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Abstract

We present a static and dynamic semantics for an abstract machine that evaluates
expressions of a polymorphic programming language. Unlike traditional semantics,
our abstract machine exposes many important issues of memory management, such
as value sharing and control representation. We prove the soundness of the static
semantics with respect to the dynamic semantics using traditional techniques. We
then show how these same techniques may be used to establish the soundness of
various memory management strategies, including type-based, tag-free garbage col-
lection; tail-call elimination; and environment strengthening.

Keywords: type theory, operational semantics, garbage collection, memory
management



1 Introduction

Type theory and operational semantics are remarkably e�ective tools for program-
ming language design and implementation [28, 13]. An important and in
uential
example is provided by The De�nition of Standard ML (SML) [28]. The static

semantics of SML is speci�ed as a collection of elaboration rules that de�nes the
context-sensitive constraints on the formation of programs. The dynamic semantics

is speci�ed as a collection of evaluation rules that de�nes the operational semantics
of a program. The static and dynamic semantics are related by a type soundness

theorem stating that certain forms of run-time error cannot arise in the evaluation
of a well-formed program. The methodology of The De�nition of Standard ML has
been re�ned in a number of subsequent studies of the type theory and operational
semantics of SML and related languages.

Of particular interest for purposes of this paper is the variety of methods for
de�ning the operational semantics of deterministic, sequential languages. Two main
approaches have emerged, one based on evaluation relations, the other based on
transition systems. The evaluation-based approach is typi�ed by Kahn's natural

semantics [16] and is used extensively in The De�nition of Standard ML. The
transition-based approach is typi�ed by Plotkin's structured operational seman-

tics [33], but also includes approaches based on abstract machines [18] and program
rewriting [21, 44]. Both approaches share the goal of achieving a \fully abstract"
semantics that suppresses irrelevant details, avoids over-speci�cation, and facilitates
reasoning about programs. Experience has shown that these goals are di�cult to
achieve in a single framework.

As a case in point, we consider the memory allocation behavior of programs. A
signi�cant advantage of high-level programming languages, such as SML, is that the
details of memory management are inaccessible to the programmer. For example,
in SML it is impossible to determine whether or not a pair of values is allocated
in the heap or in registers. This is not an oversight! Rather, the intention is to
free the programmer from the details of memory management, and to allow the
compiler to make representation choices based on contingencies not entirely within
the programmer's control. (See Appel's critique for a discussion of this and related
points [5].)

Applying the full abstraction criterion discussed above, the operational seman-
tics of such languages should abstract away the details of memory management from
the de�nition of the language. Indeed, the dynamic semantics given in The De�ni-

tion of Standard ML avoids explicit treatment of memory allocation insofar as it is
observable through the use of reference types. The semantics freely forms tuples,
environments, closures, and recursive data structures without regard to their repre-
sentation in memory. Consequently, no accounting of memory sharing is provided
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by the semantics.
For many purposes, such as reasoning about the extensional behavior of pro-

grams, this approach is ideal. Yet, issues of memory management cannot be entirely
overlooked. For example, an important use of operational semantics is to serve as
a guide to the compiler writer, who must make data structure representation de-
cisions that critically a�ect the performance of compiled code. In this case it is
essential to make storage allocation decisions explicit in the semantics. Otherwise,
important notions, such as \space safety" [4, 37], \tail recursion" [17], and \garbage
collection" [42], remain vague notions outside of the scope of a rigorous semantics.

In this paper we propose to explore the use of operational semantics to de�ne
not only the high-level execution behavior of programs, but also their low-level al-
location behavior. We consider as a case study an explicitly-typed, polymorphic
programming language with unbounded recursion, product (tuple) types, and a
natural numbers type. This language is su�ciently rich to encompass important
issues, including allocation of types at run-time, allocation of aggregate data struc-
tures, inductively de�ned data structures, and the representation of types as data
structures. Yet, it is su�ciently simple to admit a rigorous treatment of its memory
allocation behavior and sharing of storage among complex values. To do so, we give
an operational semantics for the language formulated as a transition system be-
tween states of an abstract machine. The machine state includes a heap, containing
allocated types and data; an environment, containing types and bindings for vari-
ables; a stack, containing control information; and an expression to be evaluated.
The operational semantics is related to the type system by a soundness theorem
characterizing the shapes of values of each type.

