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Abstract

Despite their invaluable contribution to the program-
ming language community, monads as a foundation for
the study of effects have three problems: they make
it difficult to combine effects; they enforce sequential-
ization of computations by the syntax; they prohibit
effect-free evaluations from invoking effectful computa-
tions. Building on the judgmental formulation and the
possible worlds interpretation of modal logic, we pro-
pose a logical analysis of effects based upon the view
monads are not identified with effects. Our analysis
leads to a language called λ→

© which distinguishes be-
tween control effects and world effects, enforces sequen-
tialization of computations only by the semantics, and
logically explains the invocation of computations from
evaluations. λ→

© also serves as a unified framework for
studying Haskell and ML, which have traditionally been
studied separately.

1 Introduction

Motivation

Since their introduction to the programming language
community, monads [23, 24] have been considered as
an elegant means of structuring programs and incor-
porating effects into purely functional languages. An
example of a functional language that makes extensive
use of monads is Haskell [30]. At the program level, it
provides a type class Monad to support modular pro-
gramming; at the language design level, it uses monads
for a modular semantics of effects and provides a built-
in IO monad, which allows programmers to use effects
without compromising its properties as a purely func-
tional language. While they are a success as a tool for
modular programming, monads as a foundation for the
study of effects have the following three problems:

Combining effects. It is well-known that monads do
not combine well with each other [14, 12, 20]. This
means that although monads provide a modular way

to develop semantics for individual effects, they fail to
give a modular semantics when all effects are present
together. Hence the identification between monads and
effects makes it difficult to combine effects at the lan-
guage design level. Haskell avoids this problem by
confining all kinds of effects – mutable references, in-
put/output, exception, concurrency, and so on – to the
IO monad, but it does not provide a justification for
the assumption that individual monads combine into a
single monad.

Sequentialization by the syntax. Unlike effect-
free/pure evaluations, effectful/impure computations

are sequential by their nature. This, however, does not
mean that their syntax must also be in a sequential
form. Unfortunately the return and bind constructs of
the monadic syntax (e.g., return and >>= in Haskell)
force programmers to strictly follow the sequential or-
der of computations. This becomes increasingly incon-
venient as the code grows in size.

Entering and escaping from monads. Monads allow
computations to freely invoke evaluations, but not vice
versa. In essence, we can neither enter monads (and ini-
tiate computations) during evaluations nor escape from
monads (and return results of computations) back to
evaluations, because of effects that computations may
produce. In the case of Haskell, this means that we can-
not write functions of type IO A −> A, which are partic-
ularly useful for benign effects (e.g., accessing read-only
files).

In order to overcome this limitation, Haskell pro-
vides two constructs: unsafePerformIO [34, 33] and
runST [17, 18, 19]. However, unsafePerformIO is un-
safe (as its name suggests) because in principle, it can
destroy the distinction between evaluations and compu-
tations. runST, albeit an ingenious solution, does not
have a Hindley-Milner type. It also lacks extensibility
because it is specific to mutable references; moreover it
initiates computations only with an empty store.



Approach

Our view is that monads are an abstraction that is more
general than effects and that monads are a particular
way to model effects. The first is based upon the fact
that many datatypes that do not involve effects orga-
nize themselves into monads. For instance, it is easy
to create a list monad by instantiating the type class
Monad of Haskell. The second is based upon the ob-
servation that monads are not the only way to model
effects. For instance, Nanevski [28] shows how to use-
fully model exceptions with comonads. Thus we are led
to conclude that monads are not identified with effects

and the study of effects is more fundamental than the
study of monads. Plotkin and Power [36] present a simi-
lar view: “computational effects determine monads but
are not identified with monads.”

Then what is a suitable theory of effects? Following
the propositions-as-types interpretation as an underly-
ing principle, we propose an analysis of effects based
upon modal logic. To apply the propositions-as-types
interpretation to modal logic, we use the judgmental

formulation of Pfenning and Davies [35], which adopts
Martin-Löf’s methodology of distinguishing judgments
from propositions [22]. To relate modal logic to effects,
we use the possible worlds interpretation [15], which as-
sumes an accessibility relation between worlds and rel-
ativizes truth to worlds. Thus we give a logical analy-
sis of effects based upon the view that monads are not
identified with effects.

Results

Our analysis of effects has the following characteristics:
Segregation of control effects and world effects. We

assume that the runtime system consists of a program
and a world. A program is subject to a set of reduction
rules (e.g., β-reduction rule in the λ-calculus). A world
is an object whose behavior is specified by the program-
ming environment (e.g., keyboard buffer). When the
program undergoes a change that cannot be explained
by a finite number of applications of certain “basic”
reduction rules (e.g., capturing and throwing continua-
tions with respect to the “basic” β-reduction rule), we
say that a control effect occurs. When the program
interacts with the world and causes a transition to an-
other world (e.g., reading the keyboard buffer), we say
that a world effect occurs. In this way, we distinguish
between control effects and world effects.

We treat control effects and world effects in an or-
thogonal way. Control effects are realized by introduc-
ing reduction rules that cannot be defined in terms of
the basic reduction rules. Note that whether a change
in the program is a control effect or not depends on
what the basic reduction rules are. For instance, con-

tinuations are usually considered as control effects, but
only when their reduction rules are not accepted as the
basic reduction rules. World effects are realized by spec-
ifying a world structure: empty world structure if there
are no world effects, keyboard buffer and window for
input/output, store for mutable references, and so on.

With the distinction between control effects and
world effects, it is easy to combine effects at the lan-
guage design level. We can combine different world ef-
fects by merging corresponding world structures. There
is no need to explicitly combine control effects with
other effects, since control effects become pervasive once
we introduce their reduction rules. This means that we
distinguish between effect-free evaluations and effectful
computations only with respect to world effects.

Sequentialization only by the semantics. The judg-
mental formulation in our analysis leads to the use of
two syntactic categories: terms for evaluations and ex-

pressions for computations. The definition of terms
is derived from an ordinary truth judgment via the
propositions-as-types interpretation. For the definition
of expressions, we apply the propositions-as-types in-
terpretation to lax logic [8]. It gives two different def-
initions for expressions: one with monadic constructs
and another with effectful functions. The first results
in a language similar to Haskell but with a separate
(monadic) syntactic category for computations. The
second results in a language similar to (call-by-value)
ML but with a separate syntactic category for evalua-
tions. Since these two definitions do not conflict with
each other, we incorporate both into a common linguis-
tic framework, where both Haskell-style programming
and ML-style programming may coexist. Then effects
can be, but need not be, structured as monads; for the
same reason, computations can be, but need not be,
written in a sequential style.

Logical account for invoking computations. In our
analysis, the possible worlds interpretation of modal
logic naturally leads to a logically motivated construct,
called run, for invoking computations during evalua-
tions. Compared with Haskell’s unsafePerformIO and
runST constructs, our run construct is similar in purpose
but different in details: unlike unsafePerformIO, it is safe
in the sense that it preserves the effect-freeness/purity
of evaluations; unlike runST, it is not specific to compu-
tations for mutable references beginning with an empty
store.

We present a language, called λ→

©, which is based
upon the analysis of effects outlined above. λ→

© provides
a linguistic framework for programming languages with
effects. It also serves as a unified framework for study-
ing two languages that have traditionally been studied
separately: Haskell and ML. In essence, Haskell con-
sists of terms whereas ML consists of expressions: in
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Haskell, every computation is represented as a monad
and therefore there are only terms; in ML, every part
of a program may produce effects and therefore there
are only expressions.

