
Notes on Logical Frameworks

Robert Harper
IAS

November 29, 2012

1 Introduction

This is a brief summary of a lecture on logical frameworks given at the IAS on
November 26, 2012. See the references for technical details.

2 Logic of Judgments

The idea of a logical framework is to codify the logic of judgments in which one
may represent a logical system as a theory. The theory determines the basic
forms of judgment, the syntactic categories, and the objects that inhabit them.

The sentences of LJ are called judgments. The basic forms are those of the
represented logic (for example, φ true expressing that a proposition φ is true).
There are two non-basic forms that turn out to be closely related:

1. The hypothetical judgment J1, . . . , Jn ` J , expressing entailment, or logical
consequence, of J by J1, . . . , Jn.

2. The general judgment x1 ∈ χ1, . . . , xn ∈ χn | J , expressing generality of
J in parameters x1, . . . , xn ranging over syntactic categories χ1, . . . , χn.

We shall also have need of a formation judgment x1 ∈ χ1, . . . , xn ∈ χn | o ∈ χ
expressing that o is an object of syntactic category χ.

The behavior of the hypothetical judgment is governed by these two funda-
mental principles:

Reflexivity J ` J

Transitivity if J1, . . . , Jm ` J and J ′
1, . . . , J, . . . , J

′
n ` J ′, then J ′

1, . . . , J1, . . . , Jm, . . . , J
′
n `

J ′.

Structural entailment includes also these principles:

Weakening If J1, . . . , Jn ` J , then J1, . . . , Jn, , Jn+1 ` J .

Exchange If J1, . . . , J, , J
′, . . . , Jn ` J ′′, then J1, . . . , J

′, J, . . . , Jn ` J ′′.

1

Contraction If J1, . . . , , J, J, . . . , Jn ` J ′, then J1, . . . , J, . . . , Jn ` J ′.

Substructural entailment denies one or more of these structural principles.
The behavior of the general judgment is governed by these two fundamental

principles:

Variable x ∈ χ | x ∈ χ.

Substitution If x1 ∈ χ1, . . . , x ∈ χ, . . . xn ∈ χ ` J and x1 ∈ χ1, . . . , xn ∈
χn | o ∈ χ, then x1 ∈ χ1, . . . , xn ∈ χn ` [o/x]J . Similarly, if x1 ∈
χ1, . . . , x ∈ χ, . . . xn ∈ χ | o′ ∈ χ′ and x1 ∈ χ1, . . . , xn ∈ χn | o ∈ χ, then
x1 ∈ χ1, . . . , xn ∈ χ | [o/x]o′ ∈ χ′.

Here [o/x]J indicates replacement of x in J by o. Structural generality includes
these additional principles:

Proliferation If x1 ∈ χ1, . . . , xn ∈ χn | J , then x1 ∈ χ1, . . . , xn ∈ χn, x ∈ χ |
J .

Permutation If x1 ∈ χ1, . . . , x ∈ χ, x′ ∈ χ′, . . . , xn ∈ χ | J , then x1 ∈
χ1, . . . , x

′ ∈ χ′, x ∈ χ, . . . , xn ∈ χ | J .

Duplication If x1 ∈ χ1, . . . , x ∈ χ, x ∈ χ, . . . , xn ∈ χ | J , then x1 ∈ χ1, . . . , x ∈
χ, . . . , xn ∈ χ | J .

The similarities between the hypothetical and general judgments are not ac-
cidental. They can be consolidated into a single form by introducing evidence
for judgments and corresponding variables ranging over such evidence so that
the entailment J1, . . . , Jn ` J becomes ξ1 ∈ J1, . . . , ξn ∈ Jn ` ε ∈ J . With this
notation we see that reflexivity corresponds to variable, transitivity to substi-
tution, weakening to proliferation, exchange to permutation, and contraction to
duplication.

This informal account of the logic of judgments is vague in a number of
respects, most importantly in the definition of substitution (of objects for object
variables and of evidence for evidence variables). It is also not quite clear what
would constitute a representation of a logic as a theory in the logic of judgments.

3 LF Language

The LF language is an attempt to clarify and formalize a logic of judgments
in such a way that there is a clear notion of how to present a logical system
as a theory, and a clear notion of what it means for such a presentation to be
correct.