To illustrate the use of the framework, we consider in detail several critical stor-
age management problems. We give a detailed treatment of tag-free copying garbage
collection. The collector is presented as a transition system that faithfully captures
the behavior of a copying garbage collector, including the use of type information to
\parse" and \trace" heap values during collection. We provide the �rst proof of cor-
rectness for such a collector, a signi�cant advance on current practice. In addition,
we discuss two other forms of garbage collection: tail recursion elimination, which
reduces the space required by the control stack, and black holing, which reduces the
space required by environments. All of these memory management techniques are
used within the TIL/ML compiler [38], and thus the material presented here provides
a faithful model of this particular implementation. Nevertheless, the framework we
propose is general enough to model a variety of language implementations.

The rest of this paper is organized as follows: In Section 2, we present the
syntax and static semantics of our core polymorphic language, �!8

gc . In Section 3,

we present an abstract machine for evaluating �!8
gc expressions. The section provides
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both a static and dynamic semantics for the abstract machine and a proof of type
soundness.

In Section 4, we consider the issue of heap garbage and a speci�cation for a
general-purpose heap-garbage collector. We show the soundness of a particular class
of collectors, namely those based on inaccessibility of heap objects. In Section 5, we
show how to implement a particular heap-garbage collection algorithm, namely the
type-based, tag-free garbage collector used by Tolmach [40], which is closely related
to the mostly tag-free collector used by the TIL/ML compiler [38]. We prove the
correctness of the algorithm using syntactic techniques similar to those used to prove
type soundness for the abstract machine.

In Section 6, we consider other kinds of garbage in the abstract machine, notably
stack garbage and environment garbage. We show how the addition of a tail-call
facility can be used to eliminate a certain class of stack garbage, and how the addi-
tion of environment strengthening rules can be used to eliminate a certain class of
environment garbage. Again, correctness of these memory management techniques
can be shown through the syntactic methods employed in previous sections.

Finally, we discuss related work in Section 7, and we summarize and conclude
in Section 8.

2 The �
!8
gc Language

In this section, we present �!8
gc , a call-by-value variant of the Girard-Reynolds poly-

morphic �-calculus [24, 34]. In the following section, we de�ne an abstract machine
for evaluating �!8

gc expressions. The abstract machine makes explicit many oper-
ational details that are pertinent to memory management, such as the heap, the
control stack, and the environment.

Perhaps the most novel aspect of �!8
gc is that, unlike traditional models of typed-

languages, type information is maintained throughout evaluation in order to support
type-based, tag-free garbage collection as implemented by Tolmach [40] and in the
TIL/ML compiler [38]. Therefore, modeling allocation, sharing, and garbage collec-
tion of types is just as important as modeling memory management for values.

To simplify the abstract machine, the expressions and types of �!8
gc are restricted

to named form, also known as A Normal Form [36]. The restriction to named form
amounts to the requirement that the result of every step of evaluation or allocation
be bound to a variable, which is then used to refer to the result of this computation.
Every expression and every type of the second-order �-calculus can be put into
named form by simply introducing let and let type expressions appropriately.
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(type variable) t
(type) � ::= t j nat j unit j �1 � �2 j �1 ! �2 j 8t:�

(named form type) � ::= t j let t = � in �
(type binding) � ::= nat j unit j t1 � t2 j t1 ! t2 j 8t:�

(value variable) x
(named form expression) e ::= x j let x:t = b in e j let type t = � in e
(expression binding) b ::= a j c
(allocation binding) a ::= 0 j succ x j hi j hx1; x2i j fix x:t(x1:t1):e j �t: e
(computation binding) c ::= case(x; e0; �x1:t1:e1) j �i x j x1 x2 j x [t]

Figure 1: Syntax of the �!8
gc Language

For example, one named form representation of the expression (�x:nat: succ x) 0 is:

let type t = nat in

let type t1 = t! t in
let x1:t1 = �x:t: (let x2:t = succ x in x2) in
let x3:t = 0 in

let x4:t = x1 x3
in x4

The restriction to named form is largely a matter of technical convenience. The
penalty is that the typing rules are somewhat more complicated since we must ex-
pand bindings of type variables during type checking (see Section 2.2). The advan-
tage is that we can easily recover the type of an expression from the types attached
to the bindings of its sub-expressions.