A weakness of λ→

© is that it accounts for internal

world effects, but not external world effects. An inter-
nal world effect is always caused by the program and
is ephemeral in the sense that we can undo the change
it makes to the world. An example is to allocate new
references, which we can reclaim anytime. An exter-
nal world effect is caused either by an external agent,
affecting the program, or by the program, affecting an
external agent. It is perpetual in the sense that we can-
not undo the change it makes to the world. An example
is to use keyboard input or to send output to a printer
(e.g., typing your password to a malicious program or
printing it on a public printer). External world effects
are difficult to model because they can make a change
to the world independently of the program. Moreover
the run construct can not be applied to external world
effects. Thus we restrict ourselves to internal world ef-
fects in developing λ→

©.
The rest of this paper is organized as follows. In

Section 2, we develop our language λ→

©. Section 3 shows
three examples of world effects. In Section 4, we dis-
cuss control effects. In Section 5, we develop the run

construct. Section 6 discusses related work. Section 7
concludes with future work.

2 Language λ→

©

At its core, our analysis of effects uses the judgmental
formulation and the possible worlds interpretation of
modal logic. For a good introduction to the judgmental
formulation, we refer the reader to [35]. It also gives an
effect-free fragment of λ→

© which is a reformulation of
Moggi’s monadic metalanguage λml [23, 24].

The judgmental formulation in our analysis is based
upon two categorical judgments:

• truth judgment A true

• computability judgment A comp

A true means that A is true, and A comp means that
A true holds after potentially producing some world ef-
fect. To represent proofs of the two judgments, we use
two syntactic categories: terms M,N for truth judg-
ments and expressions E,F for computability judg-
ments. Thus we have the following correspondence un-
der the propositions-as-types interpretation:

D
A true ⇔ M : A

E
A comp ⇔ E ÷ A

That is, we represent a proof D of A true as a term M
of type A, written M : A, and a proof E of A comp as
an expression E of type A, written E ÷ A.

Since it relativizes truth to worlds, the possible
worlds interpretation in our analysis requires us to in-
corporate some worlds into the semantics of λ→

©. In our
case, these worlds are precisely the same worlds that are
part of the runtime system. For the type system, we an-
notate typing judgments with worlds ω where terms or
expressions reside:

M @ ω : A E @ ω ÷ A

M @ ω : A means that M has type A at world ω;
E @ ω÷A means that E has type A at world ω. For the
operational semantics, we make a distinction between
evaluations of terms, which do not involve worlds, and
computations of expressions, which involve worlds:

M ↪→ V E @ ω ⇁ V @ ω′

A term evaluation M ↪→ V does not interact with the
world where term M resides; hence the resultant value
V resides at the same world. In contrast, an expression
computation E @ ω ⇁ V @ ω′ may interact with world
ω where expression E resides, causing a transition to
another world ω′; hence the resultant value V may not
reside at the same world. Thus term evaluations are
always effect-free whereas expression computations are
potentially effectful.

In order to facilitate the characterization of the two
categorical judgments, we also introduce a hypothetical
judgment Γ ` J where hypotheses Γ are a set of truth
judgments and J is a categorical judgment. Under the
propositions-as-types interpretation, hypothetical judg-
ments correspond to typing judgments with typing con-
texts; for notational convenience, we use Γ for typing
contexts as well as hypotheses:

Γ ` M @ ω : A Γ ` E @ ω ÷ A

A typing context Γ is a set of bindings x : A:

typing context Γ ::= · | Γ, x : A

x : A in Γ means that variable x assumes a term that has
type A at a given world but may not typecheck at other

worlds. Then a term typing judgment Γ ` M @ ω : A
means that M has type A at world ω if Γ is satisfied
at the same world; similarly an expression typing judg-
ment Γ ` E @ ω÷A means that E has type A at world
ω if Γ is satisfied at the same world.

Below we characterize A true and A comp with hypo-
thetical judgments and apply the propositions-as-types
interpretation. We develop the type system in a natural
deduction style, i.e., with an introduction rule and an
elimination rule for each connective or modality. Ap-
pendix shows the summary of the definition of λ→

©.
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2.1 Constructs for evaluations

We use the following properties of hypothetical judg-
ments to characterize A true, where J can be any cat-
egorical judgment:

1. Γ, A true ` A true.

2. If Γ ` A true and Γ, A true ` J , then Γ ` J .

The first clause expresses that we can use A true as a
hypothesis. The second clause expresses the substitu-
tion principle for A true.

In terms of term typing judgments, the first clause
gives the following rule where we use variable x as a
term:

Γ, x : A ` x @ ω : A
Hyp

The second clause with J = C true gives the substitu-
tion principle for terms:

If Γ ` M @ ω : A and Γ, x : A ` N @ ω : C,

then Γ ` [M/x]N @ ω : C.

[M/x]N denotes a capture-avoiding term substitution.
We apply the propositions-as-types interpretation

to A true by introducing a connective ⊃ such that
Γ ` A ⊃ C true expresses Γ, A true ` C true. It gives
the following introduction and elimination rules, where
we use a lambda abstraction λx : A.M and a lambda
application M1 M2 as terms:

Γ, x : A ` M @ ω : C

Γ ` λx :A.M @ ω : A ⊃ C
⊃I

Γ ` M1 @ ω : A ⊃ C Γ ` M2 @ ω : A

Γ ` M1 M2 @ ω : C
⊃E

The term reduction rule for ⊃ and its corresponding
proof reduction are:

(λx :A.M) N ⇒term [N/x]M (β⊃)

Γ, x : A ` M @ ω : C

Γ ` λx :A.M @ ω : A ⊃ C
⊃I

Γ ` N @ ω : A
Γ ` (λx :A.M) N @ ω : C

⊃E

⇒term Γ ` [N/x]M @ ω : C

2.2 Constructs for computations

Unlike evaluations, computations are sequential by na-
ture because world effects must be produced in the se-
quential order specified by the programmer. Therefore
A comp must be characterized in such a way that it ex-
presses the sequential nature of computations. To this
end, we base A comp upon lax logic [8], which is indeed
the logic underlying monads (see [5]):

1. If Γ ` A true, then Γ ` A comp.

2. If Γ ` A comp and Γ, A true ` C comp, then
Γ ` C comp.

The first clause expresses that if A is true, A true holds
without producing any world effect. The second clause
expresses that if A true holds after producing some
world effect, we can use A true as a hypothesis on the as-
sumption that the world effect is implicitly attached to
any subsequent judgment. Hence, once A true becomes
a hypothesis, we can deduce, for instance, C comp, but
not C true. The second clause can also be thought of
as the substitution principle for A comp.

In terms of expression typing judgments, the first
clause means that a term of type A is also an expression
of the same type:

Γ ` M @ ω : A
Γ ` M @ ω ÷ A

Term

The substitution principle for expressions is derived
from the second clause in the characterization of A true

with J = C comp as well as the second clause above:

If Γ ` M @ ω : A and Γ, x : A ` E @ ω÷C,

then Γ ` [M/x]E @ ω ÷ C.

If Γ ` F @ ω÷A and Γ, x : A ` E @ ω÷C,

then Γ ` 〈F/x〉E @ ω ÷ C.

Unlike a term substitution [M/x]E which analyzes the
structure of E, an expression substitution 〈F/x〉E ana-
lyzes the structure of F instead of E. This is because
〈F/x〉E is intended to ensure that both F and E are
computed exactly once and in that order. Intuitively we
must not replicate F within E (at those places where
x occurs), which would result in computing F multiple
times; instead we must conceptually replicate E within
F (at those places where the computation of F is fin-
ished) so that we end up computing both F and E only
once. In this sense, an expression substitution 〈F/x〉E
substitutes not F into E, but E into F . We will give
the definition of 〈F/x〉E after introducing all expression
constructs.

We apply the propositions-as-types interpretation to
A comp in two ways. First we internalize A comp

with a modality © so that Γ ` ©A true expresses
Γ ` A comp. Second we introduce a connective → such
that Γ ` A→C true expresses Γ, A true ` C comp (in
the same way that we introduce the connective ⊃).

