
registers or the call stack. In the case of a parallel implementation,
it also includes those locations that are reachable directly from the
scheduler queue.

3.4 Provable Implementations

In the following section, we will use cost graphs, schedules, and
roots as a basis for our profiling tools. However, these concepts can
also serve as part of a formal specification and verification of an im-
plementation. For example, one can present an implementation of
our language using a small-step parallel semantics. Such a seman-
tics is known as aprovable implementation(Blelloch and Greiner
1996) because each transition can be related to a step in a schedule
of the corresponding cost graphs.

The definition of schedules given above includes any execution
that respects the dependencies present in the original program. This
includes schedules that use an unbounded amount of parallelism in
a single step as well as those that stall execution for an unbounded
length of time. We can refine this definition to limit ourselves to
more realistic classes of schedulers and even to particularpolicies.
One advantage of using cost graphs is that such refinements can
be stated in a simple and clear manner. For example, ap-bounded
scheduler uses at mostp processors at each step. In terms of the
definition above,

∀i such that0 < i ≤ k, |Ni\Ni−1| ≤ p

Similarly, the behavior of a depth-first scheduler should correspond
to a depth-first traversal of the computation graph.

In our accompanying technical report (Spoonhower et al. 2008),
we give several parallel implementations, ranging from a non-

deterministic semantics that describes every possible parallel eval-
uation to implementations of specific scheduling policies.For each
such implementation, we prove that the cost of evaluation (in terms
of space use) is reflected in the corresponding schedule of the cost
graphs.

4. Profiling
We have implemented this cost semantics as an interpreter, and the
resulting cost graphs are used by the two tools described below.

4.1 Parallel Simulation

Our simulator can be instantiated to measure many differentperfor-
mance characteristics, but each instance can be broken downinto
three parts: a generic component that maintains information about
the graph traversal, an implementation of a scheduling policy, and
a function that measures some aspect of program performance.

The simulator is a sequential program so implementing schedul-
ing policies in the simulator requires no synchronization or other
concurrency control. The breadth- and depth-first scheduling poli-
cies mentioned above can each be implemented with a single line
of SML using standard list primitives.

We focus on the high-water mark of memory use as the primary
measure of performance. As described above, therootsof the heap
graph at an intermediate point during execution represent those
values that are immediately reachable by the program itself. The
total space in use at one point during execution is determined by
the set of all nodes in the heap graph reachable from these roots.
We use the size of the set of reachable nodes in the heap graph as
the measure of space use.

By iterating over different inputs, we can compute the high-
water mark as a function of the input size. This allows us to plot
results such as those shown in Figure 2(b).

4.2 Visualization

The cost graphs given by our semantics are often quite large and
difficult to process visually. We have implemented a method that
distills these graphs and yields their essential components. As the
goal is to produce a meaningful visual output, we associate asize
and color with each node and edge. (In this write-up, we restrict
ourselves to black and shades of gray.) As the computation and
heap graphs share nodes, we show one superimposed over the
other. The resulting graph can then be rendered into variousimage
formats by a freely available graph layout package.1 All of the
graphs shown in this paper are mechanically generated from our
cost semantics and an implementation of the following numbered
rules. We determined these rules in part through experimentation,
but in a large part upon the principles discussed below.

We are most interested in the parallel structure of program ex-
ecution. Thus a series of nodes that describes sequential computa-
tion can be rendered as a single node. We use node size to indicate
the amount of sequential computation and node position to indicate
computational dependencies.

1. For each noden in the computation graph if 1)n has out-degree
one, 2)n has in-degree one, and 3) the (sole) predecessor ofn
also has out-degree one, then coalescen with its predecessor.
The area of the resulting node is the sum of the area of the two
coalesced nodes. Nodes in the original graph are assigned unit
area.

2. Remove edges between coalesced nodes in both the computa-
tion and heap graphs. (There are no self-edges in the result.)

3. Constrain the layout so that the vertical position of nodes re-
spects the partial order determined by computation edges.

1 Graphviz - Graph Visualization Software,http://www.graphviz.org/
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In the output graph, we draw computation edges in a light gray
as the structure of the computation graph can be roughly derived
from the layout of the nodes: among vertically aligned nodes, those
closer to the top of the graph must be executed first. We also omit
arrowheads on edges as they add to visual clutter. An exampleof
node coalescing is shown here.

distills to

Due to the structure of the cost graphs, coalescing will never
create non-unique edges in the computation graph (i.e., more than
one edge between the same pair of nodes). On the other hand, itwill
often be the case that there are severalheapedges between the same
pair of nodes. We considered trying to represent these duplicate
heap edges, for example, by weighting heap edges in the output
according to number of duplicates. This, however, ignores any
sharing among these heap edges and may lead to confusing visual
results (e.g., a group of heavy edges that represents a relatively
small amount of heap space). For graphs distilled independently
of a particular point in time, duplicate heap edges are removed, and
all heap edges are given the same weight.