2.1 Syntax of �!8

gc

The syntax of the �!8
gc language is de�ned in Figure 1. Types include type variables,

nat, unit, binary products, arrow types, and type abstractions. Instead of using
types directly to decorate �!8

gc terms, we use a named form representation of types
in order to make allocation and sharing of type information explicit. A named form
type is either a type variable or a let that binds a named form type binding (�) to
a variable in the scope of a named form type. Named form type bindings include
primitive constructors (e.g., nat), compound constructors where the components are
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type variables (e.g., t1 � t2 and t1 ! t2), or a type abstraction where the body of
the abstraction is a named form type.

The expressions of �!8
gc are also required to be in named form. They are vari-

ables, let expressions binding a named form binding to a variable in the scope of
a named form expression, and let type expressions binding a named form type
binding to a type variable in the scope of a named form expression.

A named form expression binding is either an allocation binding or a compu-
tation binding. Allocation bindings correspond to values that will be allocated
on the heap. These consist of primitive values (e.g., 0), compound values where
the components are variables (e.g., succ x and hx1; x2i), and recursive abstrac-
tions (fix x:t(x1:t1):e). We use �x1:t1:e to abbreviate a recursive abstraction
fix x:t(x1:t1):e where x does not occur free in e. Computation bindings corre-
spond to computational steps to be taken during evaluation. These consist of a
case expression for testing natural numbers, projection for pairs, and application
for both term and type abstractions.

We have chosen to allocate all values to simplify the presentation. However,
it is straightforward to modify the language to support unallocated naturals, for
instance, by de�ning a syntactic class of \small" values and by allowing small values
to occur within bindings. This corresponds to the use of machine registers, rather
than memory locations, to store values.

The binding conventions for the language are familiar: t is bound in � for 8t:�,
t is bound in � for let t = � in � , t is bound in � for 8t:� , t is bound in e for
let type t = � in e, x is bound in e for let x:t = b in e, x and x1 are bound in
e for fix x:t(x1:t1):e, and t is bound in e for �t: e.

All syntactic objects are identi�ed up to a systematic renaming (�-conversion)
of bound variables. We use FV (X) to denote the free value variables of a syntactic
object X, and FTV (X) to denote the free type variables of X. Capture-avoiding
substitution is de�ned as usual, given the binding conventions listed above.

2.2 Typing Rules for �!8

gc

The typing rules for �!8
gc are de�ned relative to contexts declaring type variables

and value variables.

(variable type assignment) � ::= ; j �[x:�]
(type variable context) � ::= ; j �[t] j �[t = �]

We consider type assignments as �nite maps from value variables to types. Hence,
the order of bindings in a type assignment is considered irrelevant, and a variable
may not be declared more than once in a single type assignment.
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There are two forms of type variable declarations, abstract declarations ([t]) and
transparent declarations ([t = �]). Abstract declarations are used when processing
a polymorphic abstraction (e.g., �t: e), whereas transparent declarations are used
when processing a let type binding (e.g., let t = � in � and let type t = � in e).
We de�ne Abstr(�) to be the set of abstract bindings in the context �, Transp(�)
to be the domain of the set of transparent bindings in �, and Dom(�) = Abstr(�)[
Transp(�). More precisely,

Abstr(;) = ;
Abstr(�[t]) = Abstr(�) [ ftg
Abstr(�[t = �]) = Abstr(�)

Transp(;) = ;
Transp(�[t]) = Transp(�)
Transp(�[t = �]) = Transp(�) [ ftg

The well-formed type variable contexts are de�ned as follows: The empty con-
text (;) is well-formed; The context �[t] is well-formed i� � is well-formed and
t 62 Dom(�); The context �[t = �] is well-formed i� � is well-formed, t 62 Dom(�),
and the free type variables of � are a subset of Abstr(�). Hence, a free type vari-
able occurring in a transparent binding must be previously declared as an abstract
type variable. A type assignment � is well-formed with respect to a context � i�
FTV (�) � Abstr(�). Finally, we consider type variable contexts equivalent up
to any re-ordering of the bindings that respects the dependencies of transparent
bindings on abstract bindings.

Judgments of the typing rules are listed in Figure 2, and the axioms and inference
rules that may be used to derive these judgments are given in Figures 3 and 4.

Intuitively, the �rst two judgments (� ` � + � and � ` � + �) substitute
transparent type bindings in �, for free type variables in �/�, and eliminate any
nested let-expressions within the named form type to obtain the equivalent conven-
tional type �. Judgments 3 and 4 are derived from conventional typing rules for the
polymorphic �-calculus.