The syntax of LF involves three forms of expressions, kinds, K, families,
A, and objects, M . In addition there are contexts, Γ, declaring the types of
variables and signatures, Σ, declaring the types and kinds of constants. These

2

are specified by a type system with the following forms of judgment:

Σ ` Σ ≡ Σ′ `
Γ `Σ Γ ≡ Γ′ `Σ

Γ `Σ K Γ `Σ K ≡ K ′

Γ `Σ A : K Γ `Σ A ≡ A′ : K
Γ `Σ M : A Γ `Σ M ≡M ′ : A

(The exact formulation varies in different presentations.) The left column are
the formation judgments, the right are the definitional equivalence judgments.

There is a basic kind, type, classifying the types. The signature defines the
basic type families, including the basic types. The types are closed under depen-
dent function space, Πx:A.A′, and the kinds are closed under dependent function
space over a type, Πx:A.K. Definitional equivalence includes the expected β,
and usually η, principles.

It is critically important that all judgment forms of LF be analytic, which
means self-evident, rather than synthetic, which means requiring evidence. The
purpose of LF is to formalize the forms of evidence for a judgment in some
logic, and we wish to avoid the infinite regress of requiring evidence for the
judgments of the framework itself. The represented logic may have synthetic or
analytic judgment forms, and this influences the means by which a logic may
be represented in LF.

Please see the references for the precise definition of the LF type theory
(and bear in mind that there are various forms that differ slightly in technical
detail for various reasons).

4 Synthetic Presentations

One method for representing a logic in LF is to treat all judgments of the
object logic as synthetic, uninterpreted assertions. The goal of the encoding is
simply to capture the rules of the logic, whatever they may be, without regard
to their meaning, if any. So, for example, it is perfectly sensible to represent an
inconsistent logic in LF without any difficulties.

The organizing principle for the synthetic representation is the judgments
as types principle. The idea is that each judgment of the represented logic is
encoded as a type family in LF, and the rules for deriving those judgments are
encoded as constants of appropriate type. The correctness of the encoding is
expressed by an adequacy theorem which says, roughly, that there is a compo-
sitional (aka natural, or commuting with substitution) bijection between the
deductive apparatus of the object logic and the canonical forms (that is, the
long βη-normal forms) of specified types in LF, relative to a signature defining
these constants and a context specifying the variables that may be involved in
the encoding.

An example is the synthetic encoding of Gödel’s T, which is given as follows.1

1As a TEXnical convenience I will use the notation of the Twelf implementation of LF in

3

First, the abstract syntax, using the technique of higher-order abstract syntax
to encode variable binding:

tp : type.

nat : tp.

arr : tp -> tp -> tp.

tm : type.

zero : tm.

succ : tm -> tm.

rec : tm -> (tm -> tm) -> tm -> tm.

app : tm -> tm -> tm.

lam : (tm -> tm) -> tm.

The adequacy is expressed as follows. First, there is a bijection pτq between
types τ of T and canonical forms of LF of type tp. Second, there is a bijection
peq between terms e of T with free variables x1, . . . , xn and canonical forms
of LF of type tm in context x1 : tm, . . . , xn : tm. Moreover, this bijection
is compositional in that it commutes with substitution for the free variables,
which is to say that p[e/x]e′q = [peq/x]pe′q. (Compositionality does not arise
with the adequacy of the representation of types for the simple reason that we
do not consider variable types in T, whereas we do, of course, consider variable
terms.)

Second, the typing judgment of T, using the judgments as types principle:

of : tm -> tp -> type.

of/zero : of zero nat.

of/succ : e:nat of (succ e) nat.

of/rec :

{t:tp} {e0:tm} {e1:tm->tm} {e:tm}
of e0 t -> ({x:tm} of x t -> of (e1 x) t) -> of e nat ->

of (rec e0 e1 e) t.

of/lam :

{t1:tp} {t2:tp} {e:tm->tm}
({x:tm} of x t1 -> of (e x) t2) -> of (lam e) (arr t1 t2).

of/app :

{t1:tp} {t2:tp} {e1:tm} {e2:tm}
of e1 (arr t1 t2) -> of e1 t1 -> of (app e1 e2) t2.

