Towards a Functional Library for Fault-Tolerant
Grid Computing*

Bor-Yuh Evan Chang, Margaret DeLap, Jason Liszka, Tom Murphy VII,
Karl Crary, Robert Harper, and Frank Pfenning

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA

{bechang,mid, jliszka,tom7,crary,rwh,fp}@cs.cmu.edu

Abstract. To make development of grid applications less arduous, a
natural, powerful, and convenient programming interface is required.
First, we propose an expressive grid programming language which we
hope will provide such an interface. Then we show how to map programs
in this language onto a low-level, more compact architecture that can
more easily provide the fault tolerance and inexpensive scheduling suit-
able for grid computing. Finally, we discuss programming techniques for
taking advantage of the underlying architecture, as well as issues to be
resolved in future work.

1 Introduction

While numerous grid frameworks have been proposed to exploit idle resources on
the global network, we seek a natural and effective abstraction for programming
the often unreliable grid. In an accompanying paper, we describe the ConCert
grid software, which uses certified code to provide safety, security, and privacy
assurances in a trustless setting [CCD102]. We demonstrate the ability to im-
plement applications with simple parallel models, such as a ray tracer, on this
network. In such highly parallel applications, the program on the grid does not
need to interface directly with the grid framework and, in essence, is not aware of
where it is running. Unfortunately, this method is ill-suited for applications that
do not have such trivial branching structure and cumbersome even for programs
that do. In this paper, we discuss mapping expressive high-level language ideas
to the succinct but robust low-level interface that ConCert provides.

2 Programming Model

We seek to give the developer of grid applications access to the parallelism from
within his application in a convenient and simple way. Drawing on Multilisp
futures [Hal85] and a similar construct in Cilk-NOW [BL97], our primitive notion

* The ConCert Project is supported by the National Science Foundation under grant ITR/SY+SI
0121633: “Language Technology for Trustless Software Dissemination”.

on the grid is a task, a piece of code that runs to produce a result. Grid programs
are composed of a number of tasks executing in parallel.

Below, we give a simplified interface for creating and managing tasks as a
Standard ML [MTHMO7] signature. The actual interface is slightly more so-
phisticated to allow for better control or for optimization. Implementing this
interface for the ConCert software would require special compiler support, which
has not been completed. However, we have written a simulator and a signifi-
cant grid application, namely a parallel theorem prover [Cha02]. A value of type
p task is a handle for a computation running on the grid that returns an answer
of type p. For example, an int task is a task that returns values of type int.
To put a new task onto the network, inject is used by passing it a function to
run and yields a handle to a new task on the grid.

signature CCTASKS =

sig
type p task (*x an p task is a computation yielding a result of type p *)
val inject : (unit -> p) -> p task
val sync : p task => p
val syncall : p task list -> p list
val relax : p task list -> p * p task list
val forget : p task -> unit
end

The only form of explicit communication between tasks is returning and
receiving results. This is vital to ensuring the restartable nature of tasks, which
is important for implementing failure recovery. The most basic method to ask
for a result is to use sync, which blocks the calling task until the desired result
can be acquired from the grid. The syncall construct waits for a list of tasks
but is more efficient than successive calls to sync. Lastly, we desire a means to
continue execution as soon as one result is ready from a set of tasks. The relax
construct completes as soon as one result is available, returning that result along
with the remaining tasks.

To give the developer some control over the proliferation of tasks, calling the
forget function provides a hint to the ConCert software that the given task is
no longer needed. Since the underlying architecture must deal with failures, we
consider this a special case of failure in which the task dies deliberately.

Example: Merge Sort. In figure 1, we give a (hypothetical) example of a sim-
ple merge sort implementation that recursively divides into three subproblems
using the interface described above. Lines 4-14 contain straightforward imple-
mentations of partitioning a list into three and merging two lists. In lines 16-18,
tasks for the subproblems are injected into the network. Then, in lines 22-24,
we wait for the results. Notice that we use the relax primitive to begin merging
as soon as we have two sorted lists.