If we restrict ourselves to a single moment in time, we can
overcome the difficulties with representing sharing and also focus
on the behavior of a specific scheduling policy and its effecton
memory use. We use the color of both nodes and heap edges
to highlight the behavior of the scheduling policy at timei, the
moment when memory use reaches it high-water mark.

4. Fill nodes with black if they are executed at or before timei,
and gray otherwise.

5. Draw heap edges that determine roots at timei in black and
other heap edges in gray.

When coloring nodes and edges according to these rules, we must
be careful about which nodes we coalesce, as we expect those heap
edges that determine roots to connect only executed and unexecuted
nodes.

6. Avoid coalescing two nodes if one has been executed at or
before timei and the other has not.

Finally, now that we have restricted ourselves to a single moment
in time, we can properly account for sharing in the heap graph.

7. Weight each heap edge according to its share of the total amount
of heap space reachable from that edge at timei.

Thus the total space use at the high-water mark may be determined
from the total weight of the black heap edges (i.e., those represent-
ing the roots). Generally, the above rules mean that the visual prop-
erties of distilled graphs can be interpreted according to the follow-
ing table.

The greater the . . . then the more. . .
graph height sequential dependencies
graph width possible parallelism
node size computation
edge thickness space use

5. Implementation
In this section we describe an implementation of a parallel func-
tional language based on our semantics. This serves to validate our

profiling results and demonstrate that implementations of our spec-
ification can achieve good parallel speed-ups.

Our implementation is an extension of MLton (Weeks 2006),
a whole-program, optimizing compiler for Standard ML (Milner
et al. 1997). This is the first parallel implementation of MLton. In
keeping with the philosophy that performance-critical code can be
written in a high-level language, we implemented as much as the
runtime support for parallelism in SML as we could. That said,
we were also required to make some changes and additions to the
existing runtime system, which is written in C.

5.1 Runtime System

MLton is comprised of a compiler, a set of libraries, and a unipro-
cessor runtime system. Our first task was to make modifications
to the runtime to ensure that shared resources would be safely ac-
cessed by concurrently executing processors. In our initial revision,
we added a global mutex around all accesses to these shared re-
sources. We then found the hottest code paths and replaced this
mutex with lighter-weight mechanisms or restructured the code
to avoid synchronization altogether. In some cases, this required
adding per-processor state. For example, each processor maintains
a local allocation pool that it may use to satisfy allocationrequests
without synchronization. When the local pool is exhausted,the run-
time uses an atomic compare-and-swap operation to claim a portion
of memory from the global pool. We were also required to make
some minor changes to the compiler and standard basis library to
ensure thread safety.

We have not yet addressed the issue of parallel garbage col-
lection in our implementation. However, we believe that previous
work in parallel collection for SML (Cheng and Blelloch 2001)
could be carried over in a straightforward manner.

Our extended runtime supports an additional runtime parameter
that indicates how many processors to use.2 For each processor,
the runtime sets up the local processor state and invokes themain
scheduling loop. The remaining parallel functionality, including the
scheduling loop, is handled by a set of SML modules, described
below.

5.2 Scheduling Policies

At the core of our parallel library is the scheduler loop. Theloop
is run in parallel by each processor and repeatedly executesthe
highest priority task that is ready to be run. It is the role ofthe
scheduling policy to determine the highest priority task. In order
to plug-and-play with different schedulers, we developed asimple
signature that any scheduling policy must implement (Figure 5).

Given the purpose of scheduling policies, the functionsadd
and get should be self-explanatory. Thefinish function is called
once for each task removed from the queue. For many scheduling
policies, finish does nothing. The final functionshouldYield is
used to avoid some non-trivial thread operations in cases where
they are unnecessary. This operation is discussed in more detail
in the description of the work-stealing scheduler below. Though
we present this interface as an SML signature, we believe that this
abstraction would be useful for other data parallel implementations.

