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Abstract

Inspired by Cardelli’s pioneering work, many type disciplines for
object-oriented programming are based on enrichments of structural
type theories with constructs such as subtyping and bounded polymor-
phism. A principal benefit of such a formulation is that the absence of
“message not understood” errors is an immediate corollary of the type
safety theorem. A principal drawback is that the resulting type systems
tend to be rather complex in order to accommodate the methodology of
object-oriented programming.

We consider another approach based on a simple structural type
theory enriched with a system of type refinements with which we may
express behavioral requirements such as the absence of “message not
understood” errors. Ensuring this property is viewed as a verification
condition on programs that use dynamic dispatch, which we construe
as an abstract type of objects supporting instantiation and messaging
operations. At the structural level dynamic dispatch may fail, but at
the behavioral level this possibility is precluded.

To validate this approach we give an interpretation of Featherweight
Java (FJ), a widely-used model of object-oriented programming, that
comprises a compilation into dynamic dispatch, and an interpretation
of the class table as a system of type refinements. We show that well-
typed FJ programs translate to well-typed and well-refined programs,
from which we deduce the same safety guarantees as are provided by FJ.
More importantly, the behavioral formulation may be scaled to verify
the absence of other behaviors, such as down-cast errors, that are not
easily handled using only structural types.

Introduction

In fairness, designers of object-oriented languages did not simply
“forget” to include properties such as good type systems and good



modularity: the issues are intrinsically more complex than in pro-
cedural languages. - Cardelli (1996)

A great deal of effort has gone into the design of type systems for object-
oriented programming. A prime objective, formulated by Cardelli in the 1980’s,
is to devise type systems for object-oriented languages that preclude “message
not understood” errors at run-time (see, for example, Cardelli (1988)). Achiev-
ing this objective proved quite challenging, stimulating a large body of research
on type systems that could account for a rich variety of programming prac-
tices while ensuring that such run-time errors are precluded. Numerous new
techniques were introduced, ranging from relatively simple concepts such as
subtyping to more advanced concepts such as higher-kinded bounded quantifi-
cation (see, for example, Bruce et al. (1999) and Fisher and Mitchell (1996)).

These type systems are notoriously complex, to the point that their up-
take in practice has been more limited than one might have hoped. Nega-
tive results, such as the discovery of unsoundness in extant languages such
as Eiffel, have had scant influence on their design or use (see Cook (1989)).
Positive results, such as the development of comprehensive theories of objects
by Abadi and Cardelli (1996), have had only limited influence on the de-
sign of new languages. Although languages such as Modula-3 (Cardelli et al.
1989) have benefited from the theories, newer object-oriented languages, such
as Scala (Odersky and Rompf 2014), have only weakly developed theoretical
foundations. The situation is in sharp contrast to the direct and continuing
influence of type theory on the design and implementation of functional lan-
guages, including notable examples such as Standard ML (Milner et al. 1997)
and Haskell (Jones 2003), and their more recent evolutes such as Agda (Norell
2008) and Idris (Brady 2013).

It is reasonable to ask why this is the case. One response might be to
conclude that the complexity of the type theories involved is an indication
that the concepts of object-oriented programming are overly complex, perhaps
even conceptually and methodologically suspect. Another reaction might be
to argue that type systems are simply not up to the task, and should either be
made substantially more powerful (and complicated), or be abandoned entirely
(by reversion to untyped languages). But, as Scott (1976) made clear decades
ago, untyped languages are uni-typed languages, so there is really no possibility
of abandoning types; it is only a matter of how they are to be deployed.

In this paper we propose an alternative approach to typing object-oriented
languages that exploits the distinction between structural, or intrinsic, typ-
ing from behavioral, or extrinsic, typing (Reynolds 1985). Briefly, a struc-
tural type system is a context-sensitive grammar that determines what are
the well-formed programs, and, via Gentzen’s inversion principle, how they
are executed. A behavioral type system is a system of predicates or rela-
tions (propositional functions), called type refinements, or just refinements for
short, that describe the execution properties of well-typed programs (Freeman
and Pfenning 1991; Davies and Pfenning 2000; Davies 2005; Dunfield 2007).

2



Whereas showing that a program is (structurall) well-typed is usually decid-
able, showing that a program satisfies a refinement is, by Rice’s Theorem, a
matter of verification requiring proof. In many cases one can derive efficient
and effective decision procedures for certain behaviors, such as the ones we
shall consider here, but of course one cannot expect to have fully automatic
verification of such conditions.

Since Cardelli’s orginal work in the area (Cardelli 1988), the structural
approach has drawn the most attention for formulating type disciplines for
object-oriented programming. One reason is that structural type disciplines
induce behavioral properties of programs from general properties of the lan-
guage in which they are written. Most importantly, a properly formulated
structural type discipline enjoys the type safety property (Milner 1978; Wright
and Felleisen 1994; Harper 2012), which guarantees that certain forms of run-
time errors cannot arise. It makes sense, then, to build on this foundation to
derive desirable properties of object-oriented programs, such as the absence of
“not understood” errors, from the safety theorem for the type discipline. This
goal has usually been achieved by regarding objects as analogous to labelled
tuples and messages as analogous to projections, so that type safety ensures
that no message may be sent to an object that does not recognize it. Achieving
this goal, while ensuring that the type system is not too restrictive, requires
concepts such as structural subtyping and bounded quantification (see Abadi
and Cardelli (1996) for a thorough discussion of the techniques required). The
result is an impressive array of typing concepts for relatively little pay-off.
Moreover, from a structural point of view, these concepts are, to an extent,
questionable. (For example, width subtyping for tuples relies on the assump-
tion that projections are meaningful independently of the tuple type, a prop-
erty that is not guaranteed by the universal properties of products, but which
can often be arranged to hold in specific implementations.)

The difficulty with the structural approach is that it does not scale well to
ensure other desirable properties of programs, such as the absence of “down-
cast errors,” or to the enforcement of behavioral subtyping conditions (Liskov
and Wing 1994). To better address these issues we propose another approach to
typing object-oriented programs that is based on distinguishing the structural
concept of dynamic dispatch (Cook 2009; Aldrich 2013) from the behavioral
concept of avoidance of run-time errors. According to our view, dynamic
dispatch is simply an application of data abstraction in which an abstract
type of objects is equipped with introduction operations that instantiate a
class with instance data and elimination operations that message to invoke
a method on an instance. Thus, dynamic dispatch amounts to heterogeneous
programming in which we have a variety of operations (methods) acting on data
of a variety of forms (classes). Such a setup can be envisioned as a dispatch
matriz whose rows are classes, whose columns are methods, and whose entries
determine the behavior of each method on each class. The dispatch matrix
gives rise to two equivalent implementations of dynamic dispatch that arise



from the duality between sums and products in type theory. This implies that
there is no inherent reason to prefer a product-based realization of objects; one
may just as well use a sum-based representation. (See Section 3 for further
discussion of this point.) This description leaves open what we mean by the
behavior of a method on an instance of a class. When well-defined, a method
determines a result as a function of the instance data of the object on which
it acts. But a method may also be undefined on certain classes, and would,
if invoked, incur a “not understood” error. Thus, at the structural level, it is
possible for dynamic dispatch to fail, even in a well-typed program, just as it
is possible to incur an arithmetic fault in a well-typed numeric computation.