In the first case, the introduction and elimination
rules use a computation term cmp E and a bind expres-

sion letcmp x / M in E:

Γ ` E @ ω ÷ A
Γ ` cmp E @ ω : ©A

©I

Γ ` M @ ω : ©A Γ, x : A ` E @ ω ÷ C

Γ ` letcmp x / M in E @ ω ÷ C
©E
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The expression reduction rule for © and its correspond-
ing proof reduction are:

letcmp x / cmp E in F ⇒exp 〈E/x〉F (β©)

Γ ` E @ ω ÷ A
Γ ` cmp E @ ω : ©A

©I
Γ, x : A ` F @ ω ÷ C

Γ ` letcmp x / cmp E in F @ ω ÷ C
©E

⇒exp Γ ` 〈E/x〉F @ ω ÷ C

cmp E denotes the computation of E, but it does
not actually compute E. In this sense, we say that
cmp E encapsulates the computation of expression E.
letcmp x / M in E enables us to sequence two compu-
tations (if M evaluates to a computation term). These
two constructs can be thought of as monadic constructs,
since the modality © forms a monad (see [35]).

In the second case, the introduction and elimination
rules use an effectful function λ̂x : A.E as a term and
an effectful application E1ˆE2 as an expression:

Γ, x : A ` E @ ω ÷ C

Γ ` λ̂x :A.E @ ω : A→C
→I

Γ ` E1 @ ω ÷ A→C Γ ` E2 @ ω ÷ A

Γ ` E1ˆE2 @ ω ÷ C
→E

The expression reduction rule for → and its correspond-
ing proof reduction are:

(λ̂x :A.F )ˆE ⇒exp 〈E/x〉F (β→)

Γ, x : A ` F @ ω ÷ C

Γ ` λ̂x :A.F @ ω : A→C
→I

Γ ` λ̂x :A.F @ ω ÷ A→C
Term

Γ ` E @ ω ÷ A

Γ ` (λ̂x :A.F )ˆE @ ω ÷ C
→E

⇒exp Γ ` 〈E/x〉F @ ω ÷ C

The modality © and the connective → are both de-
fined without relying on any other connective. Hence
their definitions do not conflict with each other, and we
use all the above constructs in λ→

©. We also use two
additional expression constructs, instruction I and sus-

pension expression {E/x}F , which are explained below.
Instructions produce world effects by directly inter-

acting with worlds; without them, there is no way to
produce world effects. As an interface to worlds, they
are provided by the programming environment. As an
example, consider an instruction new M for allocating
new references. It causes a change to the store, pro-
ducing a world effect, and returns a reference. We refer
to those objects originating from worlds as world terms

W (e.g., references). Since they cannot be decomposed
into ordinary terms, world terms are assumed to be val-
ues and are given special world term types W (e.g., ref-
erence type ref A for references).

We assume that the programming environment pro-
vides an expression typing rule Γ ` I @ ω ÷ A for each
instruction I, and a term typing rule Γ ` W @ ω : W
for each world term W . The type of an instruction de-
pends only on the types of its arguments, if any; if it
has no argument, its type is fixed. The type of a world
term may depend on the world where it resides. For
instance, the type of a reference cannot be determined
without a store. This is why we need worlds in typing
judgments.

A suspension expression {E/x}F is similar to an ex-
pression substitution 〈E/x〉F , but suspends the substi-
tution because we do not know yet where the computa-
tion is finished within E and hence cannot substitute F
into E (not E into F ). Consider the following expres-
sion reductions:

letcmp x / cmp I in E ⇒β 〈I/x〉E

(λ̂x :A.E) (̂F1ˆF2) ⇒β 〈F1ˆF2/x〉E

In the first case, we cannot substitute E into I be-
cause we do not know yet the result of computing I.
Hence we must suspend the substitution until I inter-
acts with the world and replaces itself by a value:

〈I/x〉E = {I/x}E

In the second case, we do not know yet where the
computation is finished within F1 ˆF2. Hence we can
proceed to compute F1, but the rest of the computation
must be suspended:

〈F1ˆF2/x〉E = 〈F1/f〉{f ˆF2/x}E fresh variable f

As a special case, if F1 is already an effectful function
λ̂y : C.F , we can analyze F to determine where the
computation of F1ˆF2 is finished. This implies that we
can resume the substitution in {(λ̂y :C.F )ˆF2/x}E:

{(λ̂y :C.F )ˆF2/x}E ⇒exp 〈〈F2/y〉F/x〉E (β{})

The typing rule for suspension expressions is directly
obtained from the substitution principle for expressions
(i.e., {E/x}F is conceptually a suspended 〈E/x〉F ):

Γ ` E @ ω ÷ A Γ, x : A ` F @ ω ÷ C

Γ ` {E/x}F @ ω ÷ C
Sus

With the above typing rule, we can show that the rule
β{} has a corresponding proof reduction. Note that
suspension expressions are by-products of expression re-
ductions and are not available to programmers.

The remaining three cases of expression substitu-
tions are as follows:

〈M/x〉F = [M/x]F
〈letcmp y / M in E/x〉F = letcmp y / M in 〈E/x〉F

〈{E1/y}E2/x〉F = {E1/y}〈E2/x〉F
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The above definition of expression substitutions
〈E/x〉F obeys the substitution principle for expressions;
we can prove this by induction on the structure of E
(not F ).

2.3 Operational semantics

We assume that the programming environment provides
a rule I @ ω ⇁ V @ ω′ for each instruction I, where we
allow ω = ω′ and V is not necessarily a world term; we
say that instruction I executes to value V . We require
that every instruction be type-preserving: if I @ ω ⇁
V @ ω′ and · ` I @ ω ÷ A, then · ` V @ ω′ : A.

The operational semantics is based upon term and
expression reduction rules (β⊃, β©, β→, and β{}) in
that term evaluations and expression computations rep-
resent sequences of term and expression reductions:

V ::= λx :A.M | cmp E | λ̂x :A.E | W

V ↪→ V
Val

M1 ↪→ λx :A.M [M2/x]M ↪→ V

M1 M2 ↪→ V
LApp

M ↪→ V
M @ ω ⇁ V @ ω

Term

M ↪→ cmp F 〈F/x〉E @ ω ⇁ V @ ω′

letcmp x / M in E @ ω ⇁ V @ ω′ Letcmp

E1 @ ω ⇁ λ̂x :A.F @ ω′ 〈E2/x〉F @ ω′ ⇁ V @ ω′′

E1ˆE2 @ ω ⇁ V @ ω′′ EApp

I @ ω ⇁ V @ ω′ [V/x]E @ ω′ ⇁ V ′ @ ω′′

{I/x}E @ ω ⇁ V ′ @ ω′′ SusI

M ↪→ λ̂y :A.E′ 〈〈E/y〉E′/x〉F @ ω ⇁ V ′ @ ω′

{M ˆE/x}F @ ω ⇁ V ′ @ ω′ Susˆ

The evaluation rule LApp shows that we use call-by-
name for evaluating lambda applications. We could
equally use call-by-value, call-by-need, or even unspeci-
fied evaluation order as in Haskell. All these choices are
acceptable because term evaluations are effect-free and
different evaluation orders do not change their results.
The computation rule EApp can be thought of as using
call-by-value, since 〈E2/x〉F forces the computation of
E2 to precede the computation of F . We exploit the
fact that a well-typed closed suspension expression is
either {I/x}E or {M ˆE/x}F , and provide two special-
ized computation rules.

At this point, we cannot prove the type preserva-
tion property. The reason is that the typing rules ©E,
→E, and Sus do not accurately reflect the operational
behavior of letcmp x / M in E, E1 ˆE2, and {E/x}F ,
respectively. For instance, while we typecheck E at the
same world ω that we typecheck letcmp x / M in E,
its computation may take place at a different world ω′

(e.g., if M = cmp I). If, however, the type of E remains
the same at ω′, the typing rule ©E becomes safe to use.
This can be accomplished by requiring that an instruc-
tion execution does not affect types of existing terms
and expressions. We formalize this requirement with
an accessibility relation between worlds, thereby com-
pleting the possible worlds interpretation in our analysis
of effects.

We say that a world ω′ is accessible from another
world ω if there exists an instruction that causes a
transition from ω to ω′ when executed. Formally we
write ω ≤ ω′ if there exists an instruction I such that
I @ ω ⇁ V @ ω′ for some value V . We write ≤∗ for
the reflexive and transitive closure of ≤.