Throughout, we assume that all judgment components are well-formed. For
example, in order to derive �; � ` e : �, we assume that � is well-formed and � is
well-formed with respect to �. Hence, many side-conditions, such as the requirement
that a variable not be bound twice in a context, are left implicit. From the well-
formedness condition and the rules, we may derive the following properties of the
typing judgments.

Lemma 2.1

1. If � ` � + �, then FTV (�) � Dom(�) and FTV (�) � Abstr(�).
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1: � ` � + � named form type � reduces to � (see Figure 3)
2: � ` � + � type binding � reduces to � (see Figure 3)

3: �;� ` e : � expression e has type � (see Figure 4)
4: �;� ` b : � binding b has type � (see Figure 4)

Figure 2: Typing Judgments for the �!8
gc Language

2. If � ` � + �, then FTV (�) � Dom(�) and FTV (�) � Abstr(�).

3. If �;� ` e : �, then FV (e) � Dom(�), FTV (e) � Dom(�), and FTV (�) �
Abstr(�).

4. If �;� ` b : �, then FV (e) � Dom(�), FTV (b) � Dom(�), and FTV (�) �
Abstr(�).

3 The �
!8
gc Abstract Machine

The dynamic semantics of the �!8
gc language is given by a transition system be-

tween states of an abstract machine. The abstract machine is derived from the
CESK machine of Felleisen and Friedman [20]. States of the machine are a quadru-
ple (H;S;E; e) where H is a heap, S is a stack, E is an environment, and e is
an expression of the �!8

gc language. The heap consists of a type heap containing
allocated types, and a value heap containing allocated values. The environment
consists of a type environment providing bindings for type variables, and a value

environment providing types and values for ordinary variables. The stack consists
of a composition of frames, each of which is a closure consisting of an environment
and a �-term.

This organization faithfully re
ects a conventional implementation of the �!8
gc

language, except that it abstracts from the allocation of environments. (For a treat-
ment of this topic, see Minamide, Morrisett, and Harper's account of closure conver-
sion for a typed language [29].) In particular, this organization is a fairly accurate
model of the run-time data structures used by the TIL/ML compiler [38].

To establish soundness of the type system we, de�ne a syntactic typing discipline
for the states of the abstract machine, and prove progress and preservation lemmas
for it. Although they do not arise in the simple language considered here, cyclic
data structures are compatible with the syntactic type discipline and present no
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1. � ` � + �

(opaque) �[t] ` t + t (transp) �[t = �] ` t + �

(look-opaque)
� ` t + �

�[t0] ` t + �
(t 6= t0) (look-transp)

� ` t + �

�[t0 = �0] ` t + �
(t 6= t0)

(type-def)
� ` � + �0 �[t = �0] ` � + �

� ` let t = � in � + �

2. � ` � + �

(nat) � ` nat + nat (unit) � ` unit + unit

(prod)
� ` t1 + �1 � ` t2 + �2

� ` t1 � t2 + �1 � �2

(arrow)
� ` t1 + �1 � ` t2 + �2

� ` t1 ! t2 + �1 ! �2

(all)
�[t] ` � + �

� ` 8t:� + 8t:�

Figure 3: Named Form Type Reduction
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3. �; � ` e : �

(var) �; �[x:�] ` x : �

(let-exp)

�; � ` b : �0 � ` t + �0

�;�[x:�0] ` e : �

�;� ` let x:t = b in e : �
(let-type)

� ` � + �0

�[t = �0]; � ` e : �

�;� ` let type t = � in e : �

4. �; � ` b : �

(nat-I1) �; � ` 0 : nat (nat-I2)
�; � ` x : nat

�;� ` succ x : nat

(nat-E)

�; � ` x : nat �;� ` e0 : �

� ` t1 + nat �;�[x1:nat] ` e1 : �

�;� ` case(x; e0; �x1:t1:e1) : �
(unit-I) �; � ` hi : unit

(prod-I)
�; � ` x1 : �1 �;� ` x2 : �2

�;� ` hx1; x2i : �1 � �2

(prod-E)
�; � ` x : �1 � �2

�;� ` �i x : �i
(i = 1; 2)

(arrow-I)

