
What, if anything, is a programming
paradigm?

Robert Harper
Carnegie Mellon University

April, 2017

Everyone who writes about programming languages seeks to impose order
on the chaos of extant languages. A common strategy is to borrow Thomas
Kuhn’s concept of a scientific paradigm, itself a not uncontroversial attempt to
explain the social processes of science in his famous book entitled The Structure
of Scientific Revolutions (Kuhn, 1975). Following Kuhn, observed software de-
velopment practices are codified as programming paradigms, such as imperative,
functional, object-oriented, concurrent, and logic programming, to name a few
popular classifications. The trouble with programming paradigms is that it is
rather difficult to say what one is, or how we know we have a new one. With-
out precise definitions, nothing precise can be said, and no conclusions can be
drawn, either retrospectively or prospectively, about language design. Yet the
convention of organizing languages into paradigms is so pervasive, I am asked
to justify not adhering to it.

It is a matter of taxonomy versus genomics.
Stephen Jay Gould, in his remarkable essay entitled “What, if anything,

is a zebra?” (Gould, 1983), criticizes cladistics, the classification of species by
morphology. According to Gould, there are three species of black-and-white
striped horse-like animals in the world, two of which are genetically closely
related to each other, and one of which is not (any more so than to any other
mammal). It seems that the mammalian genome encodes a propensity to dis-
play stripes that is expressed in disparate evolutionary contexts. From a ge-
nomic point of view, the clade of zebras can be said not to exist: there is no
such thing as a zebra! It is more important to study the genome, and the evolu-
tionary processes that influence it and are influenced by it, than it is to classify
things based on morphology.

In writing Practical Foundations for Programming Languages I follow Gould in
avoiding the distractions of morphology, focusing rather on the genes that ex-
press themselves in the structure of programs. The genomics of programming
is type theory, the systematic study of computation. Originally formulated as
a foundation for mathematics in which propositions are types and proofs of
propositions are seen as programs of that type, the theory of types has become

1



the central organizing principle of programming language research that uni-
fies language semantics, program verification, and compiler implementation.
Through deep connections to logic, algebra, and topology, type theory is the
touchstone of truth in programming languages, isolating and clarifying the
central concepts of computation. My account of the structure of programming
languages ignores morphology, and focuses instead on type structure.

Paradigms are clades. Types are genes.

References

S.J. Gould. Hen’s Teeth and Horse’s Toes. Norton, 1983. ISBN 9780393311037.
URL https://books.google.ca/books?id=EPh9jD0XwR4C.

Shriram Krishnamurthy. Teaching programming languages in
a post-linnaean age. In ACM SIGPLAN Workshop on Un-
dergraduate Programming Language Curricula, 2008. URL
https://cs.brown.edu/~sk/Publications/Papers/Published/sk-teach-pl-post-linnaean/.

Thomas S Kuhn. The Structure of Scientific Revolutions: 2d Ed., enl. University of
Chicago Press, 1975.

2