The accessibility relation ≤ is monotonic if a transi-
tion between worlds preserves types of world terms:

Definition 2.1.
≤ is monotonic if ω ≤ ω′ means that for every world

term W , Γ ` W @ ω : W implies Γ ` W @ ω′ : W.

It is easy to show that if ≤ is monotonic, a transition
between worlds preserves types of all terms and expres-
sions. We require that every instruction maintain the
monotonicity of ≤.

We can now prove the type preservation property:

Theorem 2.2 (Type preservation).
If M ↪→ V and · ` M @ ω : A, then · ` V @ ω : A.

If E @ ω ⇁ V @ ω′ and · ` E @ ω ÷ A, then

· ` V @ ω′ ÷ A and ω ≤∗ ω′.

Since expressions may produce world effects, we
do not allow expressions to be converted into terms,
while we can always lift terms to expressions. There-
fore we define a program as a closed expression E
that typechecks at a certain initial world ωinitial , i.e.,
· ` E @ ωinitial ÷A. We choose ωinitial according to the
world structure being employed. To run a program E,
we compute it at ωinitial .

2.4 λ→

© = Haskell + ML

Since the modality © and the connective → are inde-
pendent of each other, λ→

© without either © or → is still
a complete language with constructs for computations.
The two sublanguages of λ→

© have the same expressive
power (because © and → can simulate each other us-
ing ⊃), but they allow us to structure effects and write
computations in different ways.

λ→

© without →, written λ©, is similar to Haskell if
terms are regarded as its primary syntactic category:
terms are effect-free and computations are written in
a monadic syntax. The difference is that computa-
tions in λ© use a separate syntactic category, namely
expressions, whereas in Haskell, computations are rep-
resented as monads and therefore there are only terms
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(e.g., return M in Haskell corresponds to a term cmp M
in λ©, not to an expression M).

λ→

© without ©, written λ→, is similar to ML if ex-
pressions are regarded as its primary syntactic category:
any expression may produce effects and effectful appli-
cations use call-by-value. The difference is that evalu-
ations in λ→ use a separate syntactic category, namely
terms, whereas in ML, there is no separate syntactic
category for evaluations.

As a combination of λ© and λ→, therefore, λ→

© serves
as a unified framework where both Haskell-style pro-
gramming and ML-style programming may coexist. If
you like Haskell, you can begin with terms, structur-
ing effects as monads and writing computations in a
sequential style; if you like ML, you can begin with ex-
pressions, allowing effects in any expression and writing
computations in an imperative style, and also enjoying
evaluations when necessary. If you like both, you have
the freedom to begin with either syntactic category.

3 Examples of World Effects

In order to implement a specific notion of world effect
in λ→

©, we specify a world structure and provide instruc-
tions to interact with worlds. In this section, we discuss
three specific notions of world effect.

3.1 Probabilistic computations

We model a probabilistic computation as a computa-
tion that returns a value after consuming real numbers
drawn independently from a uniform distribution over
(0.0, 1.0]. A real number r is a world term of type real.
A world, the source of probabilistic choices, is repre-
sented by an infinite sequence of real numbers drawn in-
dependently from a uniform distribution over (0.0, 1.0].
We use an instruction random for consuming the first
real number of a given world:

world ω ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]

Γ ` r @ ω : real
Real

Γ ` random @ ω ÷ real
Random

random @ r1r2r3 · · · ⇁ r1 @ r2r3 · · ·
Random

Since a world does not affect types of world terms,
the monotonicity of ≤ is preserved. We can use any
world as an initial world.

3.2 Sequential file input/output

We model sequential file input/output with a compu-
tation that consumes an input character stream is and
outputs to an output character stream os, where a char-
acter is a world term of type char. We assume that is

is read-only and os is not used by an external agent

so that the computation produces only internal world
effects. We use two instructions: read c for reading a
character from the input stream and write c M for writ-
ing a character to the output stream:

world ω ::= (is, os)
is ::= c1c2c3 · · · os ::= nil | c :: os

Γ ` c @ ω : char
Char

Γ ` read c @ ω ÷ char
Read c

Γ ` M @ ω : char
Γ ` write c M @ ω ÷ char

Write c

read c @ (c1c2c3 · · · , os) ⇁ c1 @ (c2c3 · · · , os)
Read c

M ↪→ c
write c M @ (is, os) ⇁ c @ (is, c :: os)

Write c

Since a world does not affect types of world terms,
the monotonicity of ≤ is preserved. We use an empty
output character stream in an initial world.

3.3 Mutable references

Probabilistic computations and input/output are easy
to formulate because worlds do not affect types of world
terms. Mutable references, however, require us to in-
troduce world terms whose type depends on worlds,
namely references. Now the monotonicity of ≤ holds
only if values written to a reference l match the type
specified by l. We use a reference type ref A for refer-
ences, and define a store σ as a collection of pairs of a
reference and a value:

store σ ::= · | σ[l 7→ V ]
σ[l 7→ V ] = σ, [l 7→ V ] if [l 7→ V ′] 6∈ σ
σ[l 7→ V ] = (σ − [l 7→ V ′]), [l 7→ V ] if [l 7→ V ′] ∈ σ

The definition of σ[l 7→ V ] implies that references in a
store are all distinct. We introduce a reference typing
context Γref mapping references to reference types:

reference typing context Γref ::= · | Γref , l : ref A

By a notational abuse, we regard reference typing con-
texts as a special case of ordinary typing contexts. In
the presence of a reference typing context, we typecheck
references in the same way as variables, but without us-
ing @ ω in the typing judgment:

l : ref A ∈ Γref

Γ,Γref ` l : ref A
Refvar

We say that a store σ is typable if there exists a
reference typing context Γref such that [l 7→ V ] ∈ σ
implies Γref ` V : A and l : ref A ∈ Γref ; the typing
rules for Γ,Γref ` M : A and Γ,Γref ` E÷A are derived
from the ordinary typing rules by removing @ ω. We
write |= σ : Γref if store σ is typable under a reference
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typing context Γref . We define a world as a typable
store.

The typing rule for references derives a reference typ-
ing context from a given world:

|= ω : Γref l : ref A ∈ Γref

Γ ` l @ ω : ref A
Ref

We use three instructions: new M for initializing a
fresh reference, read M for reading the contents of a
store, and write M M for updating a store. Note that
reading the contents of a store is considered to be a
world effect.

Γ ` M @ ω : A
Γ ` new M @ ω ÷ ref A

New
Γ ` M @ ω : ref A

Γ ` read M @ ω ÷ A
Read

Γ ` M @ ω : ref A Γ ` N @ ω : A
Γ ` write M N @ ω ÷ A

Write

M ↪→ V fresh l such that [l 7→ V ′] 6∈ ω

new M @ ω ⇁ l @ ω[l 7→ V ]
New

M ↪→ l [l 7→ V ] ∈ ω

read M @ ω ⇁ V @ ω
Read

M ↪→ l N ↪→ V [l 7→ V ′] ∈ ω

write M N @ ω ⇁ V @ ω[l 7→ V ]
Write

Proposition 3.1 shows that the three instructions are
type-preserving. We use the same idea in its proof to
show that the monotonicity of ≤ is maintained.

Proposition 3.1.
If new M @ ω ⇁ l @ ω[l 7→ V ] and · ` new M @ ω÷

ref A, then · ` l @ ω[l 7→ V ] : ref A.

If read M @ ω ⇁ V @ ω and · ` read M @ ω ÷ A,

then · ` V @ ω : A.

If write M N @ ω ⇁ V @ ω[l 7→ V ] and

· ` write M N @ ω ÷ A, then · ` V @ ω[l 7→ V ] : A.

In order to maintain the monotonicity of ≤, all ref-
erences must be persistent because once we deallocate
a reference, we cannot determine its type any longer.
This means that we cannot use an instruction for deal-
locating references (e.g., delete M). We use an empty
store as an initial world.