� ` t + �1 ! �2 � ` t1 + �1
�;�[x:�1 ! �2; x1:�1] ` e : �2

�;� ` fix x:t(x1:t1):e : �1 ! �2
(arrow-E)

�; � ` x : �1 ! �

�;� ` x1 : �1

�;� ` xx1 : �

(all-I)
�[t]; � ` e : �

�;� ` �t: e : 8t:�
(all-E)

�; � ` x1 : 8t:� � ` t1 + �0

�;� ` x1 [t1] : f�
0=tg�

Figure 4: Expression Typing

9



(pointer) p
(type environment) TE ::= ; j TE [t 7! p]
(type heap value) � ::= nat j unit j p1 � p2 j p1 ! p2 j hhTE ;8t:�ii
(type heap) TH ::= ; j TH [p 7! �]

(location) l
(value environment) VE ::= ; j VE [x:t 7! l]
(heap value) h ::= 0 j succ l j hi j hl1; l2i j hhE; fix x:t(x1:t1):eii j

hhE;�t: eii
(value heap) VH ::= ; j VH [l 7! h]

(environment) E ::= (TE ;VE )
(heap) H ::= (TH ;VH )
(stack) S ::= []� j S � hhE; �x:t:eii
(program) P ::= (H;S;E; e)
(answer) A ::= (H; []� ; E; x)

Figure 5: Syntax of the �!8
gc Machine

di�culties for extending the proofs of the main results. (This is in contrast to the
complex �xed point constructions used elsewhere [39].)

The remainder of this section is organized as follows: In Section 3.1, we present
the syntax of the constructs that make up the abstract machine. In Section 3.2, we
present the static semantics for the abstract machine. In Section 3.3, we present the
transition system for the abstract machine, and in Section 3.4, we present a proof
of soundness of the static semantics with respect to this transition system.

3.1 Syntax of the Abstract Machine

The syntax of the states of the abstract machine is given in Figure 5. Each state
or program P is a 4-tuple, (H;S;E; e), where H is a heap, S is a stack, E is an
environment, and e is a �!8

gc expression.
Environments contain a type environment mapping type variables to pointers

(to heap-allocated types), and a value environment mapping value variables to type
variables and locations (of heap-allocated values). It is important to emphasize that
a value environment maps a value variable to both a type and a location.

Heaps consist of a type heap, mapping type pointers to type heap values (e.g.,
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p 7! �), and a value heap, mapping value locations to heap values (e.g., l 7! h).
Type heap values include base constructors (e.g., nat); n-ary constructors, where
the component types are pointers to other heap-allocated types (e.g., p1 ! p2); and
type closures (hhTE ;8t:�ii). Type closures contain a named form representation of a
polymorphic type (8t:�) and a type environment mapping the free type variables of
the polymorphic type to heap-allocated type values. Heap values include primitive
values (e.g., 0); constructed values, where the components are locations of other
heap-allocated values (e.g., hl1; l2i); or value closures. Value closures (hhE; eii) consist
of an environment and a named form representation of either a type- or value-
abstraction. The environment of a closure provides bindings for the free type and
value variables of the closure's abstraction.

Stacks are either empty ([]�) or else a composition of a stack and a stack frame.
Stack frames (hhE; �x:t:eii) are represented as closures with an environment and a
value abstraction. The environment provides bindings for the free type and value
variables of the abstraction. Intuitively, by composing the closures that make up
the stack frame, we obtain the current \continuation" for the abstract machine. If
we chose to restrict �!8

gc expressions to continuation-passing style (CPS) as in the
SML/NJ compiler [7], there would be no need for a stack in the abstract machine.
However, many implementations do not use a CPS representation, and memory
management of the stack is a key issue for these systems. We therefore choose to
work with the more general framework at the price of a slightly more complicated
abstract machine. In Section 6.1 we discuss in further detail the connection between
a CPS-based implementation and our abstract machine.

Answer programs represent terminal states of the abstract machine, and are thus
a subset of programs where the expression portion is simply a value variable and
the stack is empty.

The binding conventions governing these constructs are as follows:

� All type variables in the domain of TE are bound in 8t:� for hhTE ;8t:�ii.

� All type pointers in the domain of TH are bound in � for TH [p 7! �].

� For any closure hh(TE ;VE); eii, where e is either a �x-expression, lambda-
expression, or type-abstraction, all type variables in the domain of TE are
bound in VE and e, and all value variables in the domain of VE are bound in
e.