To rule out this possibility we introduce a behavioral type discipline that
allows us to express the expectation that certain methods are well-defined on
certain classes (or, equivalently, that certain classes admit certain methods as
well-defined on their instances). Specifically, we will use a semantic form of
type refinements of the kind introduced by Freeman and Pfenning (1991) and
further developed by Davies and Pfenning (2000); Davies (2005). According to
the semantic viewpoint, a type refinement is a predicate (or, more generally,
a relation) on a structural type that respects observational equivalence, so
that expressions that behave the same way enjoy the same properties. The
behavior of dynamic dispatch may be specified by refining the type of the
dispatch matrix to express, for example, the expectation that certain methods
are well-defined on certain classes. Richer properties of dynamic dispatch may
be specified in a similar manner. For example, we may express invariants on
the instance data of certain classes (for example, that an integer is always
positive) or properties of the results of certain methods (for example, that it
return a non-negative number). The critical subsumption property (Cardelli
1988) of type disciplines for object-oriented programming is expressible using
logical entailments between refinements, allowing us to support verification in
the presence of a class hierarchy.

To assess the viability of our approach, we give an interpretation of Feath-
erweight Java (Igarashi et al. 1999) in terms of the structural formulation of
dynamic dispatch to account for its dynamics. We then introduce a system of
type refinements derived from the Featherweight Java class table to express the
expectation that certain methods are well-defined on certain classes. We then
prove that well-typed and well-refined programs cannot incur a “not under-
stood” error, but may still incur a “down-cast error”, replicating the guarantees
provided by the Featherweight Java type system. Previous work (Davies 2005;
Dunfield 2007; Xi and Pfenning 1998) suggests that other conditions, such as
absence of down-cast errors or array bounds errors, may be verified in a similar
manner. By generalizing from predicates to binary relations it also appears
possible to verify equational properties of programs, such as the Liskov-Wing
subtyping criterion, in a similar manner. In this respect our approach coheres
with the trend to integrate verification of program properties into the develop-
ment process, allowing us to express a variety of properties of programs that



are not easily achievable using purely structural techniques.

2 Background

We will work in a background structural type theory with finite products and
sums; function types; general recursive types; predicative polymorphic types;
and an error monad with two forms of error. Detailed descriptions of these
standard typing constructs may be found in (Harper 2012). We make no use
of subtyping, of higher kinds, or of any of the more advanced forms of poly-
morphism found in the literature (not even impredicativity). Our treatment
of the error monad follows the judgmental formulation given by Pfenning and
Davies (2001) in which there is a modal separation between expressions of a
type, which may diverge, but otherwise evaluate to a value of that type, and
commands of a type, which may incur a run-time error (that is, an uncaught
exception) when evaluated. We confine ourselves to functional behavior, and
do not consider mutation in this brief account.

The syntactic skeleton of our language, L, is given by the following gram-
mar:

Type T u= t type variable

(T)ier finite product

[Ti)ier finite sum

T — Ty partial function

ut.T type recursion

Vt.T type abstraction

7 cmd encapsulated command
Expression e 1= =z value variable

cmd k encapsulated command
Command k == rete return a value

bndx < e; k sequence

error signal an error

fail signal a failure

The finite product (7);e; and sum [r;];c; types are indexed by a finite set, I,
of indices, which may be construed as position numbers or field labels. The
finite product and sum types are often written in the display forms [[,., 7 and
> ic; T- Function types, 7y — 7, classify partial (possibly divergent) functions
so as to be compatible with general recursive types, pt.7. Polymorphic types,
Vt. T, express (predicative) type abstraction. Existentials are definable from
polymorphic types in the usual way, and are sufficient for our purposes. Much
of the syntax of expressions is elided for the sake of brevity, but is largely
standard.!

1See, for example, Harper (2012) for more details.



The command type 7cmd represents an error monad formulated in the
style of Pfenning and Davies (2001). We consider two forms of error, one
that is deemed permissible in a normal execution, and one that is deemed
impermissible and should be ruled out by verification. (In Section 4 down-cast
errors are considered permissible, and not-understood errors are considered
impermissible.) A permissible error is signaled by error, and an impermissible
error is signaled by fail. A non-error return is effected by the command ret e,
where e is a pure expression, rather than another command. The command
bnd z < e ; k evaluates e to an encapsulated command, evaluates it, possibly
incurring a failure or an error, which are propagated, and otherwise passes the
return value to the command k. The command type 7 cmd is equivalent to the
delayed sum type

() = [ret — 7,error < (), fail < ()] (i.e., equivalent to 1 — 7 + 2).

The monadic bind is then an implied three-way case analysis in which the
error cases are propagated implicitly, and the return case is handled by the
continuation of the bind. This simplifies programming, and is sufficient for
our purposes. We note that an error monad does not incur the complications
with refinements in the presence of general computational effects considered
by Davies and Pfenning (2000) and Dunfield and Pfenning (2003).

The static semantics of L is given by three forms of typing judgment:

A F T type type formation
'Fae:T expression typing
PFa kAT command typing

The definitions of these judgments are largely standard, and omitted here. For
the sake of clarity, we give the rules for the command types, which are less
familiar.

F"Ak@T
I'bFA cmdk : 7 cmd
I'ae:T
I' bA error < 7 I'FA fail A7 I'FAaretes T

'Fae:memd Tix:mbakdn
'Fabndz ek~ n

The dynamic semantics of L is given by the following judgments:

e val evaluated expression

e e expression transition

k err run-time error

k fail run-time failure

k final completed computation
kv k' command transition



The first two define the final states and transition of expression evaluation. The
second two define the error states and transition for commands. The expression
cmd k is a value, regardless of the form of k; it represents a suspended expression
that may incur a failure or error when executed. The command ret e is fully
executed when e val; any errors or failures arising within a command are
propagated as such.? Note that error and failure are observable outcomes
of complete programs; these are used in the definition of Kleene equivalence,
which states that two pograms either both diverge or have the same observable
outcomes.

We now formulate a system of type refinements in the style of Freeman and
Pfenning (1991) and Davies (2005). A refinement, p, of a type, 7, is, in general,
a relation on the elements of 7. Davies and Pfenning considered only unary
relations, which is all that are required here, but is useful to consider binary
relations to express deeper properties of programs, as in Denney (1998). We
depart from Davies and Pfenning, however, in treating refinements semanti-
cally, rather than syntactically. In their work refinements are formulated as a
syntactic type discipline, with emphasis on decidability of refinement checking.
Here we stress the semantics of refinements, leaving mechanical verification as
a separate, albeit but important, practical matter.

The syntax of refinements is given as follows:

p =T variable p1— P2 partial function
T truth V(t37:0).p generic family
1 falsity i-p summand
p1/\ p2  conjunction wr.pin r recursive
p1V py disjunction retp normal return
(p)ier  product error error
fail failure

The logical refinements represent finite conjunctions and disjunctions of prop-
erties of any fixed type. The product, function, and command refinements
represent the action of their corresponding types on predicates. The summand
refinements specify, for a finite sum type, a summand and refinement of its
underlying value. The finite sum refinement may be defined by the equation

iel el

the disjunction of all of its summand refinements. The recursive refinement
1 r.p in r specifies one of a set of mutually recursive properties of the recursive
unrolling of a value of a recursive type. The command refinements, error,
fail, and ret p, are just summand refinements for the sum type underlying
the command refinement, as discussed earlier.