We include three scheduling policies in our analysis and imple-
mentation: depth-first, breadth-first, and work-stealing.(Each is be-
tween 50 and 125 lines of SML in our implementation.) Each of
these policies isgreedy, in that processors will not be kept idle if
there are available tasks. Moreover, each permits rescheduling only
at fork points and join points. These are features of the particular
schedulers we study and not limitations of our framework.

2 We envision a version that allows users to dynamically add and remove
processors from the active set, but in the current implementation, this set
remained fixed.
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signature SCHEDULING POLICY =
sig

(∗ processor identifier∗)
type proc = int
(∗ abstract type of work, defined elsewhere as unit→ unit ∗)
type work

(∗ these take the identifier of the current processor as their
first argument∗)

(∗ add new work to the queue; highest priority appears first∗)
val add : proc → work list → unit
(∗ remove the next, highest priority work∗)
val get : proc → work option
(∗ mark the most recent unit of work as done∗)
val finish : proc → unit
(∗ is there higher priority work for the given processor?∗)
val shouldYield : proc → bool

end

Figure 5. Signature for Scheduling Policies. Scheduling policies
are defined by implementing this signature.

Breadth-First Scheduling The breadth-first policy is the simplest
policy in our implementation. It maintains a single FIFO queue
and uses a global lock to serialize concurrent access to the queue.
This scheduling policy is equivalent to a left-to-right, breadth-first
traversal of the computation graph. It is the “fairest” of the three
schedulers we implemented.

Depth-First Scheduling The parallel depth-first policy (Blelloch
et al. 1999) prioritizes tasks according to a left-to-rightdepth-first
traversal of the computation graph. Our implementation uses a
single global queue and runs tasks from the front of the queue.
This it not strictly a LIFO queue, however. To ensure that our
implementation obeys the global left-to-right depth-firstpriority,
the children of the leftmost task must be prioritized more highly
than the children of nodes further to the right. (In a sense, priority
is inherited.) To assign proper priorities, our implementation also
maintains one “finger” for each processor that indicates where new
tasks should be inserted into the queue (Blelloch et al. 1999). The
finish function is used to clean up any state associated with this
finger.

Work-Stealing Scheduling The work-stealing policy (Blumofe
and Leiserson 1999) maintains a separate queue for each processor.
Locally, each queue is maintained using a LIFO discipline. How-
ever, if one of the processors should exhaust its own queue, it ran-
domly selects another processor to “steal” from and then removes
theoldesttask from that queue. In the common case, each processor
only accesses its own queue, so we can use a more finely-grained
synchronization mechanism than in the other two schedulingpoli-
cies to serialize concurrent access.

Because a work-stealing policy favors local work, a dequeue
that immediately follows an enqueue will always return the task
that was enqueued. Our implementation avoids these two opera-
tions (and also avoids suspending the current thread) by always
returningfalse as the result ofshouldYield. The remainder of the
parallel library checks the result of this function in caseswhere a
dequeue will follow an enqueue.

5.3 Parallel Library

The lowest-level parallel interface in our library provides meth-
ods for suspending and resuming computation along with adding
new tasks to the work queue. It is built as a thin wrapper around

MLton’s user-level thread library.3 This wrapper adds the proper
calls to the scheduling policy to ensure that tasks are initiated in
the proper order andfinished correctly. This interface, however, is
not intended for programmers. Instead, we also provide routines
for parallel pairs, futures, and array manipulation based on these
primitives. For example, the parallel pair construct used in our cost
semantics is implemented by the following function.

(∗ run two functions, possibly in parallel, and return their results
as a pair∗)

val fork : (unit → α) ∗ (unit → β) → α ∗ β

This function is implemented by (possibly) suspending the current
computation and adding two new parallel tasks, one for each branch
of the fork. Through the use of shared state and an atomic compare-
and-swap operation, these tasks agree which of the two finished
second. This task is responsible for adding a third task thatwill
resume the suspended computation with the new pair. The other
routines in our library are implemented in a similar manner,or by
building upon functions such asfork.

5.4 Space Profiling in MLton

In the course of gathering our empirical results, we needed to
measure space use for applications compiled with MLton. Like
many garbage collectors, the MLton implementation can easily
compute and report the live data after each collection and thus an
approximation of the high-water mark. However, given the default
behavior of the collector, there is no way to understand the accuracy
of that approximation. In fact, using the collector to determine the
high-water mark of space use with perfect accuracy would require
a collection after every allocation or pointer update. Thiswould be
prohibitively expensive.

