
Algorithmic λ-Calculus for the
Design, Analysis, and Implementation of Parallel Algorithms

Umut Acar, Guy Blelloch, Robert Harper Carnegie Mellon University
John Reppy University of Chicago

1 Introduction
The early 1930s were bad years for world affairs, but great years for what would eventually be called
Computer Science. In 1932, Alonzo Church at Princeton described his λ-calculus as a formal system for
mathematical logic [19] and in 1935 argued that any function on the natural numbers that can be effectively
computed can be computed with his calculus [20]. Independently in 1935, as a master’s student at Cambridge,
Alan Turing was developing his machine model of computation and a year later he too argued that his
model could compute all computable functions on the natural numbers and showed that his machine and the
λ-calculus are equivalent [69]. The fact that two such different models of computation calculate the same
functions was solid evidence that they both represented an inherent class of computable functions. From this
arose the so-called Church-Turing thesis, and although the thesis by itself is one of the most important ideas
in Computer Science, the influence of Church and Turing’s models go far beyond the thesis itself.

Turing’s machine has become the foundation for the study of algorithms and computational complex-
ity [30]. Hartmanis and Stearns initiated the study of complexity in the early 60s, and this was quickly
followed by seminal work of Blum (on an axiomatic theory), Cooke and Levin (on the question of P vs. NP),
and Karp (on methodologies for proving problems are NP-complete). There has been and continues to be a
huge amount of research in the area, and together the work has led to several Turing awards. All this work
has been defined in terms of minor variants of the Turing machine. In the field of Algorithms other models,
such at the Random Access Machine (RAM), have been developed that are closer to physical machines. Even
these machines, however, were heavily influenced by the Turing machine. The practical influence of the
Turing Machine and the models derived from it is huge. It forms the basis of all analysis of algorithms, the
basis for the security of many protocols, and the basis for a wide variety of hardness results that have helped
guide researchers away from trying to solve problems that are likely impossible.

On the other side, Church’s calculus has become the foundation for the theory of programming lan-
guages [16]. Dana Scott and Christopher Strachey developed denotational semantics in the late 60s, and
this was followed by the seminal work by Per Martin-Löf (on Intuitionistic Type Theory), Robin Milner (on
LCF and type theory), and Jean-Yves Girard and John C. Reynolds (on data abstraction and polymorphism).
Again, there has been and continues to be a huge amount of research in the area, and together the work has
led to several Turing Awards. This work was almost all based on Church’s calculus and logical formalism.
As with Turing’s machine, the theoretical and practical influence of Church’s calculus and the models derived
from it are huge. The calculus forms the core of mathematically-grounded functional languages such as ML
and Haskell, and even plays an increasing role in less mathematically-grounded languages such as Lisp, Rust,
Scala, Swift, and even C++ and Java, which have both recently added λ-abstraction. The λ-calculus also
forms the core of almost all modern interactive theorem provers, including NuPRL, Coq, Isabelle, and HOL.

Despite the pervasive influence of Turing’s machine in the performance analysis of programs and
the pervasive influence of Church’s calculus in the meaning and correctness of programs, there has been
surprisingly little overlap of the work. Indeed, beyond Turing’s initial paper, it is hard to find a research paper
that even mentions both formalisms. As a consequence, the subfields of the theory of programming languages
and the theory of algorithms and complexity seem to be as far apart as just about any two other subfields of
computer science.

fix mergesort A =
if |A| ≤ 1 then A
else let (L,R) = split(A)

in par L′ = mergesort(L) and R′ = mergesort(R)
in merge(L′,R′)

fix quicksort A =
if |A| ≤ 1 then A
else par L = quicksort(〈x ∈ A[0] | x < p〉) and G = quicksort(〈x ∈ A[0] | x > p〉)

in L + 〈x ∈ A[0] | x = p〉 + G

Figure 1: Mergesort and quicksort in λ-alg (extended with sequences). The par .. and .. indicates parallel
calls, and the merge itself can be parallelized, as well as the comprehensions. With a parallel merge, the
mergesort algorithm has work W(n) = O(n log n) and span S (n) = O(log2 n) (n = |A|) [9]. Assuming the input
is randomly permuted, then quicksort algorithm has work O(kn log n) and span O(k log2 n) with probability
O(1 − 1/nk). The realizability theorem for a Parallel-RAM with P processors should give a mapping to
O(W(n)/P + f (P)S (n)) time, where f (P) is a function depending on the specifics of the Parallel-RAM.

The limits of the human compiler. One might wonder how is it possible that computer science, especially
the more theoretical side, has done so well while having two completely different theories for algorithms and
programming languages. A key reason this separation has worked to date is because languages are simple
enough that humans can effectively compile code in their head. When shown an algorithm in pseudocode, or
even a concrete language such as C or Java, the algorithm designer knows, for example, that the reads and
writes to array elements are constant time operations on the RAM, and also understands (at least implicitly)
that recursive calls involve pushing some constant size data onto a stack and later popping it (or even that
tail recursion does not require this overhead), and that memory allocation can be implemented efficiently
on the RAM (at least most of the time, and perhaps ignoring the garbage collector). The mapping from the
programming language to the machine model is rather direct.

Unfortunately, with the advent of commodity parallel machines, as well as the advent of commodity
programming languages supporting increasingly powerful features (e.g., higher-order functions, dynamic
dispatch, automatic memory management) this is no longer possible because in requires the human to
understand all these complicated features are compiled, and possibly interact. This is especially true when
using fine-grained dynamic parallelism, where tasks can be created on the fly, and scheduler is required to
map tasks onto processors. We believe that for parallelism the abstraction level presented by a machine model,
such as the Parallel-RAM [44], is too low level for reasoning about and programming parallel algorithms.
Therefore, no satisfactory machine model has been developed.

This Proposal. In this proposal we suggest an end-to-end approach to melding the ideas from the program-
ming languages and algorithms community — i.e., the ideas that arose from Church and Turing, respectively.
By end-to-end we mean from algorithm design and analysis to efficient running code. Our thesis is that
some form of melding of the ideas is necessary for a sound and practical theory of parallel algorithms.
Although we also believe that melding the ideas might be useful in understanding other areas of complexity
and programming, the focus of our proposal is on the design, analysis and implementation of algorithms,
and in particular parallel algorithms — this is where we believe melding the ideas is needed most. For this
purpose we propose to use the following framework for our research:

λ-alg. To specify an abstract programming language that has a rigorous behavioral and cost semantics,
which defines both what programs do and the (abstract) efficiency with which they do it. By an “abstract”
language we mean it should be thought of in a similar way as the RAM (Random Access Machine)

2

model — i.e., not as a particular instruction set such as the x86 instruction set nor as a particular
processor family such as the Xeon E7, but as simplified abstract model. The core language-model
we propose is the typed λ-calculus with a few extensions and a cost semantics based on call-by-value
evaluation. Parallelism is expressed by simple fork-join construct, and costs for the core will be defined
in terms of work and span (described in more detail below), as well as space. The language will be
designed so that it can be reasonably easily extended with additional features. We refer to it as the
Algorithmic λ-calculus, or λ-alg for short. An example of λ-alg is given in Figure 1.

Realizability theorems. To prove realizability theorems that relate the abstract cost specified by the high-
level language to the concrete cost of more traditional machine models such as the parallel-RAM.
These theorems are the part that ties together the two sides of theory. In the discussion above they
can be thought of as the glue that removes the need to compile algorithms in one’s head to understand
how they perform on a machine model. Instead, the algorithm designer understands cost at a more
abstract level and is given a translation of these costs into time (or other resources) on a machine model.
It is important that the bounds produced by this relationship are useful for analyzing algorithms and
comparing their asymptotic performance. As targets of the realizability theorems we will consider
machine models with various levels of detail, including models that account for caching.