2The full definition of the static and dynamic semantics of L, and the proof of its type
safety, may be found in Harper (2012).



The generic refinement requires further explanation. Following the treat-
ment of abstract refinements for Standard ML modules by Davies (2005), the
refinement V (¢t J 7: 0) . p refines the polymorphic type V¢ .7 by introducing
a type variable, t, a finite set, 7, of variables refining ¢, and a finite set of en-
tailment assumptions, 6, involving the variables 7 C t. The generic refinement
may be seen as the behavioral analogue of bounded quantification (Cardelli
and Wegner 1985), but with the freedom to introduce a finite set of abstract
refinements satisfying a specified set of entailments.

The entailment judgment p; <, ps between two refinements of 7 states any
closed expression of type 7 that satisfies p; also satisfies ps. Entailment may
be seen as the behavioral analogue of structural subtyping. If 6 is a finite set of
refinement assumptions p; <, p, then the hypothetical judgment 6 . p <, p
states that whenever the entailments in 6 are valid, then so is p <, p/. We
write © for a family of refinement assumptions 6, indexed over types 7. This
notation often arises when the types 7 range over a given set of type variables

A.

The expression refinement judgment has the form

T1€r P1y-- T Eq, P |_66€7' P

where O is a family of refinement assumptions for A, © - p; C 7; (for each i),
OFapCr,and a7, ..., 2 T ba e T,

The semantics of the basic refinement judgments is given by assigning to
each refinement p C 7 a subset of the closed expressions, modulo observational
equivalence, of the type 7, and similarly for closed commands, which are ex-
pressions of a distinguished sum type. The details of the construction of such
an interpretation are too involved to present here, but the required techniques



are well-understood.? The semantics of refinements enjoys these properties:

ee, T iff always
ee, L iff never
ec.,pprApy ifft e€,ppandec; py
e€,pVpy Ul e&poreé€; p
€ Eiryicy (Prier ME e-ien p (Viel)
€ Ernmy p1 —p2 iff ey €, p1 implies e(ey) €., po
1-€; Clnilier 1 p; iff e; € Pi
fold(e) €upr pur.pinr, i e €ppryye (W7 pinry/ry, ..o p 7.0 A0 vy /1] pi
eCy.V(tA7:0).p iff elol €/, [p/T]p forall o,5C o sat. 6
cndk €Ercap Mt kErp

retec, retp iff e€.p
error €, error iff always
fail €, fail iff always

In the clause for refinements of V¢ .7 we quantify over refinements p =
{p1,...,pn} of the (monomorphic) type o such that the entailments [p/7]0
over ¢ are all valid. Generally, an entailment p; <, p, is valid iff whenever
e €, p1, then e €, po, and this extends to sets of entailments conjunctively.

3 Dynamic Dispatch

3.1 Structural Typing

Consider a system defining a finite set, M, of methods acting on data objects
classified by a finite set, C', of classes. Associated to each class ¢ € C'is a type
7¢, called the instance type of ¢, the type of ¢, that classifies the instance data
of that class. Associated to each method m € M is a type 7,,, called the result
type of m, that classifies the result of that method when applied to some data
object. Such a system may be concisely described as an element of the type

Thet £ (Z TC) - ( H Tm)

ceC meM

parameterized by the choice of classes and methods and their associated in-
stance and result types. It describes a collection of methods each acting on
data of one of a collection of classes, which is an instance of the general con-
cept of heterogeneous programming available in any language with products
and sums.

3The main difficulty is with recursive types, for which see Pitts (1996); Crary and Harper
(2007); Harper (2012)). Using only predicative polymorphism considerably simplifies the
construction. The refinements of the concrete sum monad for errors are interpreted the
same as refinements for functions returning sums, similar to a simple, unary version of the
PER semantics for monadic refinements for exceptions given by Benton and Buchlovsky
(2007).



By a de Morgan-type duality there is an isomorphism between 7,; and the
type Tym defined by the equation

Tdm £ H H (TCATm).

ceC meM

The type Tgm describes a dispatch matriz of dimension |C| x |M|, with rows
indexed by classes and columns indexed by methods. The entry, €f , of the
dispatch matrix defines the behavior of method m on instances of ¢ as a func-
tion of type 7¢ £ 7¢ — 7, mapping 7°, the instance type of ¢, to 7,,, the result
type of m. The class ¢ and method m may be thought of as the coordinates of
the behavior of method m on instances of class c.

Any matrix may be seen as a row of columns or a column of rows. In
the case each row ¢ € C of the dispatch matrix determines the behavior of
methods M on instances of the class ¢. Thus the dispatch matrix may be seen

as C-indexed column of methods acting on the instance data of c:

ram = [L (= (T] 7).

ceC meM

Dually, each column m € M of the dispatch matrix determines the behavior
of m on the instances of each of the classes C'. Thus the dispatch matrix may
also be seen as an M-indexed column of results for each possible instance:

Tdm = H (ZTC) — T

meM ceC

In view of these isomorphisms neither organization can be seen as more signif-
icant than the other. They are, rather, equivalent descriptions of the informa-
tion encoded in the dispatch matrix.

Dynamic dispatch is an implementation of the abstract type

Tdd £ El(tobj . <new — H 7€ — tobj, snd — H tobj — Tm>),
ceC meM

which specifies a type, toj, of objects on which are defined two families of
operations, instantiation and messaging, which are, respectively, the introduc-
tory and eliminatory forms of the object type. The intended behavior is that
sending a message m to an instance of class ¢ engenders the behavior given
by the dispatch matrix with coordinates ¢ and m. Clients of this package are
equipped with instantiation and messaging operations

FkFae:T© ['Fa e top
I' Fa newlc] (e) : top I' =A snd[m] (e) : 7,

Given a dispatch matrix, eqny,, we may implement dynamic dispatch 744 in
two equivalent ways, by defining a representation type, 7opj, and an associated
class, or constructor, vector, e, of type

ch(Tobj) = H (TC - 7_obj)a

ceC
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and a method, or message, vector, en,, of type

Tone(Toj) = [ (Toby = 7om)-

meM

We will consider two equivalent implementations of the dynamic dispatch
abstraction. The method-based, or sum, form of dynamic dispatch is given by
the following definitions:

Y A c
Tobj—g T

ceC
e = (e X\ (2:7%) [c = 1])ecc

Cmy = (M = ) (this:TEbj) case this{[c = z] = e4m - ¢- m(x) }eec)menm -

The class-based, or product, form of dynamic dispatch is given by the following
definitions:

=
>

b = [ ™™

meM

>

(c= XN (@:7) (M = egm - ¢- M (D) )menr)ecc

A i
emv = (M = X\ (@:1704) T - M)menr-

For either choice of implementation the instantiation and messaging opera-
tions behave by deferral to the constructor and messaging vectors, respectively:

new[c] (e) —* (eq - c) (e)
snd[m] (e) = (emy - m) (€),

whenever e is a value of appropriate type. Then, by construction, we have in
either case that

snd [m] (new[c] (e)) —" (eqm - m - c) (e),

again under the condition that e is a value. This property may be seen as
characterizing dynamic dispatch (Igarashi et al. 1999) in that sending a mes-
sage m to an instance of class ¢ engenders the behavior assigned to m on ¢ by
the dispatch matrix.