However, if we acceptboundederrors in our measurement, we
use the collector to measure this quantity with relatively little effect
on performance. To measure the high-water mark of space use
within a fractionR of the true value, we restrict the amount of
space available for new allocations as follows. At the end ofeach
collection, given that the current high-water mark isM bytes and
there are currentlyL bytes of live data in the heap, we restrict
allocation so that so more thanM ∗ (1 + R) − L bytes will
be allocated before the next collection. In the interim between
collections (i.e., between measurements) the high-water mark will
be no more thanM ∗ (1 + R) bytes. Since the collector will report
at leastM bytes, it will achieve the desired level of accuracy.

As we report in the section on empirical results below, this
technique has enabled us to measure space use with low overhead
and predicable results and without any additional effort bythe
programmer.

6. Empirical Results
We performed our experiments on a four-way dual-core x86-64
machine with 32 GBs of physical RAM running version 2.6.21
of the GNU/Linux kernel. Each of the four processor chips is a
3.4 GHz Intel Xeon, and together they provide eight independent
execution units. In the remainder of this section, we will refer to
each execution unit as a processor. We focus on measurements
of space use, but also report on scalability. Each application is
described in more detail below.

6.1 Space Use

For each application, we report the effect of scheduling policy
and number of processors on the amount of memory required by

3 MLton’s thread library implements one-time continuationswith function-
ality similar callcc and throw, except that the argument to “callcc” must
return another thread to switch to, and a “continuation” mayonly be thrown
to once.
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Figure 6. Space Use vs. Input Size. Each plot shows the high-water markof space use for
one of four applications. We tested three scheduling policies, depth-first (+), breadth-first
(×), and work-stealing (⊡), with up to four processors. (Larger symbols indicate thatmore
processors were used.) Different scheduling policies yield dramatically different performance,
as discussed in the text.

Figure 7. Cost Graphs for Quicksort.
These summarized graphs show the point
at which the program reaches the high-
water mark of space use under a depth-first
scheduling policy.

the application. We measured the high-water mark of space use
including both stacks and reachable objects in the heap. Measuring
this quantity with complete accuracy would require traversing all
reachable objects in the heap after every allocation and pointer
mutation. Instead, we use the technique described in Section 5.4
to measure this quantity within a tunable bound. Figure 6 shows
the high-water mark of space use for four of the applicationsin our
study. Smaller values indicate better performance. We use different
shapes to represent different policies:× for breadth first,+ for
depth-first, and⊡ for work-stealing. Larger symbols indicate more
processors were made available.

Matrix Multiplication The analysis in Section 2 (recall Fig-
ure 2(b)) predicts that the breadth-first scheduling policyuses
asymptotically more space than the depth-first policy. A similar
analysis predicts that breadth-first is far worse than work-stealing.
Both these predictions are confirmed by the space use in our imple-
mentation, as plotted in Figure 6(a).

Sorting We implemented several sorting algorithms including
quicksort, mergesort, insertion sort, and selection sort.Figure 6(b)
shows the space use of a functional implementation of quicksort
where data are represented as binary trees with lists of elements at
the leaves. This plot shows the behavior for the worst-case input:
the input elements are given in reverse order. While we wouldex-
pect quicksort to take time quadratic in the size of the inputin this
case, it is perhaps surprising that it also requires quadratic space.
This behavior is also predicted by the cost semantics. The plot be-
low shows the consumers of space for the depth-first policy atthe
high-water mark.
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The plot shows that this space is referenced by various partsof
the filter function. The graph in Figure 7 shows that the high-
water mark for this policy occurs after the left branch of each
parallel fork has executed. As expected, there are few opportunities
for parallel execution with this input because at each levelof the
recursion, quicksort splits its input into a single elementon the
right and all the remaining elements on the left. However, until
the partition is complete each branch on the right-hand sideis
still holding on to the recursive input. This analysis suggests an
alternative implementation. If we introduce a join point between
partitioning the elements and recursively sorting them, wecan
avoid the asymptotic increase in space use.

Convex Hull This application computes the convex hull in two
dimensions using the quickhull algorithm. We again show results
for the worst-case input: the input points are arranged in a circle
and so every point in the input is also in the hull. Figure 6(c)shows
the high-water mark of space use, which again matches our cost
semantics-based predictions (not shown).

Unlike in the quicksort case, there is still significant available
parallelism in this example. However, it is more constrained than
the parallelism available in matrix multiplication. The algorithm
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proceeds by partitioning the point set by dividing the planein half
(in parallel) and then recursively processing each half (inparallel).
Between these two phases there is a synchronization. This isshown
through the widening and narrowing of the graph below.