Resource bounded implementations. To implement a parallel ML dialect that embodies λ-alg and its
extensions on shared memory multicore machines. Having realizability theorems for abstract machines
is useful for relating the two sides of theory, but ultimately we have the very practical objective of being
able to analyze parallel algorithms in an abstract model for the purpose of understanding performance
(at least roughly) on real parallel machines. We believe that having an actual implementation that is
faithful to the realizability theorem, and identifies impracticalities in the machine models themselves
is very important. We fully realize that abstract machines are themselves only rough approximations
(sometimes not even that) of real machines. In this implementation we will also be concerned with not
just asymptotics, but minimizing constant factors in performance.

Within this framework we plan to first apply the approach to a core λ-alg, and then add various extensions
(e.g., arrays, futures, memoization). Each of these extensions will require additions across all three levels.

The PIs have significant experience on the topics mentioned above [9, 12, 36, 66, 28, 37, 13], and indeed
as a general framework the idea of cost semantics and provably efficient implementations is not new. However
previous work has never been put in a common framework, and more importantly none of the work has
been accompanied by a corresponding real implementation that attempts to be faithful to the costs. We
believe this framework will allow us (and others) to study many extensions of the core language, as well as
considering many variants of the target machine models. We believe the implementation will be important in
demonstrating that the approach is not just of theoretical interest, but can lead to a practical methodology for
designing parallel algorithms. The key contributions of the proposed work are the following:

Proposed Work and Contributions.

• The definition of a single common core λ-alg model. Although many of the ideas exist, there is effort
required to put the pieces in a common framework, to document it, and to formalize it in an interactive
proof system such as Coq and/or Twelf.
• Realizability cost bounds for the core λ-alg on abstract (idealized) machine model, and in particular the

asynchronous Parallel-RAM. Although some of these proofs has been done in “paper and pencil” we
note that not even mapping the sequential part of the λ-calculus onto a sequential RAM, even ignoring
memory management, has been done in a formal setting.
• Formal analysis and verification of the costs of the scheduler itself as part of the implementation.

Previous work has considered idealized greedy schedulers. Practical schedulers, however, are often

3

based on work-stealing and we know of no work formally analyzing their cost.
• Building on previous work by the PIs on parallel implementations of ML [27, 66, 62, 28, 6, 2, 61], we

will develop an implementation of λ-alg’s parallelism model and prove that the implentation is faithful
to our asymptotic cost bounds (to the extent that the target machine is faithful to our abstract machine
model), but also to achieve practical efficiency — e.g., considering constant factors.
• Extensions to the core λ-alg with a variety of features, including aggregate data types (e.g., arrays, sets,

maps), interactive parallelism, and other forms of parallelism such as futures and or-parallelism. These
features involve extending both the behavioral and cost semantics, extending the realizability theorems
to capture the costs of these extensions, and ultimately extending the compiler and runtime system.
• Extensions of the target machine models for the realizability theorems with more realistic cost as-

sumptions that capture characteristics of modern parallel machines. For example we plan to consider
memory hierarchies. Harper and Blelloch have done this for sequential lambda-calculus on a single
level cache [13]. Here we propose extending this to the parallel context.
• Validation of the approach by developing a collection of algorithms expressed in the λ-alg (plus

extensions). This will include asymptotic analysis of the algorithms in the λ-alg cost model, and
where possible proven in a proof system. It will also include empirical measurements of runtime on
our implementation on shared memory multicore machines, and validation that the analysis at least
approximates measured times in terms of scalability of problem size and processor counts.

In summary the work will involve using λ-alg as a platform for an end-to-end study and testbed to
demonstrate how to use language-based cost models for the design, analysis and efficient (asymptotically and
practically) implementation of parallel algorithms.

λ-alg is pure, not having any side effects. We believe this is important in the context of parallelism since it
guarantees determinism, and means that the behavioral semantics are sequential. Many of the extensions we
will include, however, will involve benign effects. For example our work on efficient-arrays will involve effects
in the implementation to achieve the required bounds. Similarly the work on memoization will involve effects
in the implementation. The goal is to encapsulate the non-determinism due to effects in the implementation
so that the language is itself deterministic, while getting the benefits of better performance. Our machine
models will necessarily incorporate effects. λ-alg uses call-by-value (strict) instead of call-by-need (lazy)
evaluation, as used in, for example, Haskell. We believe call-by-value is a much better evaluation strategy for
reasoning about costs, and also is much better suited for parallelism. Indeed most of the effort in generating
parallel extensions to Haskell has involved using strict subsets or strictness annotations [53, 52, 59]. It would
not be hard to add a lazy application rule to λ-alg.

Although the focus of the proposed work is on research on language-based cost models, another important
aspect of the work will be to develop teaching material. The research is motivated in part by a sophomore-
level course that Acar, Blelloch and Harper have been teaching at CMU. The course is the introduction to
data-structures and algorithms course required for all of our major and taken by about 400 students a year.
It teaches parallelism from the start and uses a purely functional style—not using side effects, and makes
significant use of higher-order functions. In fact the pseudocode used is effectively λ-alg although without a
formal semantics. We plan to continue developing the course with the goal of making the material available
to others.

2 The λ-alg Formalism
Church’s legacy provides us with a model of computation based on calculation, achieving a unification
of computation and mathematics that is absent in traditional machine-based programming. Calculation is
naturally parallel, for there is no inherent ordering among the sub-calculations in a formula. For example, to
evaluate a pair of expressions (e1, e2), we can, if we like, evaluate the ei in either order to obtain their simplified

4

forms vi, then put them back together to form (v1, v2), the evaluated pair. But we can just as well evaluate the
ei’s simultaneously to obtain their values, from which the value of the pair can be constructed. Importantly,
the values of the two expressions are the same, regardless of whether they are evaluated sequentially or
simultaneously. Regardless of the ordering or the simultaneity of computations, the outcome is always the
same. In computer science terms the correctness of a parallel program is never in doubt, for it behaves the
same as any chosen sequential calculation order.

Thus, in Church’s framework, parallelism is not about correctness, but rather efficiency. Ideally, the
more computing resources we have available, the more we can perform calculations simultaneously, and the
faster we can compute. The only limitation is the inherent sequentiality of a computation. For example, if
we are to compute

√
(3 + 2) + (2 + 2), we can perform the innermost pair of additions simultaneously, but

must obviously defer computing the outer addition, or the square root, until those computations complete.
Parallel algorithm design is concerned with maximizing such opportunities by minimizing needless sequential
dependencies. In previous work [9, 38] we have developed a framework for expressing the efficiency
of functional programs using a cost semantics that not only defines the outcome of a computation, but
also identifies the dependencies among the subcomputations in the form of a cost graph. The work, or
sequential complexity, of a program is the number of nodes (atomic computation steps) in this graph; the
span, or idealized parallel complexity, is the depth or diameter, of this graph, the longest chain of sequential
dependencies among subcomputation. For example, in the case of evaluating a pair (e1, e2), if evaluation of ei

takes wi steps, then evaluation of the pair takes w1 + w2 + 1 steps, reflecting the work of constructing the pair.
Similarly, if the span of ei is si, then the span of the pair is max(s1, s2) + 1, reflecting the independence of the
two components, and the dependence of the pair on their results.

The assignment of a cost graph to a computation is a matter of definition; the rules define the cost of
evaluation of each form of expression. There is room for variation, and there is room for error, in these
definitions. It is therefore important to validate the cost semantics against a variety of lower-level models by
showing that it is realizable on these models with specified bounds. The paradigmatic result of this kind is
Brent’s Principle [15], which states that if an expression e has work w and span d, then it can be executed on
p processors in time no greater than w/p + s [9, 38]. This bound is at most twice optimal, for we can perform
the work in chunks of p at a time, limited only by the span s, which measures the inherent sequentiality of the
algorithm. Brent’s Principle provides the link between the programmer-level understanding of the complexity
of an algorithm and the compiler-level realization of that algorithm on an abstract machine. At this level of
abstraction the central implementation problem is scheduling the work onto the processors, and managing the
interaction between the work and the scheduler. It is here, and only here, that one must take into account
questions of synchronization, and of the efficient use of machine resources. By varying the choice of machine
model we may take account of other hardware characteristics such as asynchronous processors [34], memory
hierarchies [11], and the nature of the interconnect [49].