This basic model of dynamic dispatch may be elaborated to account for
several forms of self-reference found in object-oriented languages:

1. Any method may call any other, including itself.
2. Any class may create an instance of any other, including itself.
3. The instance type of a class may involve any object.

4. The result type of a method may involve any object.
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Scaling up to allow for these behaviors is largely a matter of generalizing
the type Tgm, choosing 7.; to be a recursive type, and making corresponding
changes to the class and method vectors, based on the choice of 7op. The
details of the construction can be found in Harper (2014), but may be briefly
summarized as follows.

The types of the components of the dispatch matrix must be changed so
that they have access to the class vector (for creating new instances) and the
method vector (for sending messages to instances). Moreover, the instance
type of each class and the result type of each method may involve instances
created in this manner. Thus, the components of the dispatch matrix are given
the (predicative) polymorphic type

Tycn = vtobj . ch(tobj) - va(tobj> - Tc(tobj) - Tm(tobj>‘

The type variable, top;, is the abstract type of objects with which the behaviors
interact via the class- and method vectors.behaviors provided as arguments.

In the method-based (sum) form the type 7op; of objects is defined by the
equation

¥ A c
Tobj — H tobj- E 7(tobj),
ceC

whereas in the class-based (product) form the type 7o is defined by the equa-

tion
T;_éj £ [Ltobj. H Tm(tobj)-
meM

The implementations of the method and class vectors in terms of the dispatch
matrix are slightly more involved than before, because the object types are
recursive (requiring folding and unfolding operations), and either the method
vector (in the sum form) or the class vector (in the product form) must be
self-referential using standard fixed-point operations.

Finally, we observe that it is not necessary for every method to be mean-
ingfully defined on every class of object. More precisely, an ill-defined situation
may be defined as one that signals a run-time error corresponding to the “mes-
sage not understood” error described in the introduction to this paper. This
amounts to choosing 7,,, the result type of method m, to admit the possi-
bility of a run-time fault, which may be accomplished using the error monad
described in Section 2. Once this possiblity is allowed, it becomes important
to specify and verify that certain method and class combinations are sensible,
which we view as a behavioral, rather than structural, property of a program.

3.2 Behavioral Typing

As we have seen in the preceding section, dynamic dispatch is a form of het-
erogeneous programming in which the behavior of a collection of methods is
defined on the instances of a collection of classes. In some cases the behav-
ior is to give rise to a “not understood” error, reflecting that the particular
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combination is ill-defined. The expectation that a method m be defined on
every instance of a class ¢ is not inherent in the idea of dynamic dispatch,
but is rather a methodological consideration imposed from the outside, much
as one might insist as a matter of methodology that other forms of run-time
fault are to be precluded. Indeed, following Cardelli’s principle, one might say
that what makes dynamic dispatch, a mode of use of recursive products and
sums, be “object-oriented” is just that such expectations are stated and and
enforced for each program (for example, by decalarations that form a “class
table” for a program). More generally, one may wish to enforce many other
methodological conditions, such as absence of “down-cast” errors, or avoidance
of “bound check” errors, not all of which can be anticipated in a particular
structural type system.

In Section 4 we will carry out a full-scale verification of the absence of “not
understood” messages for an interpretation of FJ as an application of dynamic
dispatch. Here we outline the general approach to verification of properties
of dynamic dispatch using type refinements. For the sake of clarity , we first
consider the non-self-referential case of dynamic dispatch; this makes it easier
to explain the generalization to admit self-reference. To carry out a verification
of the properties of dynamic dispatch involves the following ingredients:

1. A family of refinements p¢, C 75, which constrains the behavior of the

entries of the dispatch matrix. This family determines a refinement pgm, =

Tdm given by
2 T TS TLTT 7

ceCmeM ceCmeM

2. A family of refinements Pobj = Tobjs for each ¢ € C, and Pobj = Tobjs for
each m € M. In Section 4 we will choose the refinement pg; to express
that an object is an instance of class ¢, and the refinement pgy; to express
that an object understands method m.

3. A refinement p¢ C 7¢ characterizing the instance data of class c¢. The
instance refinement determines a refinement of the class vector type given

by
Pev = H (IOC - pgbj) L H (TC - 7—obj)'

ceC ceC
The refinement p., states that if the instance data satisfies p¢, then the
resulting instance will be an object that satisfies Pabj-

4. A refinement p,, C 7, characterizing the result of method m. The result
refinement determines a refinement of the method vector type given by

Pmv £ H (pgﬁj - pm) C H (Tobj - Tm)'
meM meM

The refinement pm, states that if an object satisfies pgj., then the result
of method m will satisfy p,,.

13



5. Because 77, is 7 — 7,,, the refinement p{ must satisfy the entailment
ps, < p© — pp, so that if p¢, holds for matrix entry ef , instances satisfying
p¢ are mapped to results satisfying p,,.

These choices determine verification conditions that ensure that dynamic dis-
patch is well-behaved. We must ensure that eqn, € pgm, Which is to say that
er. € pt for each behavior e/ , and then we must show e., € p., and that
émv € Pmv, making use of this fact. In sum form the method vector condition
follows directly from the fact that egqn € pgm, but the class vector condition
must be checked for the choice of p® and pg,;. In product form the dual sit-
uation obtains: the class vector condition follows from the verification of the
dispatch matrix, and the method vector condition must be verified for the
choice of pg; and pp,.

These conditions ensure that dynamic dispatch satisfies the following prop-
erties:

L. if e € p°, then new[c] (e) € pjy,;, and
2. if e € pgy;, then snd[m] (e) € py,.

In the case that 7, is a command type 7/, cmd, indicating that method m may
fail when invoked, then some additional conditions are required to ensure that
“message not understood” errors are avoided. Specifically, if instances of ¢ are
to admit method m, then we require the following conditions:

1. Failure is not an option: pf, < p®—retp! V error, for some p/, such
that p/, C 7/ .

2. Any object satisfying pg,; must satisfy pgp:: poy; < pop;-
These further conditions ensure that if e € p¢, then
snd[m] (newlc] (e)) € retp), V error,

which is to say that sending m to an instance of ¢ cannot fail.

The self-referential case is handled similarly, with some additional compli-
cations arising because the entries in the dispatch matrix are polymorphic in
the object type and abstracted with respect to the class and method vectors.
The ingredients are as follows:

1. As before, a family of refinements p¢, C 77 characterizing the behavior
of method m on instances of class ¢ as specified by the dispatch matrix.

2. As before, a family of refinements, p, consisting of refinements Pobj E Tobj,
for each ¢ € €', and pgy,; C 7opj, for each m € M.
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3. Variable refinements 7 consisting of refinements ¢ and r,,, of the abstract
object type top; for each ¢ and m. These are to be thought of as abstract
correlates of the refinements p® and p,, of 7op; that will instantiate them
when the dispatch implementation is chosen. The refinement variables 7
are governed by a finite set of entailment assumptions, 6, that must be
true when 7op; instantiates top; and p instantiates .