Nodes are colored to illustrate one point in the execution ofthe
work-stealing scheduling policy. In this case, the work-stealing
policy performs more poorly than either of the other two policies
because it starts, but does not finish, computing these partitions.
The point labeled “A” represents the code that allocates oneset of
points. The black lines extending to the right of this point indicate
part of the program that will compute one half of a partition of these
nodes. The circled nodes labeled “B” also compute half a partition,
but have already completed their work and have allocated theresult.
At this point in time, the program is holding onto the entire original
set plus half of the resulting partition. The same pattern appears for
each processor. Neither of the other two scheduling policies exhibit
this behavior.

n-Body Simulation Figure 6(d) shows space use for our imple-
mentation of the Barnes-Hut simulation. This algorithm approxi-
mates the gravitational force among particles in 3-space. The force
on each particle is calculated either by computing the pairwise
force between two particles or by approximating the effect of a dis-
tant set of particles as a single, more massive particle. Particles are
organized using an octree. This algorithm and representation are
easily adapted to a parallel setting: not only can the forceson each
particle be computed in parallel, but the individual components of
this force can also be computed in parallel.

Like the matrix multiplication example, the breadth-first schedul-
ing policies performs poorly due to the large amount of available
parallelism and the size of the intermediate results. Though its per-
formance is not as bad as in the multiplication example, it isstill
significantly worse than the other two policies.

6.2 Overhead of Space Measurements

Measuring space use precisely can be expensive. Using the tech-
nique described above, however, we can measure the high-water
mark of space use within a fixed bound. Here, we compare the
quality and cost of these measurements with those derived from a
hand instrumented version. In Figure 8(a), we show space usemea-
surements for the matrix multiplication example, but measured four
different ways. All these data series use the breadth-first scheduler
and one processor. The first series (⊙) shows the measurements ob-
tained when additional garbage collections are explicitlyadded by
the programmer. The other three series show the results using the
restricted allocation technique with a bound of 10%, 20%, and 50%,
respectively. These bounds are shown with error bars, but only posi-
tive errors are shown (as the true high-water mark cannot be smaller

than the reported value). The reported values appear at the bottom
of the indicated ranges.

We take the measurements derived from the explicit garbage
collection to be the most accurate measurement of memory use. (In
each case, this technique reported the greatest values.) The figure
shows that the restricted allocation measurements are muchmore
accurate than we might expect. For example, the 50% bound seems
to be overly conservative: the actual measurements are within 15%
of the measurement derived using explicit garbage collections.

In addition to requiring less knowledge on the part of the pro-
grammer and yielding measurements with a bounded error, this
technique requires less time to perform the same measurements.
Figure 8(b) shows the execution time of these four instrumented
versions. Values are normalized to the execution time of an unin-
strumented version and shown on a logarithmic scale.

6.3 Scalability

As the purpose of parallelism is to improve performance, we also
report on scalability. While we are still working to improvethe per-
formance of our implementation, these data should be sufficient to
convince the reader that we have not “cooked” our implementation
simply to match the space use predictions of our semantic profiler.

Figure 9 shows normalized parallel overhead for one to eight
processors for several different applications. Parallel overhead is
defined as (execution time× number of processors). We normalize
this value to the execution time of the sequential version. Smaller
values are better. A value of 1.0 is an ideal value indicatingperfect
speed-up. A value of 2.0 indicates, for example, that a four proces-
sor execution would take 50% of the time of the sequential version
or that an eight processor execution would take 25% of the time of
the sequential version.

In these plots, we do not include the cost of garbage collection.
As we argued above, previous work has shown that garbage col-
lection can be performed efficiently in parallel. We do, however,
include overhead due to synchronization and contention forother
shared resources.

Though the ideal value is 1.0, we generally expect some over-
head from parallel execution. Practically speaking, we arelooking
for applications (and scheduling policies) where points fall on a line
with a slope close to zero. This indicates that adding additional pro-
cessors will continue to improve performance at roughly thesame
rate.

We chose benchmarks for this set of measurements not based
on interesting space use patterns, but instead by looking for ap-
plications with a reasonable potential for parallel execution. Part
(a) shows overhead for a blocked version of matrix multiplication.
Part (b) shows overhead for parallel mergesort on uniformlyran-
domly distributed input. Part (c) shows the overhead of quickhull
for points distributed uniformly a circle. Part (d) shows the over-
head for the Barnes-Hut simulation with points distributeduni-
formly randomly.