Thus, the λ-alg formalism serves a number of purposes for our work. First, it provides a mathematically
precise framework for reasoning about the correctness and complexity of parallel algorithms. Having a cost
semantics makes it possible for the programmer or algorithm designer to think at the level of the code as
written, rather than in terms of an imaginary compilation to a low-level machine model whose complexity is
defined by the number of instructions executed. Abstract cost measures, such as cache locality considerations,
are readily accommodated at the language level [13], rather than derived from careful analysis of machine
characteristics and compilation strategy. Second, the formalism abstracts from the details of any specific
programming language, allowing results to be transferred to a variety of settings. To be sure, λ-alg, being
derived from the λ-calculus, is most naturally implemented by transliteration into a functional language
such as ML [65, 51] or Manticore [28]. But it can also be realized in an imperative language, such as
C++, with sufficient care [3]. Third, the formalism supports the concept of a Brent-style resource-bounded
implementation on a variety of platforms in which we may prove bounds on the complexity of the compiled

5

code as a function of the abstract complexity assigned to it by the cost semantics. Thus, in toto, we achieve a
rigorous, practical methodology for parallel algorithm design and implementation grounded in a precisely
specified semantics for λ-alg. Fourth, such precise specifications are essential for mechanization of proofs of
the correctness and complexity of algorithms, and of the resource bounds on an implementation. Given the
complexity of the proofs involved, we consider it essential to explore the use of formal proof development
systems, such as Coq [21] or Agda [4], to verify informal arguments.

2.1 Formulation of λ-alg

To make these ideas more concrete, let us consider a simple fragment of λ-alg consisting of a purely functional
core enriched with a binary parallel evaluation construct presented in the style of Practical Foundations
for Programming Languages [38]. The syntax is specified by the following definition in which the evident
binding and scope conventions are left implicit:

τ ::= nat natural numbers
τ1 ⇀ τ2 partial functions

e ::= x variable
z zero
s(e) successor
ifz e {z ↪→ e0 | s(x) ↪→ e1} zero test
λ (x : τ) e function
e1(e2) application
fix x : τ is e recursion
par x1 = e1 and x2 = e2 in e parallel let

The core of the language consists of a base type of natural numbers together with functions between any
two types, of arbitrary order. Parallelism is supported by a binding construct for evaluating two expressions
simultaneously, and substituting their values into a common “join point” expression.1

For the sake of brevity, we omit the static semantics (typing rules) for λ-alg, which is standard for a typed
functional language. The dynamic semantics, or just dynamics for short, defines the deterministic process by
which expressions are evaluated and assigns an abstract cost to evaluation that defines both the sequential
complexity, or work, of the computation as the total number of steps and the idealized parallel complexity, or
span, of the computation as the length of the longest chain of sequential dependencies within the computation.
The span may also be thought of as the idealized parallel time complexity in that it abstracts from the number
of processing elements required to complete the computation, much as the semantics abstracts from the
memory capacity of the processor(s). The ratio of the work to the span defines the parallelizability of the
computation. Intuitively, if the span is small, then the work can be done in parallel, whereas if the span is
proportional to the work, there is little scope for parallelism. This ratio is a key figure of merit for algorithm
design.

The costs assigned to evaluations are convenient presented by cost graphs, which in the present case are a
class of series-parallel graphs representing the dynamic dependency structure of the evaluation as it unfolds.
Cost graphs are defined by the grammar

c ::= 0 | 1 | c1 ⊗ c2 | c1 ⊕ c2,

representing the unit and zero costs, parallel and sequential combination of costs. Costs may be thought of as
series-parallel dag’s in which the nodes represent units of work. Accordingly, the work, W(c), of a cost graph,
c, is defined to be its size, and the span, S (c), is defined to be its depth or diameter.

1There are many alternative formulations that are substantially equivalent. See below for a brief discussion of n-ary parallelism
derived from operations on sequences.

6

e ⇓c z e0 ⇓
c0 v

ifz e {z ↪→ e0 | s(x) ↪→ e1} ⇓
c⊕c0⊕1 v

e ⇓c s(n) [n/x]e1 ⇓
c1 v1

ifz e {z ↪→ e0 | s(x) ↪→ e1} ⇓
c⊕c1⊕1 v (1a)

λ (x : τ1) e2 ⇓
1 λ (x : τ1) e2

e1 ⇓
c1 λ (x : τ2) e e2 ⇓

c2 v2 [v2/x]e ⇓c v
e1(e2) ⇓(c1⊗c2)⊕c⊕1 v (1b)

[fix x : τ is e/x]e ⇓c v
fix x : τ is e ⇓c⊕1 v

e1 ⇓
c1 v1 e2 ⇓

c2 v2 [v1, v2/x1, x2]e ⇓c v
par x1 = e1 and x2 = e2 in e ⇓(c1⊗c2)⊕1⊕c v (1c)

Figure 2: Dynamics of λ-alg (Selected Rules)

The cost dynamics of λ-alg is given in Figure 2. The rules therein define the evaluation judgment e ⇓c v
stating that the (closed) expression e evaluates to the value v with cost c. The cost dynamics specifies
evaluation in the usual way for a call-by-value (strict) functional language, but enriched with a special
construct for parallel binding of two expressions for use within another. For the sake of illustration, the
rule for evaluating function applications specifies that the function and argument are evaluated in parallel,
and then the result of substituting the argument into the function is evaluated. The rule for parallel binding
specifies that the two bound expressions are evaluated in parallel, and their values are substituted into the
scope of the binding, which therefore depends on the values of the bindings. In either case the resulting
cost graph is (c1 ⊗ c2) ⊕ 1 ⊕ c, which uses the graph combinators to express both its parallel and sequential
aspects. Specifically, the product represents parallelism, the sum represents sequentiality, and the unit cost
represents the step of substitution (binding values to variables).

As an example, consider a simple recursive algorithm for computing the Fibonacci numbers. Although
this function is not an efficient way to compute Fibonacci numbers, it is traditionally used to illustrate a
simple parallel computation. We can write this function in λ-alg (taking small liberties with operations on
the natural numbers) as shown in Figure 3. Figure 4 shows a slightly simplified dag for an instance of the
function fib with argument n = 3. In the figure, vertices are labeled with the “steps” of the computation
that they correspond to. For example, the vertex labeled by fib(2) calls to a call to fib with argument
2, and the vertex labeled by 1+1 correspond to the step computing the sum 1+1. The edges between the
vertices represent the sequential control dependencies between the corresponding computations. For, example
vertices with out-degree two “fork” two parallel computations. Vertices with in-degree two “join” two parallel
computations; a join vertex synchronizes its two in-neighbors by waiting for both of them to complete before
executing. Such fork and join edges correspond to the par construct in the cost semantics of λ-alg.

2.2 Realizability of the λ-alg Semantics

The cost graph assignment given by the dynamics provides the foundation for analyzing the complexity of
programs written in λ-alg. The programmer needs nothing more than the cost dynamics to derive asymptotic
bounds on the efficiency of his or her program. Importantly, no “hand compilation” is required, nor any
implicit understanding of how the language is implemented. On the other hand the association of cost graphs
to evaluations is motivated by the intended implementation of the language. To ensure that the costs are

fix fib n =
if n <= 1 then n
else

par x = fib (n - 1)
and y = fib (n - 2)
in x + y

Figure 3: Code for parallel Fibonacci.

fib(3)

fib(2)

fib(1)=1fib(1)=1 fib(0)=1

1+1=2

2+1=3
Figure 4: A dag representation of fib(3).