3.4 Supporting multiple notions of world effect

Since a world structure realizes a specific notion of world
effect and instructions provide an interface to worlds,
we can support multiple notions of world effect by com-
bining individual world structures and letting each in-
struction interact with its relevant part of the world.
For instance, we can use all the instructions above if a
world consists of three sub-worlds: an infinite sequence
of real numbers, input/output streams, and a typable
store. This is the way we combine world effects at the
language design level.

4 Control Effects

So far, we have restricted ourselves to world effects, i.e.,
transitions between worlds. λ→

© is designed in such a
way that world effects are confined to expressions so
that terms are free of world effects. When we extend
λ→

© with control effects, however, it is not immediately
clear which syntactic category should be permitted to
produce control effects. On one hand, we could choose
to confine control effects in expressions so that terms re-
main free of effects. Then the distinction between effect-
free evaluations and effectful computations is drawn in
a conventional sense. On the other hand, in order to
develop λ→

© into a practical programming language, it
is highly desirable to allow control effects in terms. For
instance, exceptions for terms would be an easy way
to handle division by zero or pattern-match failures oc-
curring during evaluations. At the same time, however,
exceptions for expressions are also useful for those in-
structions whose execution does not always succeed.

We hold the view that expressions are in principle
a syntactic category specialized for world effects, and
allow control effects both in terms and in expressions.
The decision does not prevent us from developing con-
trol effects orthogonally to world effects, since control
effects are realized with reduction rules wheras world ef-
fects are realized with world structures. In fact, there is
no reason to confine control effects only in one syntactic
category, since the concept of control effect is relative
to what the “basic” reduction rules are anyway.

Although control effects do not conflict with world
effects, they may change the meaning of A true or
A comp. As an example, consider continuations for
terms; for the type system and the operational seman-
tics, we refer the reader to the literature (e.g., [11])
as they are already well developed. From a logical per-
spective, continuations for terms change the meaning of
A true from intuitionistic truth to classical truth [10].
This, however, does not mean that we have to change
the definition of expressions accordingly, since in our
formulation of lax logic, the definition of A comp is not
subject to a particular definition of A true. In other
words, even if we change the meaning of A true, the
same definition of A comp remains valid with respect
to the new definition of A true; therefore the same def-
inition of expressions remains valid with respect to the
new definition of terms.

5 run Construct

Haskell provides the runST construct [17, 18, 19] de-
signed to prevent interferences between state transform-
ers. Conceptually it is a term construct which initiates
a computation, and thus provides a way to convert ex-
pressions into terms. We wish to augment λ→

© with a
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similar term construct run:

term M ::= · · · | run 〈E〉

The following evaluation rule shows how the run con-
struct works:

E @ ωinitial ⇁ V @ ωfinal

run 〈E〉 ↪→ V
Run

That is, we create an initial world ωinitial , compute E
at ωinitial to obtain a value V , and use V as the re-
sult of evaluating run 〈E〉. The initial world ωinitial is
either fixed or determined by the current world where
the evaluation of run 〈E〉 is taking place. Since run is
a term construct, we discard the final world ωfinal so
that no world effects produced during the computation
of E affect the current world. Now we can compute E
by evaluating run 〈E〉, and therefore a program can be
defined as a closed term instead of a closed expression.

It is, however, not trivial to design the run construct.
An immediate problem is that depending on the choice
for the initial world, the same run construct may return
different results (e.g., in probabilistic computations).
This would mean that we cannot use the equational
theory for terms despite the fact that terms are free of
world effects. Therefore we require that all instances of
the same run construct use the same initial world.

Another problem is that the rule Run is not safe to
use because of those world terms whose type depends
on the world where they reside. That is, E may not
typecheck at ωinitial if it contains such world terms and
ωinitial is not accessible from the current world. Neither
is V guaranteed to typecheck at the current world for a
similar reason. Therefore the type system must ensure
that the evaluation of the run construct never delivers a
term or expression to another world where it does not
typecheck.

As a special case, if all world terms are globally valid,
i.e., typecheck at every world irrespective of the acces-
sibility relation ≤ (e.g., real numbers and characters),
we can use the following typing rule:

Γ ` E @ ω ÷ A

Γ ` run 〈E〉 @ ω : A
Run0

A general approach, in particular for references, is to
prove that an argument E to the run construct is glob-
ally valid and also computes to a globally valid value.
Albeit conservative, it imposes no further restriction on
the choice of the initial world for E and allows the type
system to disregard the final world resulting from the
computation of E. Below we develop a type system
based upon this approach.

5.1 Global computability judgment

The run construct safely converts expressions into
terms. It does not, however, allow every expression to
be converted; if this were the case, there would be no
need at all to distinguish between terms and expres-
sions. Therefore we need to isolate those expressions
that we allow to be converted into terms.

To this end, we introduce a global computability judg-

ment A gcomp. It means that A true holds at ev-

ery world after potentially producing some world ef-
fect. Since A gcomp is a special case of A comp that
yields A true holding at every world, we can use as its
proof an expression that computes to a globally valid
value. If such an expression itself is also computable
at every world, we can convert it into a value at any
world ωcurrent as follows: first we choose an initial world
ωinitial ; next we compute it at ωinitial ; finally we trans-
fer the result back to ωcurrent . It is such expressions
that we allow to be converted into terms by the run

construct. This in turn means that A gcomp must be
characterized in such a way that if it holds at every
world, we can deduce A true.

5.1.1 Logic for global computability

To begin with, we introduce a derived judgment called
global truth judgment A global , which is defined as
· ` A true and means that A true holds at every world.
We allow global truth judgments as hypotheses in a
hypothetical judgment. For the sake of visual clarity,
we use hypothetical judgments of the form ∆;Γ ` J
where we distinguish global truth judgments as ∆. We
do not use A global for the judgment J because we
can always prove ∆; Γ ` A global indirectly by proving
∆; · ` A true.

We characterize A gcomp in a similar way to A comp,
except that we use global truth judgments in place of or-
dinary truth judgments and that there is an additional
clause relating A gcomp back to A true:

1. If ∆; · ` A true, then ∆; Γ ` A gcomp.

2. If ∆; Γ ` A gcomp and ∆, A global ; Γ ` J , then
∆; Γ ` J where J is either C comp or C gcomp.

3. If ∆; · ` A gcomp, then ∆; Γ ` A true.

In the first clause, we effectively assume A global be-
cause ∆; · ` A true proves A global . The second clause
can be thought of as the substitution principle for
A gcomp. The third clause expresses that if A gcomp

holds at every world, A true holds. Note that it pro-
vides a way to prove not A gcomp but A true. As
suggested earlier, it is the third clause that accounts for
the behavior of the run construct.

Since A gcomp is defined as a special case of A comp.
we revise the definition of A comp accordingly:
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1. If ∆; Γ ` A true, then ∆; Γ ` A comp.

2. If ∆; Γ ` A comp and ∆;Γ, A true ` J , then
∆; Γ ` J where J is either C comp or C gcomp.

As with A comp, there are two ways to apply the
propositions-as-types interpretation to A gcomp. We
present the approach based upon internalizing A gcomp

with a modality ¯; the other approach is analogous to
developing the connective →. For the sake of brevity,
we do not consider λ̂x :A.E, E1ˆE2, I, and {E/x}F .

5.1.2 Syntax and type system

The syntax for A gcomp is as follows:

type A ::= · · · | ¯ A
term M ::= · · · | u | gcmp E
expression E ::= · · · | letgcmp u J M in E
value V ::= · · · | gcmp E

u is called a global variable and holds a globally valid
term. gcmp E is called a global computation term, and
encapsulates the computation of an expression that re-
turns a globally valid value. letgcmp u J M in E is
similar to letcmp x / M in E except that M evaluates
to gcmp F .