4. As before, instance and result refinements, stated parametrically in #op;
and 7 T topj, and object refinements for each class and method, also
parametrically in the same variables.

5. We require that

pin < v(tobj Jr: 9) . Pcv(F) - pm\,(f) - IOC(F) - pm(F)a

where 7 and 0 are the refinement variables and their governing entail-
ments described above.

The last requirement ensures that e, satisfies the instantiation of the poly-
morphic refinement

Per(P) = Pav(P) = P°(P) = Pm(P),

where 7op; is the object type refined by the refinements p specified above.

A detailed example is given in the next section in which we give an in-
terpretation of FJ into L, and use refinements to state and prove that “not
understood” errors are precluded in well-refined programs.

4 Refining Featherweight Java

4.1 Overview

To demonstrate the suggested separation of structural from behavioral typing,
we give a relatively straightforward translation of Featherweight Java (Igarashi
et al. 1999) into L, then equip it with a system of refinements that ensures
that “message not understood” failures cannot arise in a well-refined program.
End-to-end we achieve the same safety guarantees as were ensured by the
original formulation; our goal here is to show that the proposed reorganization
is adequate to achieve the same ends. But, as we shall outline in Section 5, the
separation permits consideration of significantly more elaborate verifications
than are feasible by increasing the complexity of the structural type system
that determines the operational semantics of the language.

The main idea is very simple, particularly if we (temporarily) ignore the
self-referential aspects of FJ (to which we shall return momentarily). The key
step is to translate the FJ class table into a dispatch matrix whose entries are
commands that either return the behavior of method m on class ¢ when it is
defined by the class table, or signal a failure to indicate that it is not defined.
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The main idea of the verification hinges on the definition of two forms of
refinement particular to the problem at hand, inst[c] and recog[m], which
refine the type 7o, regardless of whether it is chosen to be of sum or prod-
uct form. Informally, an object o : 7o is an instance of class c¢ is defined
semantically to mean that for every method m associated to class ¢ in the FJ
class table, the object o does not fail when method m is invoked on it. Notice
that o is not required to have arisen from the constructor of class ¢, but could
be any object that behaves in the way that such an object would (that is, it
could be an instance of a subclass of ¢). This semantic instance property is
certainly not decidable, but this is not relevant to our purposes. Similarly, an
object o : Topj recognizes the method m if any instance of any class declared to
have m in the class table does not fail when sent message m. This, too, is not
decidable, but this is not relevant for our purposes. What is relevant is that
the semantic definition of inst [c] is not defined by declaration, and does not
reflect the history of how the object was created, but is instead a description
of its behavior when executed. This ensures that the subsumption principle of
FJ is validated under our interpretation.

Following the methodology outlined in Section 3, we will set up a system
of refinements that ensures that no “message not understood” errors can arise.
The instance refinement, p® C 7¢, is chosen as the product of the class types
declared for the instance variables ], cpe ;- The result refinement p,, is
chosen to be

ret (( H pon)) — (ret piom V error))
cicarg,,
expressing the typing conditions augmented with the possibility of a “down-
cast” error as outcome of the method body. In the case that the class table
does not associate m with ¢, we instead choose p¢ ' as

failC 7,
reflecting that it is a “not understood” message. In either case we have
PC = pm ETC— 7.

The refinements pg,,; are chosen to be inst[c] for each ¢ € C, and the
refinements pgp, are chosen to be recoglm] for each m in M. These choices
ensure that the class vector entry at ¢ creates objects that are, semantically,
instances of ¢, and that the method vector entry at m delivers a non-error
result when applied to the instance data of a class for which it is defined. We
note that if m occurs in the class table entry for ¢, then inst[¢] < recogl[m],
which states that an instance of ¢ admits the message m, as would be expected.
Similarly, FJ has the property that if ¢ <: ¢ then every method m is the class
table entry for ¢ if it is in the class table entry for ¢/, thus inst [¢] < inst[].
These choices determine the refinements of the class and method vectors, as
described in Section 3.
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To complete the verification we need only check that the dispatch matrix
derived from the FJ class table, and the associated class and method vec-
tors satisfy the stated refinements, which they shall do by construction. This
guarantees the well-behavior of dynamic dispatch in the sense described in
Section 3, which ensures that “message not understood” cannot arise.

The main additional complication to account for self-reference is that we
must, as outlined in Section 3, choose abstract refinement variables r¢ and r,,
that refine the abstract type ¢ of objects, together with a set of entailments,
0, that will be true for Pob; and Pobj when top; is instantiated to 7op. Within
the dispatch matrix the code makes use of these assumptions, just as it would
have made use of the refinement entailments that are true of inst[c] and
recogl[m] in the non-self-referential case. The result proceeds along similar
lines to those outlined above.

4.2 Compiling FJ to L

The following presentation of FJ follows the CBV version by Pierce (2002).
One difference is that we use m for FJ method names, because we need to
distinguish these from the method names m in the interpretation in L. For
classes ¢ the two coincide.

The syntax of FJ is a subset of Java, aside from top-level programs, which
consist of a class table and an expression to evaluate.

class declarations CL := classcextendsc{c¢ f; K ME}
constructor declarations K = c¢(¢ f) {super(f); this.f = f;}
method declarations ME := c¢m(cT) {returnT;}

terms T = z|T.f|lnewc(T) | T -m(T)|(c) T
values V := newc(V)

class table CT == CL

program P == (CT,T)

We now instantiate our framework to show a relatively straightforward
compilation of FJ programs to L types and expressions. To ease the presen-
tation and aid comparison we adopt some similar notation to FJ, including
having a single implicit global class table C'T.

We rely on the following auxiliary definitions from the presentation of FJ
by Pierce (2002):

mtype(m,c) mbody(m,c) fields(c) c<:d

We also require the following definitions derived from these, which depend on
some standard properties of FJ like unique fields. For notational convenience
we treat method arguments like records with integers as the field names. Also,
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the IT record type below with ct € arg,, constructs a record type with indices
i, and in what follows similarly the index excludes the ¢ type declaration.

arg,, = (c11),...,(cn n)} where mtype(m, ') = ¢ — ¢ for some ¢

resm = c (this maps each m uniquely)

F2{cflcfeF “ for some ¢ }  (this maps each f uniquely)
F° 2 fields(c)

To(tor) & [ tons

cicarg,,

Each FJ method m gives rise to a method m in the interpretation. Fields and
casting are implemented by adding extra methods: for each field we have a
method get[f] and for each class we have a method cast[c]. We write m to
indicate a method in the interpretation, which may be any of the three forms
m, get|[f] or cast[c].

In Figure 1 we instantiate the framework in L in the previous sections
by defining the sets of classes and methods, C' and M, and the associated
types 7¢(tobj) and 7, (fobj). This instantiates the types of the dispatch entries
and the types of the method and class vectors from Section 3. Following the
convention for FJ, these definitions implicitly depend on the FJ class table CT
for a particular program, and much of the remainder of this section assumes
similarly that there is a fixed “global” class table.