7

e1 7−→ e′1 e2 7−→ e′2
e1(e2) 7−→ e′1(e′2) (λ (x : τ2) e)(v2) 7−→ [v2/x]e (2a)

e1 7−→ e′1 e2 7−→ e′2
par e1 = e2 and x1 = x2 in e 7−→ par e′1 = e′2 and x1 = x2 in e (2b)

par v1 = v2 and x1 = x2 in e 7−→ [v1/v2]x1x2e (2c)

Figure 5: Parallel Transition Dynamics of λ-alg (Selected Rules)

sensible, they must be validated by showing that they can be realized on an (idealized) computer.
To do so we model a computer by a state transition system whose transitions correspond to abstract

machine instructions that alter the state. There are many choices for the transition system, according to what
aspects of the computation are to be made salient. For the purposes of asymptotic analysis of the work and
span, it suffices to consider a transition system whose states are expressions and whose steps correspond to
the simultaneous execution of any number of primitive calculation steps. Such a transition system is given in
Figure 5. The cost dynamics given above is validated by the following realization theorem relating the span
of the cost graph to the number of transitions of the idealized computer implementing the λ-alg instruction
set.

Theorem 1 (Span Validation). e ⇓c v with S (c) = s iff e 7−→s v.

The next step of the realizability is to map the transition system onto an abstract machine such as the
asynchronous Parallel-RAM. This requires simulating steps of the transition system on RAM style processors,
and accounting for the costs of the scheduler, and the memory manager. This will serve as the bridge between
the semantics and the resource bounded implementation.

Numerous extensions of and variations on λ-alg are possible. For example, it may be extended with
sum, product, and recursive types to model data structures such as trees or lists, a necessity for practical
programming.2 It may also be extended with exceptions, or even with a command layer to admit computational
effects [38]. Furthermore, one may also consider notions of cost capturing other aspects of a computation,
such as its cache locality behavior [13], a well-known difficulty for any abstract programming language,
sequential or parallel. Such models must be shown to be realizable with respect to a lower-level machine
model, following along the lines of Brent’s seminal approach.

3 Resource-Bounded Implementation
To achieve our goal of end-to-end analyzability of parallel programs, we shall develop an embodiment of the
λ-alg calculus and its extensions as a functional programming language. Rather than building a new parallel
language implementation from scratch, which is a substantial effort, we plan to leverage the PI’s previous
work on parallel implementations of ML, which has so far taken place in the context of the Manticore
system [27, 62, 28, 8, 6], and extensions to the high-performance MLton compiler [55, 66, 2, 61]. Both of
these systems provide implementations of a parallel dialect of Standard ML, which we call Parallel ML (PML).
Parallel ML supports a superset of the core λ-alg features.

While they remained mostly separate projects until the last couple of years, these two systems have been
converging. For example, the Manticore project has started using the MLton front-end instead in its compiler.
We plan to continue this effort of convergence to produce one polished implementation that can be used at
our institutions and elsewhere in research and education.

2One important extension, with finite sequences, is discussed in Section 4.

8

In the rest of this section, we briefly describe aspects of the Manticore implementation that are relevant to
the proposed work, and then describe a plan for verifying that the compiler realizes the λ-alg cost semantics.
We believe that these techniques are general enough to apply to other compilers with similar architecture,
such as the MLton compiler.

The PML compiler is organized as a series of phases, each of which is defined by a distinct intermediate
representation (IR). Of particular importance is the BOM IR, which is a monomorphic core-ML extended
with first-class continuations, mutable data structures, atomic memory operations, and a processor abstraction.
In addition to being a representation suitable for a host of optimizations, the PML compiler also supports
importing code written in BOM. We use this mechanism to define the machine-level representations of
primitive types and operations (e.g., integer arithmetic) and as the language for programming many aspects
of the PML runtime system, such as thread creation, thread scheduling, and work stealing [7]. When a
PML program is compiled, the BOM code that implements the Basis Library and runtime system are loaded
and combined with the BOM code generated from the source program. In addition to enabling cross-layer
optimizations, this process makes the scheduling policy manifest in the intermediate program. Thus, a cost
semantics for BOM can be used to reason about both the cost of the user’s program and the cost of the
implementation’s runtime.

After optimization, the BOM IR is first CPS converted to our CPS IR,3 and then closure-converted to
a first-order control-flow-graph (CFG) IR. We then generate assembly code from the CFG IR using either
the MLRISC framework [33, 32] or, more recently, LLVM [24]. The assembly code is linked with a small
runtime system written in C that implements a processor abstraction layer on top of pthreads, the garbage
collector, and an interface to operating system services.

To connect the λ-alg cost model to our implementation will require first giving a cost semantics to the
BOM IR. Since this IR is basically an extended λ-calculus (similar in some ways to ANF [26]), developing
a cost semantics for single-threaded BOM code should be similar to that developed for λ-alg. Beyond this
cost semantics for sequential BOM code, we need to account for multiple processors and interprocessor
coordination and communication.

Once we have related the cost semantics of λ-alg to a realization in BOM, we need to also verify that the
rest of the compiler pipeline is faithful to the BOM cost semantics. This process will involve showing that for
each step of the compiler pipeline, the transformations only introduce constant overhead (e.g., converting
a nested function into a first-order function with an explicit heap-allocated closure requires allocating the
closure, which has cost bounded by the number of live variables for the function). We also must show
that runtime system costs, such as garbage collection, can be accounted for by the original cost model (by
amortization arguments).

The theoretical work on establishing the faithfulness of the cost of the compilation process with respect
to the cost semantics will primarily involve asymptotic analysis, possibly ignoring important constant factors.
We shall, however, aim to create a high-performance, scalable, state-of-the art parallel language implementa-
tion. Prior work on Manticore has shown that it is possible to build very scalable implementations of parallel
functional languages, and work on the MLton compiler has demonstrated that functional language imple-
mentations can be competitive with traditional imperative languages for many applications. We specifically
identify the following implementation issues that have a direct impact on scalability and performance.

• Garbage collection is a potential sequential bottleneck and a significant source of runtime overhead.
We have demonstrated scalable parallel garbage collection techniques [5, 61] for PML that we believe
can be further improved. The resulting garbage collection techniques will have to be shown to impose

3 “CPS” stands for Continuation-Passing Style and is a representation that makes continuations explicit. This property is
particularly useful for concurrent and parallel language implementations, since continuations provide a natural representation of
suspended threads.

9

e0 ⇓
c0 v0 . . . en−1 ⇓

cn−1 vn−1

[e0, . . . ,en−1] ⇓
⊗n−1

i=0 ci [v0, . . . ,vn−1]
e ⇓c [v0, . . . ,vn−1]
|e| ⇓c⊕1 n (3a)

e1 ⇓
c1 [v0, . . . ,vn−1] e2 ⇓

c2 i (0 ≤ i < n)
e1[e2] ⇓c1⊕c2⊕1 vi (3b)

e2 ⇓
c n [0/x]e1 ⇓

c0 v0 . . . [n − 1/x]e1 ⇓
cn−1 vn−1

tab(x.e1; e2) ⇓c⊕
⊗n−1

i=0 ci [v0, . . . ,vn−1] (3c)

Figure 6: Extension of λ-alg With Sequences

only constant-time overhead.
• Related to garbage collection are techniques used to improve data locality and reduce the overhead from

NUMA architectures. This is an area where the semantics of ML allows implementations significant
freedom to relocate, replicate, and reorganize data to improve locality.
• Efficient parallel implementations require effective scheduling of work and dynamic load balancing.

We have explored various advanced techniques for scheduling and work stealing [27, 73, 8, 3], but we
have not yet tried integrating them into a cost model.

Based on the outcome of our empirical analysis, we also plan to augment our cost models to take into
account some of these costs. A particularly interesting extension would be to extend the cost semantics with
information about allocated locations to account for data locality.