7. Discussion
7.1 Alternative Rules

There are a number of design choices latent in the rules givenin
Figure 3. Different rules would have led to constraints thatwere
either too strict (and unimplementable) or too lax.

Consider as an example the following alternative rule for the
evaluation of function application. The premises remain the same,
and the only difference from the conclusion in Figure 3 is high-
lighted with a rectangle.

e1 ⇓ 〈f.x.e3〉
ℓ1 ; g1; h1 e2 ⇓ v2; g2; h2 · · ·

e1 e2 ⇓ v3; g1 ⊕ g2 ⊕ g3 ⊕ [n] ;

h1 ∪ h2 ∪ h3 ∪ {(n, ℓ1), (n, loc(v2))}
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Figure 8. Profiling Space Use. Four dif-
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Figure 9. Parallel Scalability. These plots show parallel overhead,defined as (execution
time × number of processors), normalized to the sequential execution time. Smaller
values are better with the ideal being 1.0. As an example, a value of 2.0 indicates that an
8 processor execution achieves a 4X speed-up over a sequential execution, a 4 processor
execution achieves a 2X speed-up, etc. Overhead does not include garbage collection.

This rule yields the same extensional result as the version given in
Figure 3, but it admits more implementations. Recall that the heap
edges(n, ℓ1) and (n, loc(v2)) represent possible last uses of the
function and its argument, respectively. This variation ofthe rule
moves those dependencies untilafter the evaluation of the function
body.

This rule allows implementations to preserve these values,even
in the case where they are not used during the function application
or in subsequent evaluation. This includes the case where these
values are bound to variables that do not appear in the program text
of the function body or after the application. This is precisely the
constraint described by Shao and Appel (1994) as “safe-for-space.”

In contrast, the original version of this rule requires thatthese
values be considered for reclamation by a garbage collectoras soon
as the function is applied. Note, however, that the semantics does
not specifyhow the implementation makes these values available
for reclamation: it is left to the implementer to determine whether
this is achieved through closure conversion, by clearing slots in the
stack frame, or by some other means.

As this example suggests, there is some leeway in the choice of
the semantics itself. Our goal was to find a semantics that describes
a set of common implementation techniques. When they fail to
align, our experience suggests that either the semantics orthe
implementation can be adjusted to allow them to fit together.

7.2 Program Optimizations

In the course of validating our work, we discovered one example
where we were required to change the implementation. We came
across an example where our implementation failed to distinguish
two scheduling policies as our profiler had predicted. Specifically,

instead of one policy leading to linear use of space and the other to
quadratic use of space, the program required quadratic space under
bothpolicies.

Some investigation revealed that the problem was not in our se-
mantics or our parallel implementation, but in an existing optimiza-
tion in MLton: reference flattening. Analogously to tuple flatten-
ing, references that appear in a heap-allocated data structure (e.g.
a record) may beflattenedor treated as a mutable field within that
structure. At run time, such a reference is represented as a pointer
to the containing structure. Accesses to the reference mustcompute
an offset from that pointer.

This optimization can save some space by eliminating the mem-
ory cell associated with the reference. However, it can alsoincrease
the use of space. As the reference is represented as a pointerto the
entire structure, all of the elements of the structure will be reach-
able anywhere the reference is reachable. If the reference would
have outlived its enclosing structure then flattening will extend the
lifetime of the other components.

To avoid asymptotically increasing the use of space, MLton uses
the types of the other components of the structure to conservatively
estimate the size of each component. If any component could be of
unbounded size then the reference is not flattened. The problem was
that this analysis was not sufficiently conservative in its treatment
of recursive types. Though a single value of a recursive typewill
only require bounded space, an unbounded number of these values
may be reachable through a single pointer. Based on our reporting,
this problem has been corrected in a recent version in the MLton
source repository.
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7.3 Nested Parallelism

Another form of “flattening” appears in implementations of nested
parallelism such as NESL (Blelloch et al. 1994) or Nepal (Chakravarty
and Keller 2000). Here, flattening refers to a compilation technique
where by nested parallelism (where parallel tasks may spawnnew
parallel tasks) is transformed into flat parallelism (whereparallel
tasks are spawned only at the top level). This automaticallybal-
ances work by exposing all available parallelism at the sametime.
Though this technique is largely implemented by the compiler and
less so by the language runtime, we can still reason about it us-
ing cost graphs and our scheduling formalism. This is discussed
in more detail in the accompanying technical report (Spoonhower
et al. 2008).