� All locations in the domain of VH are bound in h for VH [l 7! h].

� For a program ((TH ;VH ); S; (TE ;VE ); e):

1. All pointers in the domain of TH are bound in VH , S, and TE ,
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2. All locations in the domain of VH are bound in S and VE ,

3. All type variables in the domain of TE are bound in VE and e, and

4. All value variables in the domain of VE are bound in e.

All syntactic forms are identi�ed up to systematic renaming of bound variables. We
write FL(X) to denote the free locations of a syntactic object X, and FP(X) to
denote the free pointers of X.

No value variable or type variable may be bound more than once in an envi-
ronment, nor may any location or pointer be bound more than once in a heap.
Type environments and value environments are considered equivalent up to any
re-ordering. Type heaps and value heaps are considered equivalent up to any re-
ordering that respects previously bound pointers or locations. Hence, we may treat
type environments as �nite maps from type variables to pointers, value environments
as �nite maps from value variables to type variables and locations, type heaps as
�nite maps from pointers to type heap values, and value heaps as �nite maps from
locations to heap values.

When convenient, we use the following syntactic conventions:

� E[t 7! p] abbreviates (TE [t 7! p];VE ) when E = (TE ;VE ).

� E[x:t 7! l] abbreviates (TE ;VE [x:t 7! l]) when E = (TE ;VE ).

� E(t) abbreviates p when E = (TE [t 7! p];VE ).

� E(x) abbreviates l when E = (TE ;VE [x:t 7! l]).

� H[p 7! �] abbreviates (TH [p 7! �];VH ) when H = (TH ;VH ).

� H[l 7! h] abbreviates (TH ;VH [l 7! h]) when H = (TH ;VH ).

� H(p) abbreviates � when H = (TH [p 7! �];VH ).

� H(l) abbreviates h when H = (TH ;VH [l 7! h]).

� S1 �S2 abbreviates S1 when S2 = []�.

� S1 �S2 abbreviates (S1 �S) � hh�x:t:eii when S2 = S � hhE; �x:t:eii.

� F1]F2 abbreviates the the union of F1 and F2 when F1 and F2 are each �nite
maps from X to Y such that Dom(F1) \Dom(F2) = ;.

� H1 ]H2 abbreviates (TH 1 ] TH 2;VH 1 ]VH 2) when H1 = (TH 1;VH 1) and
H2 = (TH 2;VH 2).

� Dom(H) abbreviates Dom(TH ) [Dom(VH ) when H = (TH ;VH ).
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3.2 Typing Rules for the Abstract Machine

The typing rules for the �!8
gc abstract machine are de�ned using the following two

forms of context:

(type pointer context) � ::= ; j �[p = �]
(location type assignment) 	 ::= ; j 	[l:�]

Informally, type pointer contexts are the analog of type variable contexts, and loca-
tion type assignments are the analog of variable type assignments. However, type
pointer contexts have no dependencies, so we may consider both type pointer con-
texts and location type assignments as partial functions. Furthermore, the types in
the image of either a location type assignment or type pointer context are required
to be closed. That is, if 	(l) = � or �(p) = �, then � has no free type variables or
type pointers.

The typing judgments for the abstract machine are given in Figure 6. The axioms
and inference rules for deriving these judgments are given in Figures 10 through 12
of Appendix A.

Intuitively, judgments 5 through 7 extend the reduction judgments 1 and 2 on
named form types and bindings to allocated types, type environments, and type
heaps. For example, the judgment � ` TE + � applies � (which maps pointers
to types) to the range of TE (which maps type variables to pointers) to obtain a
type variable context � (mapping type variables to types). Similarly, judgments 8
through 10 extend the typing judgments 3 and 4 for the language to value environ-
ments, heap values, and value heaps. Judgment 11 assigns an arrow type �1 ! �2
to a stack, meaning that the continuation of the machine is expecting the expression
to evaluate to a �1 value, and the rest of the computation will then produce a �2
value. Empty stacks are explicitly tagged with the result type of the computation.
Finally, Judgment 12 determines that a program is well-formed with type � if:

1. the type heap reduces to �,

2. the value heap is described by 	 under the assumptions of �,

3. the stack has type �0 ! �, under � and 	,

4. the type environment reduces to � under �,

5. the value environment is described by � under � and 	, and

6. the expression has type �0 under � and �.