4 Data Parallelism via Aggregates
Aggregates such as sequences, sets, maps and graphs form a core component of programming parallel
algorithms. Any aggregate data type can be built on top of the core λ-alg using recursive types in a way that
is reasonably suited for parallelism—e.g. using balanced trees (instead of lists). This is perfectly sufficient
for many purposes, at least asymptotically—for example map, reduce or filter on sequences can all be
implemented with linear work and logarithmic span (assuming the function being passed is constant work).
However, for some algorithms using recursive types will involve a O(log n) loss in efficiency. In particular
this is the case if the algorithm requires random access into a sequence. For this purpose we plan to include
array-sequences as an extension to the core λ-alg, and extend the behavioral and cost semantics appropriately.
We will also add some syntactic sugar for sequence comprehensions (as used in Figure 1).

The first kind of sequence we will add is a purely functional sequence, allowing constant-work random-
access reads from the sequence. We refer to these as array sequences. The extension of λ-alg with array
sequences is given in Figure 6. The extension just adds five functions (forms), one for creating a sequence,
one for taking the length, one for accessing an element, one for grabbing a subsequence (not shown in the
rules), and a tabulate function (tab).

Although array sequences are sufficient for implementing many other functions efficiently (e.g. map,
reduce, zip), and are also sufficient to implement a variety of algorithms (including several graph algorithms)
efficiently, they do not supply an efficient way to update the sequence. Updating effectively requires copying
the full sequence and therefore takes linear work (although constant span). In many algorithms it is necessary
to update a sequence repeatedly. A good example of this is in the implementation of depth-first-search on a
graph. This is an algorithm that can be implemented in linear work in the standard RAM model. The problem
with achieving this bound in λ-alg extended with just array sequences is that maintaining the set of vertices
that have been visited requires an update each time a vertex is visited. Using trees to represent the set requires
O(log n) work per update, whereas array sequences require linear work per update (i.e. in this case trees are
better, but still not as good as for mutable arrays). This problem leads to a logarithmic loss in efficiency for a

10

variety of problems including generating a random permutation, finding biconnected components, topological
sort, and cycle detection on graphs. We will refer to this as the array update problem.

Threaded Aggregate types

A variety of approaches have been suggested to alleviate the array-update problem. Many of the approaches
are based on the observation that if there is only a single reference to an array, it can be safely updated in
place. The approaches include using monads [56, 75], linear types [35, 74], or reference counting [40, 39].
The problem with all these approaches is they do not work well with parallelism. In fact monads and linear
types require the program’s use of the array to be single threaded. They also require new language features
that are only there for helping with efficiency and not at all necessary for the behavioral semantics (pure
arrays are perfectly sufficient for behavior). Reference counting can in theory be used with parallelism, but it
is hard to reason about efficiency since a count could depend on scheduling order.

Another class of approaches is to fully support functional arrays, even with sharing, but using more
sophisticated data structures. This is sometimes referred to as version tree arrays [1] or fully persistent
arrays [23]. Previous suggestions for such implementations, however, do not support parallelism [18, 58].

To deal with the array update problem we plan to extend λ-alg with threaded aggregate types which
are motivated by version trees, but also safe for parallelism. In ongoing work [10] we are studying such an
approach. Here we briefly describe how it might be included in λ-alg as an extension, how the realizability
theorem can work, and how to make a resource bounded implementation

Extending λ-alg. The extension to the core language will behaviorally act just like pure arrays with
absolutely no restrictions on how the arrays are used (i.e. they can be passed to two parallel tasks). They will
have the same behavioral semantics as given in Figure 6 but will also support an update function that updates
a single location (or possibly multiple locations). The cost semantics, however will be different. The idea is
to extend them to keep track of whether an array is a leaf or interior node in the version tree. This requires
maintaining a store in the cost-semantics that maps an array to whether it is interior or a leaf. The cost of
reading and updating an array depends on this state, and in particular is constant work for reading or updating
a leaf array. The innovative part of the approach is how the store is maintained when making parallel calls.
Instead of forcing single threadeness, it makes a copy of the store in both branches. These copies are then
merged when the parallel branches join.

Extending realizability. To realize the cost bounds on a parallel machine model we have to implement a
persistent data structure for the arrays. Then to account for different interleavings of the machine threads,
which, as it turns out, makes a difference to the internal structures of the persistent arrays, we need to consider
all possible interleavings and take the worst case. This means the realizability bound is a worst-case bound,
and in fact the bounds could be better for a particular run.

Extending the resource bounded implementation. As part of the research we plan to implement the
approach as part of the runtime system. The approach is unlikely to require many if any changes to the
compiler itself. Beyond just arrays we plan to extend the idea to other aggregate types such as maps and sets.
In particular we believe, for example, that we can implement sets using hash tables allowing for constant
time reads and updates. As with arrays this requires some form of version tree since in a persistent setting we
need to be able to access old versions. Finally we plan to run a broad set of experiments that analyze how
efficient these approaches are compared to more standard imperative style programming.

5 Interactive Parallelism
Since shared-memory parallelism became mainstream in the mid 2000s, there has been much work on
developing programming languages, scheduling algorithms and runtime systems to support parallel computing

11

fix helloFib n i =
let

fix hello i =
if i <= 0 then bg ()
else
let
_ = output(‘‘Last name:’’)
x = input ()
_ = output(‘‘ First name:’’)
y = input ()
_ = output(‘‘Hello ’’ ^ x ^ ‘‘ ‘‘ ^ y)

in hello (i − 1)
in par r = fib n

and x = f g(hello i)

Figure 7: A simple parallel interactive program.

par

fib(3)

fib(2)

fib(1)=1fib(1)=1 fib(0)=1

1+1=2

2+1=3

output

input

output

input

output

(3, ())

δ1

δ2

Figure 8: The dag of helloFib 3 1.

(e.g., [31, 47, 50, 42, 43, 17, 28, 46]). The focus of nearly all of this work has been on minimizing completion
time in compute-intensive applications such as sorting routines, matrix operations, scientific simulations (e.g.,
the Barnes-Hut algorithm), etc. The common feature of these applications is that they perform a large amount
of computation on given data with little interaction with the world, for example with a user or another piece
of software. Throughput, usually measured as the number of operations in unit time, has been used as the key
measure of performance in such applications.

In this project, we will extend λ-alg to support interactive parallel programs that communicate with the
external world as they perform compute-intensive tasks. Example interactive parallel applications include web
servers, games, and similar interactive systems. Such interactive parallel applications mix compute-intensive
tasks with user interaction, e.g., a game must interact responsively as it also ensures that compute-intensive
calculations proceed as quickly as possible. As a simple illustrative example, consider the program shown in
Figure 7. For now, please ignore the underlined keywords bg and f g. The function hello interacts with the
user in a very simple way by requesting the user’s first and last names and greeting them i times. While it
interacts with the user, the function also computes the Fibonacci of n, which exemplifies a relatively large
parallel computation. Consider compiling and executing this program in a traditional parallel programming
system such as one that uses work stealing with n = 42 and i = 20. Since such systems do not give priority
to the interactive function hello, it starves as the many fine-grained threads created by the call to fib 42
take over the available processors (we confirmed this by implementing the example in a system based on
work stealing). Following the traditional recipe for writing interactive code [64], we could instead dedicate a
separate pthread to the interactive hello function and trust that the OS will do the right thing, but it might not.
It is thus not clear how such an approach would scale to larger programs involving many more interactive and
parallel tasks, without controlling the scheduling of interactive threads.

Extending λ-alg: prioritized computations. To enable parallel interaction, we extend λ-alg with basic
input-output constructs and with two simple staging constructs: background and foreground, written in code
as bg and fg respectively. These constructs, which correspond to prev and next from Linear Temporal
Logic [22, 60], can then be interpreted by the semantics to assign a priority to computations. For example,
we can say that bg e runs in the background, i.e., with low priority. Symmetrically, the expression fg e runs in
the foreground, i.e., with high priority. Such an interpretation corresponds to the “two worlds” interpretation
of the linear temporal logic [25], but with the background computations running asynchronously with, rather
than strictly after, the foreground ones. More generally, we can interpret the same two forms to allow for
many priorities. For simplicity, here, we assume just two levels of priority.