Class Types Method Types
C = {c| cis declared in CT'} M = {m | mis declared in CT}
U{get[/][ f € F}
U{cast[c] | c € C}

(o) =[] tons

¢ feFe Tm(tObj) é T’r/n(tObj> Cmd
where Tra(tob;) £ Trn&(tobj) — (topj cmd)
Taesl] (fobj) = tobj

Téast[c’] (tObj) = tObj

ch(tobj) = H (Tc<tobj) - tobj) va(tobj) é H (tobj - 7_m<tobj))

ceC meM

7o 2 oty - Teu(foty) = Tn(toty) = 7°(Foty) = Ton (o) |

Figure 1: Compiling FJ syntax to L types
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efn 2 A(tobj))\ (CU:ch<tobj>) A (mU:va(tobj))
A (u:T(top;)) cmd W(AST)
where I 2 tobj €U Tey(tobj)s MU Ty (tobj),
W T(toby), this : top
U = this— cv-c(u)
and kST £ ret (\ (T:728(top)) || T||V% k)  if mbody(m,c) = (z, T)
£ fail if mbody(m, ¢) is undefined
Koy 2 ret(u-f) if f € Fe
£ fail otherwise
kzzit[c,] £ ret this if c<: ¢
A .
= error otherwise

Figure 2: Dispatch entries for FJ methods m, plus get[f] and cast[(/]

The dispatch matrix entries e, are defined in Figure 2 via an auxiliary
command k&Y, with the context I' explicitly indicating which type variables
and typed expressions variables are allowed to be free relative to the command,
in this case topj, cv, mv, u and this. We adopt the convention that each FJ
variable has a corresponding L variable with the same name. This is partic-
ularly convenient in the translation of terms |T|'. Also in what follows we
often use substitutions ¥, to replace free variables with types and expressions
as appropriate, such as the substitution for this here.

More generally, a context I' can specify allowed free type variables t and al-
lowed free expression variables along with their type which can depend on type
variables earlier in the context. This means that ¢, is an abstract type in the
rest of I'. Indeed, we consider the initial part of I with ¢, cv : Tey(tob;), mv :
Tmv(tobj) to correspond to a client’s view of an existential package with type 744
from Section 3, with cv and mv being the new and snd components. This is
appropriate here because with self-reference the bodies of the dispatch entries
are themselves clients of dynamic dispatch abstract type. I' is augmented with
u : T%(top;) so that the instance data of the object is available and this : top; to
appropriately allow this to appear in the FJ method bodies.

In the definition of k%' in Figure 2, for each class ¢ the we interpret each of
three kinds of methods using the fail command appropriately for undefined
method bodies and undefined fields and error for casts to non-superclasses.

Defined method bodies are translated via an inductive translation ||T°|"
which we will see shortly. We use a little syntactic sugar here, following FJ,
writing \ (ZT:728(tobj)) T to abbreviate a function binding the variables in T
to the corresponding components of the argument.

To interpret FJ we only need to use the instance data u in two ways:
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e Each get method get[f] for class ¢ is interpreted as a command returning
the f field of w : 7¢(top;). f must be present in 7¢(toy) if f € F°, assuming
that we’ve correctly dispatched to eg , , due to sending method get(f]
to an instance of (exactly) class c. (See the definition of e/, below.)

e The FJ special variable this is substituted by the expression cv - c(u)
with type top; which is equivalent to the object on which the method was
called, assuming that we’ve correctly dispatched to ef, due to sending
method m to an instance of ¢. This is then available for the translation
of recursive method calls in method bodies (via || T||"®%) and is also
used for successful casts.

It’s important here that the instance data for a class ¢ is only directly accessed
from the get[f] method implementation for exactly the class c. All other uses
of the instance data are via method calls to this which dispatch appropriately,
hence no subtyping or similar constraints are ever required between the types
of instance data of different classes.?

We compile FJ expressions T as corresponding L commands, in a rela-
tively direct way, aside from making the propagation of errors explicit via the
monadic bind. The compilation is parameterized by a context I' that includes
FJ expression variables in scope to corresponding L expression variables, in-
cluding this which is always in scope in FJ method bodies. I' also maps cv and
mu to corresponding L expressions for the class and method vectors (renaming
as necessary to avoid clashes with FJ variable names).

17" = end|T|"

lz|" 2 retw if x is in I (including when z is this)
lnewc(T)|' £ bndz« || T||";ret (cv-c) (@)
T -m(T)|" £ bndz« ||T||";bndy < (mv-m) () ;
bnd 7 < || T||' ; bnd w + y(Z) ; ret w
|IT-f|" £ bnda<+ || T|";bndy + (mv-get[f]) (z) ;rety
(&) T|" £ bnda <« ||T||";bndy < (mv - cast[c]) (x) ;rety

At this point we can use the expressions e¢, to interpret the class table C'T" of
an FJ program as a typed L expression for the dispatch matrix:

€dm = <<€fn>m€M>c€C

We sketch here two parts of the type correctness theorem for the compilation
to L of the FJ syntax. Because every FJ class/type is interpreted as to, type
correctness in L corresponds to FJ syntactic correctness, including scoping of

4An alternative approach to this is to pass it as a separate argument to e¢ , with an
invariant that v and this must correspond. This makes little difference here when interpreting

FJ, but appears to scale better to certain kinds of extensions like run-time inheritance.
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variables and consistency of argument counts. We omit some syntactic lemmas
such as that subclasses have all the fields of their superclasses with the same
type. Note that the FJ object types of the fields are not yet relevant, and
the presence of specific object types in the lemma statement is simply because
FJ lacks a judgment witnessing syntactic correctness without also requiring
specific object types.

We write Fgy MEOK inc for the FJ judgment “MFE is a valid method
declaration for class ¢”, which implicitly depends on the types declared in CT;
see Pierce (2002).

LEMMA 1.

1. If T:¢kpyT:c and T = topj, cv 2 Tey(tob)), MU = Tru(tob))
then top), T : top F |T|" % tob).

2. If mtype(m,c) =¢ — ¢o and mbody(m, c) = (T, Tp)
and gy co m(€ZT){return Tpy;} 0K inc
then -ef, : 77,.

A consequence of our compilation is that the structure of an FJ value V is
observable via its translation & = |V|' in L. This is because it is possible to
observe errors and non-errors for calls to cast[c] on v for each ¢, from which
we can determine its class ¢ and then determine (inductively) its fields by
calling get[f]. If this observability seems suspect, note that it is required by
the definition of FJ due to the class and fields of object values being observable
everywhere, including in top-level expressions. Further, the compilation can
easily be modified to accommodate similar languages which allow the exact
class of an object to be hidden (by omitting or restricting the cast methods)
or which have private fields (by omitting the get methods and instead using
direct access to the instance data).

We now characterize the translations of values via the following inductive
definition. (Note that all FJ values have the form newc(V).)

|newc(V) |§a| £ cv - C(|V|\I/‘a|)

The following lemma shows that for values this is equivalent to the previous
translation |-|', modulo some evaluation steps that reduce bnd x4 cmd (ret v);
k to [v/z]k. This is a standard evaluation rule for monadic commands, and
easily derived from the sum interpretation of commands described in Section 2.
We show some details of the proof just to give the flavor of such proofs.