The new form of hypothetical judgment requires that
typing judgments include a global typing context, corre-
sponding to global truth judgments, as well as an or-
dinary typing context. In order to use expressions as
proofs of A gcomp, we introduce global expression typ-

ing judgments. Since we cannot assume a specific world
when proving A global (we can assume a specific world
when proving A gcomp), we also need typing judgments
that do not involve worlds:

global typing context ∆ ::= · | ∆, u :: A

term typing judgment ∆; Γ ` M @ ω : A
expression typing judgment ∆; Γ ` E @ ω ÷ A
global expr. typing judgment ∆; Γ ` E @ ω + A
world-free typing judgments ∆; Γ ` M : A

∆;Γ ` E ÷ A
∆;Γ ` E + A

u :: A in ∆ means that u assumes a globally valid
term of type A. ∆; Γ ` M @ ω : A means that M has
type A at world ω if both ∆ and Γ are satisfied at the
same world. ∆; Γ ` M : A means that M has type A
at an arbitrary world where both ∆ and Γ are satisfied.
In particular, ∆; · ` M : A proves that M is globally
valid. We interpret the expression typing judgments in
a similar way.

A global expression typing judgment proves
A gcomp. ∆; Γ ` E @ ω + A means that E computes at
world ω to a globally valid value of type A if both ∆ and

Γ are satisfied at the same world. ∆; Γ ` E + A means
that E computes to a globally valid value of type A at

an arbitrary world where both ∆ and Γ are satisfied. In
particular, ∆; · ` E + A proves that E is computable at
every world and also computes to a globally valid value.

The new typing rules for the judgments with worlds
are as follows:

∆; · ` M : A

∆;Γ ` M @ ω + A
GTerm

∆;Γ ` E @ ω + A

∆;Γ ` gcmp E @ ω : ¯A
¯I

∆;Γ ` M @ ω : ¯A ∆, u :: A; Γ ` E @ ω + C

∆;Γ ` letgcmp u J M in E @ ω + C
¯E

∆;Γ ` M @ ω : ¯A ∆, u :: A; Γ ` E @ ω ÷ C

∆;Γ ` letgcmp u J M in E @ ω ÷ C
¯E÷

∆; · ` E + A

∆;Γ ` run 〈E〉 @ ω : A
Run

u :: A ∈ ∆
∆;Γ ` u @ ω : A

GHyp

∆;Γ ` M @ ω : ©A ∆;Γ, x : A ` E @ ω + C

∆;Γ ` letcmp x / M in E @ ω + C
©E+

The rule GTerm corresponds to the the first clause in the
characterization of A gcomp; its premise proves that
M is a globally valid term of type A. The rule ¯I is
the introduction rule for ¯; the rules ¯E and ¯E÷ are
the elimination rules for ¯. The rule Run corresponds
to the third clause in the characterization of A gcomp;
it states that run 〈E〉 contains an expression E that
is computable at every world and also computes to a
globally valid value of type A. The rule ©E+ is another
elimination rule for the modality ©. The remaining
typing rules are obtained from those for the judgments
Γ ` M @ ω : A and Γ ` E @ ω÷A in a straightforward
way.

The rules for the world-free typing judgments are
derived from their counterparts for the judgments with
worlds by erasing all occurrences of @ ω. For instance,
the rule Run derives the following rule:

∆; · ` E + A

∆;Γ ` run 〈E〉 : A
Run∗

For those world terms whose type depends on the world
where they reside (e.g., references), we do not have
world-free typing rules.

The rule ©E+ shows that we can derive a global ex-
pression typing judgment from letcmp x / M in E even
though it creates a value that is not necessary globally
valid. This makes sense because we can freely use x
in E as long as the final computation in E returns a
globally valid value.

The following proposition confirms the meaning of
the world-free typing judgments:

Proposition 5.1. For any world ω:

If ∆;Γ ` M : A, then ∆;Γ ` M @ ω : A.

If ∆;Γ ` E ÷ A, then ∆;Γ ` E @ ω ÷ A.

If ∆;Γ ` E + A, then ∆;Γ ` E @ ω + A.
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5.1.3 Reduction and operational semantics

We define capture-avoiding global term substitutions

[[M/u]]N and [[M/u]]E in a standard way. We also de-
fine a global expression substitution 〈〈E/u〉〉F in an anal-
ogous way to expression substitutions, and extend the
expression substitution for letgcmp u J M in E:

〈〈M/u〉〉F = [[M/u]]F
〈〈letcmp x / M in E/u〉〉F = letcmp x / M in 〈〈E/u〉〉F

〈〈letgcmp u′ J M in E/u〉〉F = letgcmp u′ J M in 〈〈E/u〉〉F
〈letgcmp u J M in E/x〉F = letgcmp u J M in 〈E/x〉F

The substitution principle for expressions derived
from A gcomp is stated as follows:

If ∆;Γ ` E + A and ∆, u :: A; Γ ` F ÷ C,

then ∆;Γ ` 〈〈E/u〉〉F ÷ C.

If ∆;Γ ` E @ ω + A and ∆, u :: A; Γ ` F @ ω + C,

then ∆;Γ ` 〈〈E/u〉〉F @ ω + C.

The computation rule for letgcmp u J M in E is
based upon a new reduction rule:

letgcmp u J gcmp E in F ⇒exp 〈〈E/u〉〉F

M ↪→ gcmp F 〈〈F/u〉〉E @ ω ⇁ V @ ω′

letgcmp u J M in E @ ω ⇁ V @ ω′ Letgcmp

The type preservation property uses the new typing
judgments with worlds. So does the monotonicity of the
accessibility relation ≤ (in Definition 2.1).

Theorem 5.2 (Type preservation).
If M ↪→ V and ·; · ` M @ ω : A, then ·; · ` V @ ω : A.

If E @ ω ⇁ V @ ω′ and ·; · ` E @ ω ÷ A, then

·; · ` V @ ω′ ÷ A and ω ≤∗ ω′.

If E @ ω ⇁ V @ ω′ and ·; · ` E @ ω + A, then

·; · ` V @ ω′ + A and ω ≤∗ ω′.

Now we can show that an expression proving
A gcomp indeed computes to a globally valid value of
type A. Suppose ·; · ` E @ ω + A and E @ ω ⇁
V @ ω′. We have ·; · ` V @ ω′ + A by the above theo-
rem and ·; · ` V : A by the typing rule GTerm. Then V
is globally valid by Proposition 5.1. In conjunction with
the typing rule Run, this implies that the evaluation rule
Run safely converts expressions into terms.

5.1.4 Current world as an initial world

The above type system guarantees the safety of the run

construct regardless of the choice for an initial world.
Here we consider a special case where the current world
is used as an initial world. This is useful, for instance,
when we want to build a hierarchy of stores where a
child store can access all its ancestor stores.

Now a term evaluation may require the current
world, and we use an evaluation judgment M @ ω ↪→ V
where ω denotes the current world. The revised typing
and evaluation rules for the run construct are:

∆; Γ ` E @ ω + A

∆;Γ ` run 〈E〉 @ ω : A
Run′

E @ ω ⇁ V @ ωfinal

run 〈E〉 @ ω ↪→ V
Run ′

The rule Run′ says that we can use those variables
in Γ when computing E but not in the result of the
computation. It is, however, semantically safe to use
them in the result of the computation as well, since the
result is transferred back to the current world where
they all typecheck. For instance, run 〈x〉 does not type-
check even when x typechecks, but it is semantically
equivalent to x. A quick fix is to incorporate the typing
context Γ into the global typing context (using every
ordinary variable in it as a global variable):

∆,Γ; · ` E @ ω + A

∆;Γ ` run 〈E〉 @ ω : A
Run′′

Then we can use those variables in Γ not only for the
computation of E but also in its result.

In practice, the rule Run ′ is not easy to implement
unless we use in computing E a copy of the current
world. The reason is that the runtime system must re-
cover the original world ω from the final world ωfinal by
canceling all world effects produced during the compu-
tation of E. In the case of mutable references, we can
achieve this by refining the type system so that the com-
putation of E does not update ω. Then we can recover
ω from ωfinal by discarding ωfinal − ω. The Kripke-
style natural deduction system in [7] (which maintains
a stack of typing contexts) in conjunction with a sep-
aration between read and write effects seems to be a
good basis for such a refined type system.