12

We can extend the type system for λ-alg with rules akin to that of Davies [22]. The two key rules are the
following:

Γ `Σ e : τ@B
Γ `Σ bg(e) : © τ@F

©− I
Γ `Σ e : © τ@F

Γ `Σ fg(e) : τ@B
©− E

The judgment Γ `Σ e : τ@w indicates that expression e has type τ in world w (which may be foreground F
or background B). Most expressions type at either world. The two rules shown transition between the two
worlds. A background expression that types at the “background world” (corresponding to stage 2 of LTL)
is ascribed the type © τ using rule © − I. When desired, the result of a background computation may be
demanded by rule © − E, which types its argument in the foreground and the resulting expression in the
background. Using this type system, we can prevent at compile time priority inversion, which can lead to a
high-priority computation waiting for a low-priority one. For example, in Figure 7, the call to function hello
is designated to be a foreground computation while the rest, including the call to fib 42, is designated to be
background computation.

Having established the type system, we extend the cost semantics of λ-alg to mark the priority of tasks
in the cost dag, as well as the delay that each interaction with the user, via input and output, incurs by
including an edge weight for the out-edges of the corresponding vertices in the dag. For example, Figure 8
illustrates the dag for helloFib 3 1. The high-priority interaction task, illustrated by a rectangle around the
vertices representing the run of the function fg(hello 1), performs an output (to prompt the user with the
question) and input for each question, followed by a final output. The edge weights δ1 and δ2 stand for the
latency incurred by the two input instructions.

Consider now a dag with just two levels of priorities, foreground and background. As usual, we define
the work W of a dag as the total number of vertices in the dag and the span S as the longest weighted path in
the dag. Note that the latencies of input instructions, represented by edge weights in the dag, do not factor
into the work but are included in the span. In addition, define the foreground dag as the dag induced by the
foreground vertices (these are the subdags marked in rectangles). Define the foreground work W◦ and the
foreground span S ◦ as the total sum of the work and span of components of the foreground dag. Furthermore,
define the foreground width of the dag as the maximum number of foreground components.

Extending realizability: prompt scheduling. To minimize response time, defined as the total sum of the
latency of all foreground vertices, we introduce a prompt schedule as a schedule where vertices are assigned
greedily to processors in priority order.

Theorem 2 (Prompt Scheduling). Consider a cost dag generated from our extended λ-alg with work W
span S , foreground work W◦ and foreground span S ◦. Let D be the foreground width of the dag. The following
hold for the total computation time and the response time with a prompt schedule:

1. the response time is at most D W◦
P + S ◦, and

2. the total completion time is at most W
P + S .

The theorem bounds the total response time only in terms of foreground computations without penalizing
the total completion time, which stays the same as in Brent’s original bound. The basic idea behind the proof
of this theorem is to generalize the proof of the greedy schedules to account for the latency incurred by all
foreground and background vertices and bound this quantity by using an accounting argument. We note
that this bound is made possible by the fact that the type system ensures that the program has no priority
inversions. To establish realizability, we will formalize a suitable transition system for the interactive parallel
language and show that it validates the cost semantics.

Extending Resource-Bounded Implementation and Evaluation. To give a resource-bounded implemen-
tation, we will develop a scheduling algorithm for realizing Theorem 2. Our starting point will be prior

13

fix subsetSum(S , k) =
let fix SS(i, j) =

if (j = 0) then true
else if (i = 0) then false
else if (S [i − 1] > j) then SS(i − 1, j)
else par a = SS(i − 1, j − S [i − 1]) and b = SS(i − 1, j)

in a or b
in SS(|S |, k)

Figure 9: A parallel algorithm for the subset-sum problem—i.e. given a sequence of integers S determine if
any subset of them add up to k. Making use of sharing this requires O(|S |k) work and O(|S |) span. Without
sharing it requires work that is exponential in |S |, although still O(|S |) span.

work on extending decentralized work stealing schedulers with priorities [76, 77, 41]. Based on this and our
recent work [3], we developed and implemented a preemptive priority-based work-stealing algorithm that
our initial investigations show to be a promising starting point. The main difference between our algorithm
and the prior work is that ours is preemptive. Preemption seems necessary for guaranteeing responsiveness
because otherwise lower priority threads can starve higher-priority ones for processors. Our implementation
of this algorithm interrupts processors every 100ms to participate in a preemptive scheduling step. We
tested our algorithm with a handful of parallel benchmarks, including a simple web server that responds to
HTTP requests in the foreground while performing a compute-intensive parallel computation (simulated by
computing the 42nd Fibonacci number) in the background. A video of the web server’s interactivity using our
scheduler is available. 4 We have observed that our implementation performs well and stays responsive even
in the presence of large low-priority computations. We also observed that standard work stealing without
priorities performs poorly; this is not surprising because non-preemptive scheduling allows background
threads to starve foreground ones. In this project, we will develop an empirical framework for evaluating
interactive parallel software quantitatively by empirically analyzing response time of subcomputations at
different levels of priority.

6 Futures and Dynamic Programming
We plan to augment the λ-alg, realizability results, and implementations with futures (speculative evaluation)
and features for supporting dynamic programming effectively in parallel. Since futures have been discussed
in previous research [36, 29], we focus in this section on proposed research on dynamic programming. We
note, however, that even incorporating futures into the framework will require significant work since the
original realizability theorems are for simplified machine models, and there was no previous work on actually
implementing these ideas in a provably efficient manner.

Dynamic Programming

Dynamic programming is a powerful technique for solving a variety of algorithms. Furthermore the dynamic
programming solutions for most problems are inherently parallel. Unfortunately the expression of such
dynamic programs in a nested parallel style, is not particularly elegant, and forces synchronizations that are
not inherent in the dependence structure. The most natural way to express dynamic programs is using the
inherent recursive structure. For example, Figure 9 gives λ-alg code for solving the subset sum problem. In
the core language this code requires work that is exponential in the size of the input sequence S . In particular
it does not express the sharing of recursive calls. Implementing memoization on top of λ-alg although
sufficient for a sequential version, is not efficient for parallelism since it requires single threading the memo
table. We plan to extend the λ-alg so that the sharing can be captured by the cost semantics and implemented

4http://www.cs.cmu.edu/~smuller/pd-prio-25.ogv

14

http://www.cs.cmu.edu/~smuller/pd-prio-25.ogv

efficiently as part of the realizability theorem and resource bounded implementation. The language will
remain behaviorally pure.

Extending λ-alg. To extend the core language we plan to add a form to the language to indicate functions
that should be memoized. The form will require an equality function and a hash function on the arguments (e.g.
the syntax, in the example might be fixmem SS(i, j) (eqIntPair, hashIntPair)). The cost semantics
then needs to be augmented with a store for mapping inputs to computed instances of the function. The
parallel composition of DAGs will then only use a single subgraph for each distinct call, with a dependence
to all calls that use it.

Extending the realizability theorem. To extend realizability theorem we have to show that the approach
can be mapped onto the machine model efficiently. We believe this can be done by using a concurrent data
structure for the memo table. The idea is when invoking a call to the memoized function (e.g. SS) to check if
it has been called before on the given argument—which can happen concurrently for many calls. There are
three possibilities: it has been called before and the value already calculated, it has been called before by
another task and in the process of being calculated, and it has not been called before. The first case is easy to
handle. The third is also relatively easy to handle as long as taking ownership is done atomically. The second
requires suspending the task to be resumed later when the value is calculated. This is somewhat similar to
what is required with futures.

Extending the bounded implementation. This will require efficiently implementing the ideas in the
realizability theorem and will need to consider specific concurrency mechanisms, such as a compare-and-
swap, as well as specific methods for suspending and reactivating tasks.