Mapping to ConCert. The work on the programming model as described above
has been coordinated with progress on the ConCert grid software. In ConCert,
programs are broken up into fragments called cords to ease scheduling and to

1 fun mergesort [1 (O = []

2 | mergesort [x] () = [x]

3 | mergesort 1 () =

4 let (* partition3 - split a list into 3 equal parts *)
10 (* merge - merge two sorted lists *)

15 val (1lt,md,rt) = partition3 1

16 val t1 = inject (mergesort 1t)

17 val t2 = inject (mergesort md)

18 val t3 = inject (mergesort rt)

19

20 (x Get the results of the three child tasks. Start
21 merging when two sorted lists have been received. *)
22 val (a, rest) = relax [t1, t2, t3]

23 val (b, [last]) = relax rest

24 val (sortl, sort2) = (merge (a,b), sync last)

25 in

26 merge (sortl, sort2)

27 end

Fig. 1. Programming Example: Merge Sort

enable failure recovery. Cords take arguments (as dependencies on other cords)
and return a result to the caller. Cords adhere to the following invariants: (1)
cords do not block once they begin execution; (2) execution of cords is deter-
ministic; (3) cords only rely on the results of other cords and not any secondary
effects. The first invariant simplifies scheduling because we need not suspend a
running cord. The remaining invariants make it possible to recover from failure
by restarting any cord.

Notice that tasks do not satisfy the first invariant because they may block
syncing on other tasks; however, tasks can be compiled to cords by a process
similar to a continuation passing style transformation [FSDF93]. Specifically,
a call to sync id terminates the current cord and spawns a new cord with
a dependency for the result of id. ConCert supports both and- and or-style
dependencies; syncall is compiled in a similar way with and, relax with or. By
compiling to cords from high-level primitives, we retain the ability to carry out
failure recovery and simple scheduling while increasing the expressiveness of the
language.

2.1 Advanced Techniques

We have shown one way to use the simple cord primitives to provide more
advanced functionality (a blocking sync function). Now, we look at ways to
leverage the restartable nature of cords to implement failure recovery techniques
similar to checkpointing and message logging [Joh89).

Checkpointing. In our model of failure recovery, we can only recover a failed
task from the beginning of a cord. For long computations that need not otherwise
spawn cords, this means that we have very coarse-grained recovery. Fortunately,
our interface gives the ability to implement checkpointing easily. Rather than
have a task return an int (for instance), we can have it return an intcheckpoint
(figure 2).

datatype intcheckpoint = fun loop(n, r) =
Done of int if n = 1000000 then Done(r)
| More of intcheckpoint task else let fun rest () = loop(n + 1, f(r))
in
if (n mod 5000) = 0
then More(inject(rest)) else rest()
end

Fig. 2. Checkpointing Example

A value of type intcheckpoint is either the tag Done, with the integer re-
sult of the task, or More with the identifier of another task that returns an
intcheckpoint. A program expecting a result from a checkpointing task just
loops, doing a sync on any More result and succeeding when a Done is received.
Now, at any moment during the evaluation of the task, it can simply spawn a
new task (thus saving its state) and return that task’s identifier instead. The
loop code iterates the function f one million times, checkpointing every five
thousand calls.

Modeling Communication. Our definition of cords prohibits communication
between them except in the form of dependencies and results. However, we are
again able to use the cord primitive to implement more sophisticated commu-
nication. For example, suppose we wanted to implement a task S that sends a
sequence of integers that it computes to another task R. To accomplish this with
cords, we can make the result of the cord implementing S be a pair: the first
integer and the identifier of a cord that computes the rest of the sequence. Task
R simply needs to sync on S (as described in section 2) for the first integer and
also receives a cord identifier for the remainder.
datatype intstream =

Empty
| Cons of int * intstream task

In fact, we can also implement certain kinds of synchronous two-way com-
munication. Suppose we have a client task C' and a server task S. The client
sends string commands to the server, which responds with integers.