5.2 Constructs for the global truth judgment

Although the run construct is now safe, there are still
two problems. First the rule Run typechecks an ex-
pression E under an empty typing context, and as pa-
rameters to the computation of E, we can pass only
global variables produced by the letgcmp construct dur-

ing computations. Second the run construct takes an ex-
pression instead of a (global) computation term. That
is, it takes not an encapsulation of a computation but
the computation itself. This limits its utility because
unlike Haskell’s runST construct, we can never initiate
a computation encapsulated in a (global) computation
term that is not bound to a global variable.

We can resolve both problems by internalizing the
global truth judgment A global with a modality ¡. The
constructs for A global closely resemble those for the
validity judgment A valid in [35].
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5.2.1 Logic for global truth

We characterize A global with the new form of hypo-
thetical judgment, where J can be any categorical judg-
ment:

1. ∆, A global ; Γ ` A true.

2. If ∆; · ` A true and ∆, A global ; Γ ` J , then
∆; Γ ` J .

The first clause expresses that A global implies A true.
The second clause can be thought of as the substitu-
tion principle for A global because ∆; · ` A true implies
∆; Γ ` A global .

5.2.2 Syntax and type system

The syntax for A global is as follows:

type A ::= · · · | ¡ A
term M ::= · · · | glo M | letglo u = M in M
expression E ::= · · · | letglo u = M in E
value V ::= · · · | glo M

glo M is called a global term, and contains a globally
valid term M . letglo u = M in N and letglo u = M in E
expose to N and E a globally valid term obtained by
evaluating M .

The new typing rules for the judgments with worlds
are as follows:

∆; · ` M : A

∆;Γ ` glo M @ ω : ¡A
¡I

∆;Γ ` M @ ω : ¡A ∆, u :: A; Γ ` N @ ω : C

∆;Γ ` letglo u = M in N @ ω : C
¡E

∆;Γ ` M @ ω : ¡A ∆, u :: A; Γ ` E @ ω ÷ C

∆;Γ ` letglo u = M in E @ ω ÷ C
¡E÷

∆;Γ ` M @ ω : ¡A ∆, u :: A; Γ ` E @ ω + C

∆;Γ ` letglo u = M in E @ ω + C
¡E+

The rule ¡I is the introduction rule for ¡; the rules ¡E,
¡E÷, and ¡E+ are the elimination rules for ¡. Note
that in the rule ¡I, the premise uses a world-free term
typing judgment with an empty typing context because
we are proving A global . New rules for the world-free
typing judgments are derived by erasing all occurrences
of @ ω as before.

It is easy to show that Proposition 5.1 continues to
hold. Then we can show that a term contained in a
global term is indeed globally valid. Consider a global
term glo M such that ·; · ` glo M @ ω : A. By the rule
¡I, we have ·; · ` M : A. By Proposition 5.1, the term
M typechecks at every world and is thus globally valid.

5.2.3 Reduction and operational semantics

The substitution principle for terms derived from
A global is stated as follows (global term substitutions
are extended in a standard way):

If ∆; · ` M : A and ∆, u :: A; Γ ` N @ ω : C,

then ∆;Γ ` [[M/u]]N @ ω : C.

If ∆; · ` M : A and ∆, u :: A; Γ ` E @ ω÷C,

then ∆;Γ ` [[M/u]]E @ ω ÷ C.

If ∆; · ` M : A and ∆, u :: A; Γ ` E @ ω + C,

then ∆;Γ ` [[M/u]]E @ ω + C.

We also extend expression substitutions for letglo u =
M in E:

〈letglo u = M in E/x〉F = letglo u = M in 〈E/x〉F
〈〈letglo u′ = M in E/u〉〉F = letglo u′ = M in 〈〈E/u〉〉F

New evaluation and computation rules are based
upon two new reduction rules:

letglo u = glo M in N ⇒term [[M/u]]N
letglo u = glo M in E ⇒exp [[M/u]]E

M ↪→ glo M ′ [[M ′/u]]N ↪→ V

letglo u = M in N ↪→ V
Letgloterm

M ↪→ glo M ′ [[M ′/u]]E @ ω ⇁ V @ ω′

letglo u = M in E @ ω ⇁ V @ ω′
Letgloexp

The type preservation property in Theorem 5.2 contin-
ues to hold with these rules.

With the constructs for A global , we can pass as pa-
rameters to the run construct globally valid terms pro-
duced during evaluations. Note that despite the avail-
ability of run 〈E〉, we cannot implement a term of type
¯A ⊃ A because ¯A does not prove that an expres-
sion is computable at every world. We can, however,
implement a term run¡¯ of type ¡¯A ⊃ ¡A and a
term run¡©¡ of type ¡©¡A ⊃ ¡A, both of which ef-
fectively take an encapsulation of a computation to be
initiated by the run construct:

let run¡¯ = λx :¡¯A.
letglo u = x in run 〈letgcmp u′ J u in glo u′〉

let run¡©¡ = λx :¡©¡A.
letglo u = x in

run 〈letcmp y / u in letglo u′ = y in glo u′〉

6 Related Work

Monadic languages. Moggi [23, 24] proposes monads
as a tool for modeling various notions of computation
in a uniform manner. Wadler [41, 42] popularizes the
idea of using monads in structuring programs and incor-
porating effects into purely functional languages. The
idea has been adopted in the design of Haskell.

12



From our perspective, Haskell is a monadic language
because of its built-in IO monad [34] rather than its type
class Monad. The IO monad forms a monadic sublan-
guage distinct from the functional sublanguage. Peyton
Jones [33] clarifies the distinction between the two with
a semantics for Haskell. Like the operational semantics
of λ→

©, it is stratified into two levels: an inner deno-

tational semantics for the functional sublanguage and
an outer transition semantics for the monadic sublan-
guage.

The linguistic framework of Haskell is Moggi’s
monadic metalanguage λml [23, 24], which has served
as the de facto standard for monadic languages [17, 18,
3, 37, 25, 26, 43]. From a type-theoretic perspective,
λml is connected to lax logic [8] via the propositions-as-
types interpretation, as shown by Benton, Biermann,
and de Paiva [5]. Pfenning and Davies [35] reformulate
λml by applying Martin-Löf’s methodology of distin-
guishing judgments from propositions [22] to lax logic.
They also show that lax logic is contained in modal logic
in that the modality © of lax logic (which is the same
modality as in λ→

©) can be encoded as a composition ♦¤

of the possibility modality ♦ and the necessity modality
¤ of modal logic. The new formulation of λml draws a
syntactic distinction between values and computations,
and uses the modality © for computations. It is used
in the design of a security-typed monadic language [6];
its underlying modal type theory inspires type systems
in [1, 2] and effect systems in [27, 28].

The idea of the syntactic distinction but without an
explicit modality for computations is used by Petersen
et al. [29]. The same idea is also used by Mandelbaum,
Walker, and Harper [21]. Their language is similar to
λ→

© in that the operational semantics (but not the type
system) uses an accessibility relation between worlds,
and in that two kinds of functions are provided: “pure”
functions of type A→C and “impure” functions of type
A ⇀ C. The meaning of a world is, however, slightly
different: a world is a collection of facts on what serves
as a world in λ→

©.
Control effects. A typical monadic language draws

no distinction between control effects and world effects
and confines all kinds of effects to its monadic sub-
language [26]. Haskell also follows the same princi-
ple [31, 33], but the utility of control effects for its func-
tional sublanguage has also been recognized. Peyton
Jones et al. [32] propose an extension to Haskell with
exceptions for its functional sublanguage. Because of
Haskell’s unconstrained order of evaluation, they are
led to interpret exceptions as values and to exploit the
IO monad to catch exceptions. From our perspective,
this is not a complete implementation of exceptions for
the functional sublanguage; rather it is an extension of
exceptions for the monadic sublanguage.

run construct. From an operational point of view,
we can think of Haskell’s runST construct [17, 18, 19]
as corresponding to our run construct for mutable refer-
ences that uses an empty store as an initial world (i.e.,
ωinitial = {} in the rule Run). Its safety is guaran-
teed by an augmented type system that indexes every
state transformer with a type variable and lets runST

accept a state transformer only if its index type vari-
able is universally quantifiable. The idea of indexing
state transformers is used in subsequent monadic lan-
guages [3, 37, 9]; it also inspires the higher-order type of
a similar construct run in a monadic language of Moggi
and Sabry [25].