The adequacy of the encoding is expressed by giving a compositional bijection
p∇q between derivations ∇ of x1; τ1, . . . , xn : τn ` e : τ of T and canonical
forms of LF with typings of the form

x1 : tm, ξ1 : ofx1 pτ1q, . . . , xn : tm, ξn : ofxn pτnq ` p∇q : of peq pτq.

which Π’s are represented using curly braces, and λ’s using square brackets. For the sake of
clarity I will eschew the many conveniences provided by Twelf that would allow me to omit
many quantifiers.

4

As before, compositionality means that p[∇/ξ]∇′q = [p∇q/ξ]p∇′q, where the
notation on the left denotes the obvious composition of derivations of typing
judgments in T, which are not ordinarily made explicit in informal accounts of
the system.

Third, the conversion judgment of T is encoded as follows:2

conv : tm -> tm -> type.

refl : {e:tm} conv e e.

sym : {e1:tm} {e2:tm} conv e1 e2 -> conv e2 e1.

beta : {f:tm->tm} {e:tm} conv (app (lam f) e) (f e).

The advantage of higher-order abstract syntax becomes apparent in the beta

rule, which simply applies the body of the λ to an argument to effect the sub-
stitution. The adequacy of the encoding of conversion is stated similarly to the
adequacy of the encoding of typing.

5 Analytic Presentations

The synthetic representation of T is not faithful to the intended meaning of its
judgments. In particular the typing and definitional equivalence judgments of
T are analytic, and should be represented as such in LF. Representing them
synthetically misses the intended meaning, and is to this extent inaccurate.

The alternative is to use an analytic representation in which typing T is
represented directly as typing of LF, and conversion of T is represented directly
by definitional equivalence of LF. This means that the presentation of T in this
form consists of a signature of constants together with an equational theory
governing the behavior of these constants.

Here is a sketch of the signature of the analytic encoding of T. First, the
syntax, which represents only the well-typed terms:

tp : type.

nat : tp.

arr : tp->tp->tp.

el : tp -> type.

zero : el nat.

succ : el nat -> el nat.

rec : {t:tp} el t -> (el t -> el t) -> el nat -> el t.

lam : {t1:tp} {t2:tp} (el t1 -> el t2) -> el (arr t1 t2).

app : {t1:tp} {t2:tp} el (arr t1 t2) -> el t1 -> el t2.

Notice that the “polymorphism” of the language is handled at the framework
level.

There is an obvious bijection between types and terms of T and canonical
forms of suitable type in LF. For example, x : τ1 ` e : τ2 in T corresponds

2Only a few key rules are given here.

5

to x : el pτ1q ` peq : el pτ2q in LF, and this correspondence commutes with
(well-typed) substitution.

Second, definitional equivalence is given by equational axioms such as the
following:

Γ ` app pτ1q pτ2q (lamF)M ≡ F M : el pτ2q

Similar axioms govern the recursor in the usual manner. The foregoing axiom
presupposes the adequacy of the encoding by quantifying over arbitrary F and
M of the appropriate type. One might also state the axiom in more explicit
form by requiring M to be peq for some e of the domain type τ1, and requiring
F to be λx:pτ1q.peq, where x : τ1 ` e : τ2 in T. The axiom then states directly
the β principle for T.

It is a matter of semantics to understand that this encoding of T in LF
is adequate. In particular we must ensure that definitional equivalence of LF
remains analytic under this representation to ensure that we have faithfully
encoded the object logic. From an implementation point of view this means
that we must develop methods for checking conversion of terms in T via their
representation in LF, and this process must be repeated for each represented
logical system.

References

[1] S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editors. Handbook of
Logic in Computer Science, volume 5. Oxford University Press, 2001.

[2] Robert Harper. Practical Foundations for Programming Languages. Cam-
bridge University Press, 2012.

[3] Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for
defining logics. J. ACM, 40(1):143–184, 1993.

[4] Robert Harper and Frank Pfenning. On equivalence and canonical forms in
the lf type theory. ACM Trans. Comput. Log., 6(1):61–101, 2005.

[5] Per Martin-Löf. On the meanings of the logical constants and the justi-
fications of the logical laws. Notre Dame Journal of Philosophical Logic,
1(1):11–60, 1996.

[6] Bengt Nordström. Martin-Löf ’s Type Theory, chapter 1. Volume 5 of
Abramsky et al. [1], 2001.

6