LEMMA 2. (value translation)
If T = topj, cv = Te(topy), MU Tmy(tobj), I and W : T with both ¥(cv) = e, and
U (mv) = em, terminating (and closed)
then for all V we have W(|V|')—*k and k final
iff W(|V|',)—*v and vval and k=retwv.

val
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PROOF.  (sketch) By induction on V. We have just one case.
CASE: V =newc(V). Then

(V") T (|[V5ar)
= ¥U(|lnewc(V) ") = U(jnewc(V) [iy)
—bndZ + cmd U([V]") ; ret (eq, - ) (@) = (eev - ) (VL))

[Left = right] (the other direction is similar)

If LHS —* k and k final, then, by inversion on the evaluation, for each V; there
is k; s.t. U(|V;|Y) —* k; and k; final.

Applying the L.H. to each V; yields U(|V;|L ) —* v; and v; val and k; = ret v;.

val

Then LHS —* ret (eg, - ¢) (W) and RHS —* (e, - ¢) (0).
But then ret (e, - ¢) (¥) —* k (since LHS —* k, and +— is deterministic).

Thus k = ret v for some v with v val and RHS —* v, as required. [

4.3 Class and method vectors (sum-based)

Now, so far nothing in our FJ compilation is specific to the sum-based or
product-based organization. But, to have a concrete verification of a complete
framework, we now consider the full implementation of self-referential class
and method vectors. This subsection isn’t specific to FJ, but applies generally
to any eq, with self-reference via cv and mv parameters in dispatch entries.
We have delayed the full details until now so that they can be considered in a
more concrete context than in Section 3.

We focus on the method-based (sum) organization because it is the road
(much) less traveled, and leads to some novel views of some aspects, but ev-
erything that follows also works out dually for the class-based (product) orga-
nization.

The appropriate sum-based recursive object type Tij is as in Section 3
and the corresponding self-referential class and method vectors are as follows.
Following Harper (2012) L uses fold(e) and unfold(e) for recursive types,
and self zr ise and unroll(e) for recursive expressions.

Tij = ,utobj.z T¢(tobj)

ceC
e 2 (e A (Ui T (Top;)) £01d (e - U )ece : Tev(Tobj)-
X, 2 unroll (el : Tomy(Tob))
/A

eny = self muis (m <> )\ (this: 7o) caseunfold (this) {c-u = €5, }ecc)mem

myv

where €% 2 egm - ¢+ M [Top] (eey) (Emy) (1)
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LEMMA 3. (Dynamic dispatch) Ifv:7° and v val then

ex,mes - c(v)) =" egm-c-m ol (e5) (eh,) (v)

This lemma exactly characterizes correctness of e., and en, as an implemen-
tation of dynamic dispatch, and there is a dual proof for the product-based
organization. What follows generally doesn’t depend the implementation, just
on this lemma, except where noted. Hence we generally omit the ¥ superscripts
in what follows.

4.4 Top-level and compilation correctness

We compile the top-level “external” term T in a program (CT,T) as W (|T| =),

via W, and T, (below) which appropriately omit this, and have both We,(cv)
and Ve, (mv) closed and terminating.

| tobj, CU & Tey(tobj); MV © Ty (fobj)

A b %
Wey = tobj Topjs CU > €

b
o TV = e,

Then using the earlier lemmas we can show that the compilation is opera-
tionally sound. This has two parts: one for ordinary FJ evaluation steps and
one for invalid downcasts. The theorem statement and proof involve FJ eval-
uation contexts E{}, defined as follows, as in Pierce (2002).

E{} == {} |E{}.f | newc(V,E{}, T)
|E{} m(T) |V-mV, E{},T) | () E{}

THEOREM 4. (compilation correctness) Suppose for a particular FJ class
table C'T" we have Fg; T : c. Then

1. ll('T '_>FJ T/ theﬂ \I[ex(’T|FeX) |_>* \Ijex(’Tllrex)

2. if T has the form E{(c) newc (V)} and not ¢ <: ¢
then W (|T|V*) —* error.

PrROOF.  (Sketch.) By induction on (closed) T" for part 1, using Lemma 3
(dynamic dispatch) to emulate FJ calls to m on instances of ¢ with instance
data V' via €S, [Tob;] (€cy) (émy) (v) where VL, —* v. We similarly use Lemma 2

(value translation) to produce corresponding L values when the FJ evaluation
rule requires certain subterms of 7" to be values.
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4.5 Interpreting FJ types as refinements

Figure 3 shows the details of our interpretation of FJ types, instantiating the
setup in Section 3. Firstly we define M¢ and dual (), which we take as our
specification of what class-method combinations are required to dispatch to
valid implementations. This is in fact derived from the class table of the FJ
program here, since FJ lacks a mechanism to separately specify such require-
ments, and we wish to provide the same guarantees as the the FJ type system
in regards to “method not understood” failures. We still consider this spec-
ification as conceptually prior to the actual code implementing classes and
methods, and in general it could be derived from a separate specification.

Unlike for types, the refinements indicated for the results of dispatch entries
e, for a single method m can differ between classes due to unrequired class-
method combinations. So, we choose p,,(7) as the appropriate refinement for
required combinations, and then (below in Figure 3) we choose p¢ (r) as T
(which includes all commands, hence fail) when the combination ¢, m isn’t
specified as required.

Next Figure 3 introduces type variables r¢ and r,, which conceptually in-
dicate “instances of ¢’ and “recognizers of m”. However, taking a behavioral
view, we actually characterize r¢ in terms of behavior, namely the methods
that instances of r¢ recognize. Thus, r¢ includes all objects that recognize all
methods that instances of ¢ do.

The refinement r™ directly indicates that method m is recognized. 6y is a
set of entailments that are safe based directly on what class-method combina-
tions are required. However, this directness may exclude some combinations
that behaviorally should be included, based on the above characterization of
r¢. Thus 6 is constructed so that it is a superset of the entailments in 6y,
closed with respect to the behavioral view. As we shall see, 6 is sufficient to
justify subsumption between class types in FJ (which is built into some of the
FJ typing rules), also called subclassing, while 6, is not.

The last part of the union in the definition of # represents a dual concern:
that given a specified set of required class-method combinations, knowledge
that a particular object recognizes a particular method may be sufficient to
deduce that the object also recognizes some other methods. We call this dual
concept supermethoding, and include it here to emphasize that it is the natural
dual of subclassing. Further, we note that what appears to be essentially
the same concept has been studied significantly in the mature field of formal
concept analysis, for an overview see the text by Ganter et al. (1997).

We now verify that these definitions satisfy the conditions in Section 3.2

LEMMA 5. For all classes ¢, c, if CT =gy ¢ <: ¢ then (r¢ Stopy 7€) 15 i 0.