7 Verification
The λ-alg framework described in Section 2 provides a mathematically precise description of the behavior
and complexity of parallel programs using a rigorously defined cost semantics. Besides providing a precise
definition of λ-alg, the cost semantics is sufficiently precise to be directly amenable to formalization in a
proof checkers such as Twelf [72], Agda [4], or Coq [21]. Doing so opens the way to using a proof assistant
to verify the correctness and complexity of particular algorithms, of properties of λ-alg itself such as the
realizability theorem stated in Section 2, and of the correctness and complexity of compilers and run-time
systems for λ-alg.

The Twelf proof checker is a well-established tool for verification of the safety of extensions to λ-alg.
In previous work one of the PI’s (Harper) has, with collaborators, mechanized the proof of safety of the
Standard ML language using Twelf [48]. That effort has taught us how to define languages in such a way
that mechanized proof of their safety (internal coherence) is relatively routine using Twelf. We expect to
replicate those accomplishments as a baseline standard for the proposed work outlined in this proposal. That
work, however, does not address the question of validating the cost semantics for λ-alg. We propose to carry
out a mechanized proof of the realizability theorem stated in Section 2, which validates the cost semantics
relative to a high-level abstract machine. Stronger forms of the realizability theorem are needed to establish
Brent-type bounds on the implementation of λ-alg. To do so would require formalization of PRAM-like
models of computation and of the translation from λ-alg into such machine models, coupled with a proof of a
Brent-type theorem relating the source to target code.

There is a significant gap between the high-level description of a scheduling strategy and the actual
implementation of the scheduler as part of the run-time. For instance, in Blumofe and Leiserson’s analysis
of the work-stealing scheduler used in Cilk [14], the algorithm is described as atomically manipulating
nodes of a computation graph. The nodes represent discrete steps of the source program, and the edges
between them are dependencies. Hardware threads randomly “steal” pending nodes from other threads

15

when they finish all of their own work. Even at this level of abstraction, the complexity analysis is rather
difficult. And in a real implementation [31], these scheduling operations actually involve pushing and popping
frame pointers from a lock-free double-ended queue. Subsequent work has developed even more efficient
double-ended queues [57, 54] in which expensive memory barrier instructions are avoided. The correctness of
these optimizations involves subtle arguments about the possible effects of hardware re-ordering of memory
operations. Given the complexity of these implementations, it is not obvious that they correctly implement
the high-level description used in the theoretical analysis.

We propose bridging this gap by giving a machine-checked proof of correctness and running time analysis
for such a work-stealing scheduler. We believe that such a proof is feasible in light of recent work, including
our own, on developing and using program logics to verify fine-grained concurrent data structures [45, 70, 68],
while taking into account the effects of weak memory [71, 67] . Because the performance analysis of a
work-stealing scheduler involves probabilistic analysis of the random choices threads make about where to
steal from, we would need to extend these program logics to incorporate probabilistic reasoning.

More generally, many parallel algorithms use randomization to ensure good bounds on the work in
expectation and on the span with high probability. It would be interesting to explore the mechanization
of proofs of even simple randomized algorithms, because to do so requires the development of a body of
discrete probability theory and numeric reasoning that we expect would challenge even full-scale proof
development systems such as Coq. Doing so would increase our confidence in proofs of efficiency that have
proved notoriously difficult to get right.

8 Experimental Validation
Although the theoretical aspects of our realization bounds will be validated through verification, the practical
aspects of the performance of our compiler will be validated through experimentation. We feel this is
important since the theoretical bounds will most likely be asymptotic, and if any constants are included they
will likely be sloppy. Also the target machine models we use will not exactly model real machines—which
are far to complicated to model precisely. We plan to develop a set of benchmark code in λ-alg. To do this
we will leverage the significant collection of benchmarks we already have as part of our work on the course
mentioned below (“2-10”), and as part of our development of Manticore [28], and parallel MLton [66]. We
will convert the benchmarks to λ-alg and measure their performance on reasonably large multicore machines
(we already have one with 64 cores, and plan to get larger ones as they become available). We note that one
of the PIs also has a significant ongoing effort developing a benchmark suite of algorithmic problems [63]
(currently all coded in C++ with Cilk). We will use the results from the experiments to improve our compiler
and help identify any potential problems with our methodology (e.g. highly inaccurate assumptions about the
machine). Assuming the timings are good, the results will also be used as a proof of concept of our approach.

16

References
[1] Annika Aasa, Sören Holmström, and Christina Nilsson. An efficiency comparison of some representa-

tions of purely functional arrays. BIT, 28(3):490–503, 1988. 11

[2] Umut A. Acar, Guy Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan. Coupling
memory and computation for locality management. In Summit on Advances in Programming Languages
(SNAPL), 2015. 4, 8

[3] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Scheduling parallel programs by work stealing
with private deques. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP), 2013. 5, 10, 14

[4] The Agda programming language. 6, 15

[5] Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John H. Reppy. Garbage collection for multi-
core NUMA machines. In Proceedings of the 2011 ACM SIGPLAN workshop on Memory Systems
Performance and Correctness (MSPC), pages 51–57, 2011. 9

[6] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, Stephen Rosen, and Adam Shaw. Data-only
flattening for nested data parallelism. In Proceedings of the 18th ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming (PPoPP ’13), pages 90–106, New York, NY, February
2013. ACM. 4, 8

[7] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Lazy tree splitting. In
ICFP 2010, pages 93–104. ACM Press, September 2010. 9

[8] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Lazy tree splitting. Journal
of Functional Programming, 22(4-5):382–438, September 2012. 8, 10

[9] Guy Blelloch and John Greiner. Parallelism in sequential functional languages. In Proceedings of
the 7th International Conference on Functional Programming Languages and Computer Architecture,
pages 226–237, 1995. 2, 3, 5

[10] Guy Blelloch, Robert Harper, and Ananya Kumar. Parallel functional arrays. In Proceedingd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), 2017. 11

[11] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Scheduling
irregular parallel computations on hierarchical caches. In Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’11, pages 355–366, 2011. 5

[12] Guy E. Blelloch and John Greiner. A provable time and space efficient implementation of NESL. In
Proceedings of the 1st ACM SIGPLAN International Conference on Functional Programming, pages
213–225. ACM, 1996. 3

[13] Guy E. Blelloch and Robert Harper. Cache and i/o efficent functional algorithms. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’13, pages 39–50, 2013. 3, 4, 5, 8

[14] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work stealing.
J. ACM, 46(5):720–748, 1999. 15

[15] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–206,
April 1974. 5

17

[16] F. Cardone and J. R. Hindley. λ-calculus and combinators in the 20th century. In D. M. Gabbay and
J. Woods, editors, Logic from Russell to Church, Handbook of the History of Logic. North-Holland,
2009. 1

[17] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’05, pages 519–538. ACM, 2005. 12

[18] Tyng-Ruey Chuang. Fully persistent arrays for efficient incremental updates and voluminous reads.
In Symposium Proceedings on 4th European Symposium on Programming, ESOP’92, pages 110–129,
London, UK, UK, 1992. Springer-Verlag. 11

[19] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33(2):346–366,
April 1932. 1

[20] Alonzo Church. An unsolveable problem of elementary number theory. American Journal of Mathe-
matics, 58(2):345–363, April 1936. (Presented April 19, 1935). 1

[21] The Coq proof assistant. 6, 15

[22] Rowan Davies. A temporal-logic approach to binding-time analysis. In LICS, pages 184–195, 1996. 12,
13

[23] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making data
structures persistent. J. Comput. Syst. Sci., 38(1), 1989. 11

[24] Kavon Farvardin and John Reppy. Compiling with continuations and LLVM. In ACM SIGPLAN
Workshop on ML, September 2016. 9

[25] Nicolas Feltman, Carlo Angiuli, Umut A. Acar, and Kayvon Fatahalian. Automatically splitting a
two-stage lambda calculus. In Programming Languages and Systems - 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pages 255–281,
2016. 12

[26] Cormac Flanagan, Amr Sabry, Bruce Duba, and Matthias Felleisen. The essence of compiling with
continuations. In Proceedings of the 20th Annual ACM Symposium on Principles of Programming
Languages, pages 237–247, 1993. 9