This characterization of the form of breadth-first scheduling
agrees with our experience in NESL: examples such as matrix
multiplication required so much space that they were unrunnable
for even moderately sized inputs, requiring the user to scale back
parallelism explicitly. These space use problems in NESL are an
important part of the motivation for the current work.

8. Related Work
Parallelism and Concurrency Many researchers have studied
how to improve performance by exploiting the parallelism implicit
in side-effect free languages. This includes work on data-flow lan-
guages (e.g., Arvind et al. (1989)), lazy parallel functional lan-
guages (e.g., Aditya et al. (1995)), and nested data parallel lan-
guages (e.g.,Blelloch et al. (1994), Chakravarty and Keller (2000)).
Like these languages, we provide a deterministic semanticsand rely
on the language implementation to spawn new tasks and synchro-
nize on results. Unlike languages such as Concurrent ML (Reppy
1999) or JoCaml (Conchon and Fessant 1999), we provide no ex-
plicit concurrency constructs to the programmer. Manticore (Fluet
et al. 2007) subsumes both paradigms and provides for both im-
plicit parallelism and explicit concurrency.

Profiling In their seminal work on space profiling for lazy func-
tional programs, Runciman and Wakeling (1993a) demonstrate the
use of a profiler to reduce the space use of a functional program
by more than two orders of magnitude. Like the current work, they
measure space use by looking at live data in the heap. However,
their tool is tied to a particular sequential implementation. San-
som and Peyton Jones (1993, 1995) extend this work with a no-
tion of “cost center” that enables the programmer to designate how
resource use is attributed to different parts of the source program.

There has been a series of works on profiling methods and
tools for parallel functional programs (Hammond and PeytonJones
1992; Runciman and Wakeling 1993b; Hammond et al. 1995;
Charles and Runciman 1998). This work focuses on the overhead
of parallel execution instead of how different parallel implementa-
tions affect the performance of the application. None of this work
measures how different scheduling policies affect the space use of
applications.

Scheduling Scheduling policies and their effects on space use
have been studied extensively in the algorithms community (e.g.,
Blumofe and Leiserson 1998; Blelloch et al. 1999). Our represen-
tation of parallel tasks as directed graphs is inspired by this work.
However, we use these graphs as part of a formal semantics rather
than simply an abstract model of computation.

Most implementations of data parallel languages have provided
only a single scheduling policy that is either left unspecified or
fixed as part of a compilation technique. In contrast, Fluet et al.
(2007) make scheduling policies explicit using acoordination lan-
guage. It would be interesting to see how our cost semantics could
serve as a specification for schedulers written in this language.

Evaluation strategies (Trinder et al. 1998) enable the program-
mer to explicitly control the parallel evaluation structure (e.g.,
divide-and-conquer). Like much of the work on profiling paral-
lel functional programs, this focuses on when to spawn to parallel
tasks and how much work to perform in each task (i.e.,granularity)
instead of the order in which parallel tasks are evaluated.

In the course of their profiling work, Hammond and Peyton
Jones (1992) considered two different scheduling policies. While
one uses a LIFO strategy and the other FIFO, both use an evaluation
strategy that shares many attributes with a work-stealing policy.
These authors found that for their implementation, the choice of
policy did not usually affect the running time of programs, with the
exception in the case where they also throttled the creationof new
parallel threads. In this case, the LIFO scheme gave better results.
Except for the size of the thread pool itself, they did not consider
the effect of policy on space use.

Cost Semantics A cost semantics was first used as a basis for
profiling by Sansom and Peyton Jones (1995). They describe a
method of profiling both time and space for programs written in
a sequential, lazy language. As in our work, they use the cost
semantics as a formal specification of performance. However, they
use the semantics only as guide for their profiler: profiling results
are derived from an instrumented version of the actual language
implementation.

A cost semantics similar to the one used here was introduced
by Blelloch and Greiner (1996). That work gave an upper bound
on space use and assumed a fixed scheduling policy (depth-first).
Our semantics extends this work by adding heap edges to the cost
associated with each closed program. This enables us to reason
about different scheduling policies and attribute space use to dif-
ferent parts of the program.