The following technical lemma summarizes some properties of the type system.
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5: � ` TE + � type environment TE reduces to � (see Figure A)
6: � ` � + � allocated type � reduces to � (see Figure A)
7: ` TH + � type heap TH reduces to � (see Figure A)

8: 	;� ` VE : � value environment VE is described by � (see Figure A)
9: �;	 ` h : � allocated value h has type � (see Figure A)
10: � ` VH : 	 value heap VH is described by 	 (see Figure A)

11: �;	 ` S : �1 ! �2 S takes a �1 and produces a �2 value (see Figure A)

12: ` P : � program P has type � (see Figure A)

Figure 6: Typing Judgments for the �!8
gc Abstract Machine

Lemma 3.1

1. If � ` TE + �, then Dom(TE ) = Dom(�), Abstr(�) = ;, and Rng(TE ) �
Dom(�).

2. If � ` � + �, then FP(�) � Dom(�) and FTV (�) = ;.

3. If ` TH + �, then FP(TH ) = ;.

4. If 	;� ` VE : �, then Dom(VE ) = Dom(�), Abstr(�) = ;, and if x:t 7! l is
in VE, then t is in Dom(�), and �(t) = 	(l).

5. If �;	 ` h : �, then FTV (�) = ;.

6. If � ` VH : 	, then Dom(VH ) = Dom(	), and FTV (	) = ;.

7. If �;	 ` S : �1 ! �2, then FTV (�1) = FTV (�2) = ;.

8. If ` P : �, then FTV (�) = ;.

3.3 Transition System for the Abstract Machine

Execution of the abstract machine is de�ned by a transition system, a binary relation
between machine states (programs). The individual steps of the transition system
are given in Figure 8. An informal description of these rules is given below:
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T̂E(nat) = nat

T̂E(unit) = unit

T̂E (t1 � t2) = TE (t1)� TE (t2)

T̂E (t1 ! t2) = TE (t1)! TE (t2)

T̂E (8t:�) = hhTE ;8t:�ii

Ê(0) = 0

Ê(succ x) = succ E(x)

Ê(hi) = hi

Ê(hx1; x2i) = hE(x1); E(x2)i

Ê(fix x:t(x1:t1):e) = hhE; fix x:t(x1:t1):eii

Ê(�t: e) = hhE;�t: eii

Figure 7: Environment Substitution

� return: The current expression is a variable x and the stack is non-empty.
The right-most stack frame is popped from the stack. The frame's environ-
ment, extended with the old environment's binding for x, replaces the current
environment. The body of the abstraction of the frame replaces the current
expression.

� talloc: The current expression is let type t = � in e. The type environ-
ment is substituted for the free type variables in �, yielding a type heap value
T̂E (�). This type heap value is bound in the heap to a new pointer p, and the
type variable t is bound in the type environment to the pointer p. The body
of the let type replaces the current expression.

� valloc: The current expression is let x:t = a in e. The environment is
substituted for the free type and value variables in a, yielding a heap value
Ê(a). This heap value is bound in the heap to a new location l, and the
variable x is bound in the environment to the type t and the location l. The
body of the let replaces the current expression.

� c-zero: The current expression is let x:t = case(x0; e0; �x1:t1:e1) in e, and
the variable x0 is bound to a location which in turn is bound to the heap value
0. The e0 clause is thus selected as the current expression. The body of the
let and the current environment are pushed on the stack as a closure to be
evaluated after evaluation of e0 is complete.
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(return) (H;S � hhE; �x:t:eii; E0; x0) 7�! (H;S;E[x:t 7! E0(x0)]; e)

(talloc) (H;S; (TE ;VE); let type t = � in e) 7�!

(H[p 7! T̂E (�)]; S; (TE [t 7! p];VE ); e)

(valloc) (H;S;E; let x:t = a in e) 7�! (H[l 7! Ê(a)]; S; E[x:t 7! l]; e)

(c-zero)
H(E(x0)) = 0

(H;S;E; let x:t = case(x0; e0; �x1:t1:e1) in e) 7�!
(H;S � hhE; �x:t:eii; E; e0)

(c-succ)
H(E(x0)) = succ l

(H;S;E; let x:t = case(x0; e0; �x1:t1:e1) in e) 7�!
(H;S � hhE; �x:t:eii; E[x1:t1 7! l]; e1)