[27] Matthew Fluet, Mike Rainey, and John Reppy. A scheduling framework for general-purpose parallel
languages. In ACM SIGPLAN International Conference on Functional Programming (ICFP), 2008. 4,
8, 10

[28] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly threaded parallelism in Manticore.
Journal of Functional Programming, 20(5-6):1–40, 2011. 3, 4, 5, 8, 12, 16

[29] Matthew Fluet, Mike Rainey, John H. Reppy, and Adam Shaw. Implicitly-threaded parallelism in
Manticore. In ACM SIGPLAN International Conference on Functional Programming (ICFP), ICFP ’08,
pages 119–130, 2008. 14

[30] L. Fortnow and S. Homer. A short history of computational complexity. Bulletin of the European
Association for Theoretical Computer Science, 80, June 2003. 1

18

[31] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5 multi-
threaded language. In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language
Design and Implementation (PLDI), Montreal, Canada, June 17-19, 1998, pages 212–223, 1998. 12, 16

[32] Lal George and Andrew Appel. Iterated register coalescing. ACM Transactions on Programming
Languages and Systems, 18(3):300–324, May 1996. 9

[33] Lal George, Florent Guillame, and John Reppy. A portable and optimizing back end for the SML/NJ
compiler. In Fifth International Conference on Compiler Construction, number 786 in Lecture Notes in
Computer Science, pages 83–97, New York, NY, April 1994. Springer-Verlag. 9

[34] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. The queue-read queue-write asynchronous
PRAM model. Theor. Comput. Sci., 196(1-2):3–29, 1998. 5

[35] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. 11

[36] John Greiner and Guy E. Blelloch. A provably time-efficient parallel implementation of full speculation.
ACM Trans. Program. Lang. Syst., 21(2):240–285, March 1999. 3, 14

[37] Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, New
York, NY, USA, 2012. 3

[38] Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
second edition, 2016. 5, 6, 8

[39] Paul Hudak. A semantic model of reference counting and its abstraction (detailed summary). In
Proceedings of the 1986 ACM Conference on LISP and Functional Programming, LFP ’86, pages
351–363, New York, NY, USA, 1986. ACM. 11

[40] Paul Hudak and Adrienne G. Bloss. The aggregate update problem in functional programming systems.
In ACM Symposium on Principles of Programming Languages (POPL), pages 300–314, 1985. 11

[41] Shams Imam and Vivek Sarkar. Load balancing prioritized tasks via work-stealing. In Euro-Par 2015:
Parallel Processing - 21st International Conference on Parallel and Distributed Computing, Vienna,
Austria, August 24-28, 2015, Proceedings, pages 222–234, 2015. 14

[42] Shams Mahmood Imam and Vivek Sarkay. Habanero-java library: a java 8 framework for multicore
programming. In 2014 International Conference on Principles and Practices of Programming on the
Java Platform Virtual Machines, Languages and Tools, PPPJ ’14, Cracow, Poland, September 23-26,
2014, pages 75–86, 2014. 12

[43] Intel. Intel Threading Building Blocks, 2011. 12

[44] Joseph Jaja. An introduction to parallel algorithms. Addison Wesley Longman Publishing Company,
1992. 2

[45] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL, pages
637–650, 2015. 16

[46] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and Ben
Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell. In Proceedings of the 15th ACM
SIGPLAN international conference on Functional programming, ICFP ’10, pages 261–272, 2010. 12

19

[47] Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 conference on Java Grande,
JAVA ’00, pages 36–43, 2000. 12

[48] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of standard ML. In
Martin Hofmann and Matthias Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January 17-19, 2007,
pages 173–184. ACM, 2007. 15

[49] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays • Trees •
Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992. 5

[50] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task parallel library.
In Proceedings of the 24th ACM SIGPLAN conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 227–242, 2009. 12

[51] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The OCaml system release 4.02. INRIA, 2013. 5

[52] Peng Li, Simon Marlow, Simon Peyton Jones, and Andrew Tolmach. Lightweight concurrency primitives
for GHC. In Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 107–118, 2007. 4

[53] Simon Marlow. Parallel and concurrent programming in haskell. In Central European Functional
Programming School - 4th Summer School, CEFP 2011, Budapest, Hungary, June 14-24, 2011, Revised
Selected Papers, pages 339–401, 2011. 4

[54] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work stealing. In Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP
2009, Raleigh, NC, USA, February 14-18, 2009, pages 45–54, 2009. 16

[55] MLton web site. http://www.mlton.org. 8

[56] Eugenio Moggi. Computational lambda-calculus and monads. In Proc. Symposium on Logic in
Computer Science (LICS), pages 14–23, 1989. 11

[57] Adam Morrison and Yehuda Afek. Fence-free work stealing on bounded TSO processors. In Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT,
USA, March 1-5, 2014, pages 413–426, 2014. 16

[58] Melissa Elizabeth O’Neill. Version Stamps for Functional Arrays and Determinacy Checking: Two
Applications of Ordered Lists for Advanced Programming Languages. PhD thesis, Simon Fraser
University, 2000. 11

[59] Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T. Chakravarty. Harness-
ing the multicores: Nested data parallelism in Haskell. In FSTTCS, pages 383–414, 2008. 4

[60] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511–540, 2001. 12

[61] Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch. Hierarchical memory manage-
ment for parallel programs. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, pages 392–406, New York, NY, USA, 2016. ACM. 4, 8, 9

20

http://www.mlton.org

[62] John Reppy, Claudio Russo, and Yingqi Xiao. Parallel Concurrent ML. In Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Programming ICFP ’09, pages 257–268, New
York, NY, August–September 2009. ACM. 4, 8

[63] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan
Simhadri, and Kanat Tangwongsan. Brief announcement: the problem based benchmark suite. In ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA, pages 68–70, 2012. 16

[64] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating system concepts (7. ed.). Wiley,
2005. 12

[65] Standard ml family github project. 5

[66] Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gibbons. Space profiling for
parallel functional programs. In International Conference on Functional Programming, 2008. 3, 4, 8,
16

[67] Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. Verifying read-copy-update in a logic for weak
memory. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015, pages 110–120, 2015. 16

[68] Joseph Tassarotti, Ralf Jung, and Robert Harper. A higher-order logic for concurrent termination-
preserving refinement, 2016. Draft. 16

[69] Alan M. Turing. On computable numbers with an application to the Entscheidungsproblem. Proc. of
the London Mathematical Society, s2-42(1):230–265, 1937. (Presented Nov. 12, 1936). 1

[70] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and Hoare-style reasoning in a
logic for higher-order concurrency. In ICFP, pages 377–390, 2013. 16

[71] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: navigating weak memory with ghosts, protocols,
and separation. In OOPSLA, pages 691–707, 2014. 16

[72] The Twelf project. 15

[73] Mike Rainey Umut A. Acar, Arthur Charguéraud. Efficient synchronization-free work stealing. Submit-
ted for publication., August 2011. 10

[74] Philip Wadler. Linear types can change the world! In PROGRAMMING CONCEPTS AND METHODS.
North, 1990. 11

[75] Philip Wadler. Monads for functional programming. In Advanced Functional Programming, First
International Spring School on Advanced Functional Programming Techniques-Tutorial Text, pages
24–52, London, UK, UK, 1995. Springer-Verlag. 11

[76] Martin Wimmer, Daniel Cederman, Jesper Larsson Träff, and Philippas Tsigas. Work-stealing with
configurable scheduling strategies. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, pages 315–316, 2013. 14

[77] Martin Wimmer, Francesco Versaci, Jesper Larsson Träff, Daniel Cederman, and Philippas Tsigas. Data
structures for task-based priority scheduling. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14, pages 379–380, 2014. 14

21

	Introduction
	The -alg Formalism
	Formulation of -alg
	Realizability of the -alg Semantics

	Resource-Bounded Implementation
	Data Parallelism via Aggregates
	Interactive Parallelism
	Futures and Dynamic Programming
	Verification
	Experimental Validation