Lazy, purely functional programs can be evaluated in many dif-
ferent ways, and different strategies for evaluation can yield wildly
different performance results. Ennals (2004) uses a cost semantics
to compare the work performed by a range of sequential evalua-
tion strategies, ranging from lazy to eager. Like the current work,
he also uses cost graphs with distinguished types of edges, though
his edges serve different purposes. He does not formalize the use
of space by these different strategies. Likewise, program transfor-
mations that change the order of evaluation can also affect perfor-
mance. Gustavsson and Sands (1999) give a semantic definition of
what it means for a transformation to be “safe-for-space” (Shao and
Appel 1994). They provide several laws to help prove that a given
transformation does not asymptotically increase the spaceusage of
sequential, call-by-need programs.

Jay et al. (1997) describe a static framework for reasoning about
the costs of parallel execution using a monadic language. Static
cost models have also been used to automatically choose a parallel
implementation at compile-time based on hardware performance
parameters (Hammond et al. 2003) and to inform the granularity of
scheduling (Loidl and Hammond 1996). This work complements
ours in that it focuses on how the sizes of program data structures
affect parallel execution (e.g., through communication costs), rather
than how different execution models affect the use of space at a
given point in time.

9. Conclusion
We have described and demonstrated the use of a semantic space
profiler for parallel functional programs. One beauty of functional
programming is that it isolates programmers from gritty details of
the implementation and the target architecture, whether that archi-
tecture is sequential or parallel. However, when profiling functional
programs, and especiallyparallel functional programs, there is a
tension between providing information that relates to the source
code and information that accurately reflects the implementation.
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In our profiling framework, a cost semantics plays a criticalrole in
balancing that tradeoff.

We have focused on using our framework to measure and rea-
son about the performance effects of different scheduling policies.
One possible direction for future work is to study other important
aspects of a parallel implementation such as task granularity. We
believe there is a natural way to fit this within our framework, by
viewing task granularity as an aspect of scheduling policy.

We invite readers to download and experiment with our proto-
type implementation, available from the first author’s website4 or
theshared-heap-multicore branch of the MLton repository.
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Niklas Röjemo and Colin Runciman. Lag, drag, void and use–heap profiling
and space-efficient compilation revisited.SIGPLAN Not., 31(6):34–41,
1996. ISSN 0362-1340.

Colin Runciman and David Wakeling. Heap profiling of lazy functional
programs.J. Funct. Program., 3(2):217–245, 1993a.

Colin Runciman and David Wakeling. Profiling Parallel Functional Compu-
tations (Without Parallel Machines). InFunctional Programming, Glas-
gow ’93, pages 236–251. Springer-Verlag, 1993b.

Patrick M. Sansom and Simon L. Peyton Jones. Profiling lazy func-
tional programs. InProceedings of the 1992 Glasgow Workshop on
Functional Programming, pages 227–239, London, UK, 1993. Springer-
Verlag. ISBN 3-540-19820-2.

Patrick M. Sansom and Simon L. Peyton Jones. Time and space profiling
for non-strict, higher-order functional languages. InPOPL ’95: Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 355–366, New York, NY, USA, 1995.
ACM. ISBN 0-89791-692-1.

Zhong Shao and Andrew W. Appel. Space-efficient closure representations.
In LFP ’94: Proceedings of the 1994 ACM conference on LISP and
functional programming, pages 150–161, New York, NY, USA, 1994.
ACM Press. ISBN 0-89791-643-3.

Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gib-
bons. Space profiling for parallel functional programs. Technical Report
CMU-CS-08-110, Carnegie Mellon University, April 2008.

Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, andSimon L.
Peyton Jones. Algorithm + Strategy = Parallelism.J. of Functional
Programming, 8(1):23–60, January 1998.

Stephen Weeks. Whole-program compilation in mlton. InML ’06: Pro-
ceedings of the 2006 workshop on ML, pages 1–1, New York, NY, USA,
2006. ACM. ISBN 1-59593-483-9.

A. Definitions
Locations The location of a value is the outermost label of that value and
serves to uniquely identify that value. The locations of an expression are the
labels of any values that appear in that expression.

loc(〈f.x.e〉ℓ) = ℓ

loc(〈v1, v2〉ℓ) = ℓ

loc(true
ℓ) = ℓ

loc(falseℓ) = ℓ

locs(fun f.x.e) = locs(e)
locs(e1 e2) = locs(e1) ∪ locs(e2)
locs({e1, e2}) = locs(e1) ∪ locs(e2)
locs(#i e) = locs(e)
locs(true) = ∅
locs(false) = ∅
locs(if e1 then e2 else e3) = locs(e1) ∪ locs(e2) ∪ locs(e3)
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