Although it is designed to prevent interferences be-
tween state transformers, runST permits dangling ref-
erences to be exported from one state transformer to
another as long as they are never dereferenced. In
contrast, run completely forbids dangling references be-
cause they are not globally valid. runST also assumes
a lazy store in which instructions are executed on de-
mand, whereas run assumes a strict store in which all
instructions are executed sequentially.

Haskell’s unsafePerformIO [34, 33] construct is similar
to runST except that it is used for the IO monad and
assumes a strict store. As its name suggests, however,
it is unsafe. It even allows us to write a function of
type A −> C [16]. Hence its safety must be verified
by programmers. Our run construct does not replace
unsafePerformIO which can be applied to external world
effects as well internal world effects.

Effect systems and monadic languages. Wadler
and Thiemann [43] show the connection between effect
systems and monadic languages. They present a trans-
lation from the effect system of Talpin and Jouvelot [38]
into a monadic language extended with mutable ref-
erences and prove that the translation preserves types
and semantics. A similar technique has been applied
to translating Standard ML into monadic intermediate
languages [40, 4], developing a monadic type system for
a language where effects are lexically scoped [13], and
translating an ML-like language with a construct for
effect masking into a monadic language with a runST

construct [37].
Wadler and Thiemann also point out that Haskell’s

runST construct is similar to the letregion construct of
the region calculus of Tofte and Talpin [39], in which a
region variable plays the role of an index type variable.
The fundamental difference is that runST prohibits a
state transformer from accessing more than one store
whereas letregion allows an expression to access a stack
of regions [19]. Therefore there is no direct correspon-
dence between runST and letregion. For this reason,
Fluet and Morrisett [9] use a construct newRGNVar for
creating new regions (in addition to another construct
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runRGN similar to runST) in their translation of a vari-
ant of the region calculus into an extension of System
F with monadic types.

In λ→

©, the fact that run is a term construct implies
that we cannot use it to implement letregion. The rule
Run ′, however, enables us to implement a limited form
of letregion if the type system guarantees that the com-
putation of E does not update ω.

7 Conclusion and Future Work

Based upon the view that monads are an abstraction
more general than effects and not identified with effects,
we have proposed a logical analysis of effects. Our anal-
ysis leads to a language λ→

© which uses the judgmental
formulation and the possible worlds interpretation of
modal logic. λ→

© draws a distinction between control
effects and world effects, which makes it easy to com-
bine effects at the language design level. It also gives
programmers the freedom to choose either Haskell-style
programming or ML-style programming (or both if nec-
essary), and has a logically motivated run construct for
invoking computations during evaluations. As such, λ→

©

provides a linguistic framework for programming lan-
guages with effects, as an alternative to one based upon
monads.

In applying the propositions-as-types interpretation
to the computability judgment, we have shown that lax
logic is the logic underlying not only monads but also

call-by-value languages. This departs from the tradi-
tional view of call-by-value languages as corresponding
to propositional logic under a particular reduction strat-
egy. This is, however, not surprising, since the seman-
tics of lax logic provides what is required of call-by-value
languages: sequentialization of computations. Thus lax
logic is an alternative to propositional logic as a logical
basis for call-by-value languages.

Our work was inspired by the reformulation of λml

by Pfenning and Davies [35]. A characteristic feature
of their reformulation is a syntactic distinction between
terms and expressions, where terms denote values and
expressions denote computations (as in λ→

©). The syn-
tactic distinction is not merely a cosmetic change in the
syntax of monadic languages. It has led to the interpre-
tation of terms and expressions as complete languages
of their own, which in turn has led to the idea of sepa-
rating control effects and world effects and the idea of
viewing lax logic as a basis for call-by-value languages.
Ultimately we believe that the idea of the syntactic dis-
tinction conveys a design principle that is not found in
other monadic languages.

We are investigating how to refine the type system
with indices so that we can decide not only the type
of a given computation but also the kinds of world

effects it may produce. For instance, we can use an
indexed typing judgment Γ ` E @ ω ÷effect A and in-
dexed types ©effectA and A →effect C, where effect

shows the kinds of world effects the computation may
produce (e.g., effect = {file input, store write}). Such a
refined type system would allow us to combine world
effects at the program level rather than at the language
design level. It would also enable us to achieve a safe
definition of the run construct when we incorporate ex-
ternal world effects into the operational semantics (e.g.,
the run construct rejects a computation if it produces
external world effects.) We are also investigating how
to exploit modal type theory to model control effects
(e.g., with comonads as in [28]). Thus our goal is to ex-
tend λ→

© to account for all kinds of effects, maintaining
its overall safety.
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Appendix - Definition of λ→

©

Abstract syntax

type A ::= A ⊃ A | ©A | A→A | W
world term type W

term M ::= x | λx :A.M | M M | cmp E | λ̂x :A.E | W
world term W
expression E ::= M | letcmp x / M in E | EˆE | I | {I/x}E| {M ˆE/x}F
instruction I

value V ::= λx :A.M | cmp E | λ̂x :A.E | W

Expression substitution

〈M/x〉F = [M/x]F
〈letcmp y / M in E/x〉F = letcmp y / M in 〈E/x〉F

〈{E1/y}E2/x〉F = {E1/y}〈E2/x〉F
〈I/x〉E = {I/x}E

〈F1ˆF2/x〉E = 〈F1/f〉{f ˆF2/x}E fresh variable f

Type system

Γ, x : A ` x @ ω : A
Hyp

Γ ` M @ ω : A
Γ ` M @ ω ÷ A

Term

Γ, x : A ` M @ ω : C

Γ ` λx :A.M @ ω : A ⊃ C
⊃I

Γ ` M1 @ ω : A ⊃ C Γ ` M2 @ ω : A

Γ ` M1 M2 @ ω : C
⊃E

Γ ` E @ ω ÷ A
Γ ` cmp E @ ω : ©A

©I
Γ ` M @ ω : ©A Γ, x : A ` E @ ω ÷ C

Γ ` letcmp x / M in E @ ω ÷ C
©E

Γ, x : A ` E @ ω ÷ C

Γ ` λ̂x :A.E @ ω : A→C
→I

Γ ` E1 @ ω ÷ A→C Γ ` E2 @ ω ÷ A

Γ ` E1ˆE2 @ ω ÷ C
→E

Γ ` E @ ω ÷ A Γ, x : A ` F @ ω ÷ C

Γ ` {E/x}F @ ω ÷ C
Sus

Operational semantics

V ::= λx :A.M | cmp E | λ̂x :A.E | W

V ↪→ V
Val

M1 ↪→ λx :A.M [M2/x]M ↪→ V

M1 M2 ↪→ V
LApp

M ↪→ V
M @ ω ⇁ V @ ω

Term

M ↪→ cmp F 〈F/x〉E @ ω ⇁ V @ ω′

letcmp x / M in E @ ω ⇁ V @ ω′ Letcmp

E1 @ ω ⇁ λ̂x :A.F @ ω′ 〈E2/x〉F @ ω′ ⇁ V @ ω′′

E1ˆE2 @ ω ⇁ V @ ω′′ EApp

I @ ω ⇁ V @ ω′ [V/x]E @ ω′ ⇁ V ′ @ ω′′

{I/x}E @ ω ⇁ V ′ @ ω′′ SusI

M ↪→ λ̂y :A.E′ 〈〈E/y〉E′/x〉F @ ω ⇁ V ′ @ ω′

{M ˆE/x}F @ ω ⇁ V ′ @ ω′ Susˆ
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