PROOF.  (sketch) Roughly by construction: in FJ, subclassing ¢ to form ¢
leads to each method of ¢ either being inherited or overridden in ¢’ (with the
same type), and so on transitively, hence ¢’ has all methods that ¢ does.
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Specification of required class-method combinations
M€= {meM | mtype(m,c) is defined}
U{get[f] | f € F°} Cpn2{ceC|me M}
U{cast|c] | c € C}

Refinement Variables and Entailment Constraints

72 {1 ecc U{rmbmen  (with the 7¢ and 7, all distinct)
Oy = {r° Sty Tm | € Cym € M}

020U {re Stos, r | for all ryp,. 7° Stop; Tm 0 O if re Stopy Tm 10 Oo}

. e . e e .
UA{rm Sigy T | for all 79 7€ <y orpy in 0 i 7 <4 o7y in O}

Class Refinements Method Refinements
A ey [ Tet presm
p(7) £ H re pm(r) = Tt ((ci}gmr ) < \V error )
(¢ here .
Peetis] () = retre foreach cf € F

Peast[d (T) £ retr®Verror foreach ce(C

per() = [leee (p°(7) = 7€) p(7) = [nenr (rm = pin (7))
Dispatch Entry Refinements
Prm 2V (tobj 37:0) . peu(T) = Py (7) = p°(7) = pin/<7?)

(7)) if M¢e
where p¢'(F) £ {p (r) ifme

T otherwise

Refinements of Tij (sum-based)

Pgbj(f‘) = /\ Pgéj(F) PZEJ(F) = \/ (¢ p°(7))

meM¢e c€Cm
ps 2 17 (o (7))eecs (Pobi(T))menr in 7
instlc] £ g () recoglml £ o ()

Figure 3: Interpreting FJ types as L refinements

LEMMA 6. For all c € C and m € M we have e}, €. p,

PROOF. (sketch) We show that for all 7op;, g T Top; with § sat. 6, and all

€cv € Pcv(ﬁ% €mv € va(ﬁ)a Uy € Pc(m
that [Tobj/tobj] [0/ T][€cv/ V] [€myv/mV] (v, /ulke € pe!(F) in each case.
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The case for a defined m involves the translation |T|' of the method body gy
T :res,, which we treat by induction on the FJ typing derivation, generalizing
appropriately.

LEMMA 7. ps, satisfies 6.

PROOF.  From the definitions of g, pg,;(7) and p;(7) we have each required
p¢ < pm and p¢ < p¢ simply by inclusions between the sets M¢ and C,,. (No
entailments for p(p) are involved.)

LEMMA 8. ¢Z, € po () and e, € pm(fs).

PROOF.  (sketch) By the properties of refinements in Section 2.

LEMMA 9.

If (m = m and mbody(c, m) defined), or (m = get[f] and f € fields(c)), or
m = cast[c] then p, <V (tor; I 7:0) . pe(T) = pmu(F) = p(7) = pm(T)
PROOF.  For these cases the definitions of the two refinements coincide.
THEOREM 10. If gy T:c then U (|T|"=) € (ret inst [c]) V error.

PROOF. (sketch) By induction on the typing derivation for T, and using
lemma 6 with the subsequent lemmas discharging the assumptions of that
lemma.

(Alternatively, the result follows from the type preservation and progress
theorems of FJ sketched by Pierce (2002) and our earlier lemma that FJ re-
duction can be simulated via the interpretation in L, but this is perhaps less
convincing as a demonstration of reasoning using semantic refinements.)

COROLLARY 11. If bgy T:c then Vo (|T
cating “message not understood”.

Pex) will not evaluate to fail indi-

Thus, our interpretation of the type system of FJ as semantic refinements
will correctly accept the translations of all well-typed FJ programs. As well
it will of course accept any program that doesn’t result in a “message not
understood” or “field not understood” error even if the FJ type system rejects
it. It can also rule out downcast failures in essentially the same way, or better,
characterize exactly what conditions will lead to downcast failures.

Of course, a disadvantage is that the semantic approach generally does not
as directly lead to practical tools such as refinement checkers. But, a refinement
checker like that studied (and built) by Davies (2005) can be considered a proof
checker for certain quite restricted language of proofs of semantic properties
that can be conveniently expressed via a few annotations within or alongside
a program. Making semantic refinements the primary notion not only leads to
some technical simplifications, it clarifies the nature of syntactic refinements
and the exact limitations that should be expected when using a refinement
checker.
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5 Conclusion

By separating structural from behavioral considerations we have repositioned
the problem of typing for object-oriented programming from one of designing
languages (structural type theories) to one of designing specifications (behav-
ioral type theories). Rather than privileging the “message not understood”
error, we instead treat it on a par with other conditions, such as “down-cast
errors”’, that naturally arise when using dynamic dispatch, and which are much
more difficult to account for in a purely structural framework. More broadly,
avoiding the characteristic errors associated with dynamic dispatch becomes a
particular instance of avoiding a broader class of errors, such as array bounds
check errors. The emphasis on the semantic interpretation of behavioral typ-
ing may be further generalized to account for richer properties, such as the
equational properties inherent in the Liskov-Wing behavioral notion of behav-
ioral subtyping (Liskov and Wing 1994), by passing from predicates to binary
relations defined over a structural type system.

In our main example we have derived the key safety property provided by
the FJ type system through a combination of structural and behavioral typing.
Being semantically defined, behavioral typing is, in general, not mechanically
checkable; whether a program exhibits (or fails to exhibit) a particular behav-
ior is a matter of proof. In this respect our formulation is coherent with the
general trend toward the integration of program verification as part of stan-
dard software development practices. For this to be practical, it is necessary
to develop tools that can, in common cases, perform automatic verification, or
semi-automatic verification via modest “proof hints” such as annotations spec-
ifying expected invariants. For example, it appears that the existing tool SML
CIDRE developed by Davies (2005) is sufficiently expressive and efficient to
handle SML code corresponding to our main example, including refinements
of abstract types via refinements in SML modules. More broadly, it would
be interesting to integrate structural and behavioral typing in a single depen-
dent type theory in which one may regard type refinements as propositional
functions, and then apply automated reasoning systems, such as Coq (Bertot
and Castéran 2004), to perform the verification. It would appear that in such
a framework the FJ type checker would emerge as a tactic that handles the
verification of the absence of “not understood” errors. This should naturally
extend to full Java type checking, and other languages involving dispatch, in-
cluding more involved aspects such as the variance of generics which we expect
to fit well with behavioral refinements. Further, we expect this to suggest some
natural extensions, for example enriching subtyping of generics with strictness
of type parameters, or the more general constrained inclusions considered by
Davies (2005), with the formulation of even more precise tactics and refinement
checking tools being naturally open-ended.

The semantic foundations for behavioral typing suggest other interesting
directions for research. As mentioned earlier, by passing to a relational in-
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terpretation of refinements we may express properties, such as parametricity
properties, that hold of a particular language, or to verify properties such as
the behavioral subtyping condition mentioned earlier, that hold of particular
programs. Another direction is to observe that the structural treatment of
dynamic dispatch naturally gives rise to a semantic account of object-oriented
concepts such as subclassing. Briefly, rather than consider subclass relation-
ships to be a matter of declaration or construction, as they are in FJ, we may
instead define such relationships behaviorially in terms of the dispatch ma-
trix. For example, one may consider ¢ to be a subclass of ¢ whenever every
method that is well-defined on instances of ¢’ is also well-defined on instances
of ¢, a semantic formulation of what is stated by declaration in FJ. It would
also be interesting to extend our methods to concepts such as multiple dis-
patch (pattern matching on tuples of objects), or more exotic programming
concepts such as predicate dispatch. These seem ripe for consideration from
a behavioral /verification viewpoint, without requiring substantial changes to
the underlying structural type theory.
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