We can model this similarly to the previous example, except that the server
passes back a function that returns a task rather than a task identifier. We can
think of this function as blocking waiting for the client’s command. The example
in figure 3 consists of a server that returns, in response to a string, the length of
the longest string it has received so far.

The startserver function takes an integer m (its state, indicating the largest
string it has seen) and a string command, and returns the id of a server_result
task. This task returns the response according to the command as well as the
new server function. Though the client runs the server function by sending it
a command, the actual work (in this case, execution of the max function) occurs
in another cord, potentially on another computer in the grid.

This style of programming is quite flexible but can be a bit awkward. How-
ever, it would seem possible to implement more natural send- and recv-style
primitives that are mapped down to this idiom by a compiler. Again, the benefit

datatype server_result =
Res of int * (string -> server_result task)

fun startserver m str = fun client svr0 =
let fun compute () = let val Res(maxl, svrl) =
let val new_m = max(m, size str) sync(svr0 "hello")
in Res(new_m, startserver new_m) val Res(max2, svr2) =
end sync(svrl "aviator")
in in
inject compute max2
end end

val x = client (start_server 0)

Fig. 3. Communication Example

of using this style is ease of failure recovery. Since code is restartable after every
message, we have the effects of message logging and never need to deal with
restarting a piece of code “in the middle” of a protocol.

3 Additional Concerns

Apart from the implementation work that needs to be done, some points will re-
quire further investigation. Among these are marshaling and garbage collection.
First, since tasks may spawn other tasks, there is the possibility that cords will
have to carry successor or child cords with them when they are shipped over
the network to cycle donor machines. Therefore, we need a convenient way to
encode and decode cords—and possibly even modules—rather than whole pre-
compiled programs. It is possible that a new type system might help us to do
this by allowing for more control over data layout. In addition, cords will need
to contain only closed code when they are shipped, so we may need to perform
at least some automatic closure conversion.

Second, the programming model we have presented never permanently de-
stroys tasks. A task may fail or be terminated through forget, but it can be
restarted by anyone who desires its result. This, of course, requires that the
task’s code be stored somewhere on the network. It would clearly be a problem
if more and more tasks were created over time without removing some tasks.
Thus it will be necessary to devise some system for garbage-collecting old or
unused tasks.

4 Conclusion

At a low level, our framework uses basic units of work that may be combined
using dependencies. The purpose of these cords is to make scheduling and failure
recovery practical. To make programming for our architecture manageable, we
wish to map expressive high-level constructs onto the robust low-level model.
We intend to perform this mapping automatically through compilation, so as to
allow programming for the grid in a less cumbersome style. Such a system would
hide scheduling and failure tolerance concerns from grid application developers.

References

[BL97]

[cCD*02)

[Cha02]

[FSDF93]

[Hal85]

[Joh89)

[MTHMO97]

Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable par-
allel computing on networks of workstations. In USENIX 1997 Annual
Technical Conference on UNIX and Advanced Computing Systems, pages
133-147, Anaheim, California, 1997.

Bor-Yuh Evan Chang, Karl Crary, Margaret DeLap, Robert Harper, Jason
Liszka, Tom Murphy VII, and Frank Pfenning. Trustless grid computing in
ConCert. Technical Report CMU-CS-02-152, Carnegie Mellon University,
June 2002. Submitted to GRID 2002.

Bor-Yuh Evan Chang. Iktara in ConCert: Realizing a certified grid com-
puting framework from a programmer’s perspective. Technical Report
CMU-CS-02-150, Carnegie Mellon University, 2002. Undergraduate hon-
ors thesis.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation, vol-
ume 28(6), pages 237-247, Albuquerque, New Mexico, June 1993.

Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic
computation. ACM Transactions on Programming Languages and Sys-
tems, 7(4):501-538, October 1985.

David B. Johnson. Distributed system fault tolerance using message log-
ging and checkpointing. Technical Report COMP TR&89-101, Rice Univer-
sity, December 1989.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Def-
wition of Standard ML (Revised). MIT Press, Cambridge, Massachusetts,
1997.