(proj)
H(E(x0)) = hl1; l2i

(H;S;E; let x:t = �i x
0 in e) 7�! (H;S;E[x:t 7! li]; e)

(i = 1; 2)

(app)
H(E(x1)) = hhE0; fix x01:t

0

1(x
0

2:t
0

2):e
0ii

(H;S;E; let x:t = x1 x2 in e) 7�!
(H;S � hhE; �x:t:eii; E0[x01:t

0
1 7! E(x1); x

0
2:t

0
2 7! E(x2)]; e

0)

(tapp)
H(E(x1)) = hhE0;�t0: e0ii

(H;S;E; let x:t = x1 [t1] in e) 7�!
(H;S � hhE; �x:t:eii; E0[t0 7! E(t1)]; e

0)

Figure 8: Transition Rules of the Abstract Machine
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(result) r ::= n j hi j hr1; r2i j *fix* j *tabs* j ? j *wrong*

print [nat](VH [l 7! 0]; l) = 0
print [nat](VH [l 7! succ l0]; l) = 1 + print [nat](VH ; l0)
print [unit](VH [l 7! hi]; l) = hi
print [�1 � �2](VH [l 7! hl1; l2i]; l) = hprint [�1](VH ; l1); print [�2](VH ; l2)i
print [�1 ! �2](VH [l 7! hhE; fix x:t(x1:t2):eii]; l) = *fix*

print [8t:�](VH [l 7! hhE;�t: eii]; l) = *tabs*

printprog((TH ;VH ); []� ; (TE ;VE); x) = print [�](VH ;VE (x))

Figure 9: Printing a Result

� c-succ: The current expression is let x:t = case(x0; e0; �x1:t1:e1) in e, and
the variable x0 is bound to a location which in turn is bound to the heap value
succ l. The e1 clause is thus selected as the current expression, and a new
binding, mapping the x1 to the type t1 and the location l is entered into the
environment. The body of the let and the current environment are pushed
on the stack as a closure to be evaluated after evaluation of e1 is complete.

� proj: The current expression is let x:t = �i x
0 in e, and the variable x0 is

bound to a location which in turn is bound to a pair hl1; l2i. The appropriate
component is selected (l1 or l2 depending on i), and bound to x in the envi-
ronment (with the type t). The computation continues with the body of the
let, e.

� app: The current expression is let x:t = x1 x2 in e, and the variable x1 is
bound to a location which in turn is bound to a fix-closure. The body of the
let and the current environment are pushed onto the stack. The environment
of the closure is extended to map x01 and x02 to the location of the closure and
the argument's location respectively, and this new environment is taken as the
current environment of the machine. The body of the fix-abstraction is taken
as the current expression to be evaluated. Notice in particular that evaluation
of the code of the closure takes place under the environment of the closure,
and not the current environment.

� tapp: The current expression is let x:t = x1 [t1] in e, and the variable x1 is
bound to a location which in turn is bound to a �-closure. The body of the let
and the current environment are pushed onto the stack. The type environment
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of the closure is extended to map the bound type variable t0 to the pointer
to which the argument type is bound. This new environment is taken as the
current environment of the machine and the body of the �-abstraction is taken
as the current expression to be evaluated.

We assume when adding a new binding to an environment or heap that the
bound pointer/location/variable is fresh.

Two of the rules | the talloc and valloc rules | make use of the auxiliary
operations, T̂E and Ê, de�ned in Figure 7. These functions \substitute" the en-
vironment for the free variables within the binding. However, for 8-types, �x, and
�-expressions, the substitution is delayed by forming a closure consisting of the
environment and the binding.

As an example, consider the evaluation of the named form expression e0 where:

e0 = let type t = nat in e1
e1 = let type t1 = t! t in e2
e2 = let x1:t1 = b0 in e4
b0 = fix x0:t1(x:t):e3
e3 = let x2:t = succ x in x2
e4 = let x3:t = 0 in e5
e5 = let x4:t = x1 x3 in x4

TH 0 = [p 7! nat; p1 7! (p! p)]
TE 0 = [t 7! p; t1 7! p1]
h0 = hh(TE 0; ;); b0ii
E0 = (TE 0; [x1:t1 7! l1; x3:t 7! l3])
S0 = []nat � hhE0; �x4:t:x4ii
VH 0 = [l1 7! h0; l3 7! 0; l2 7! succ l3]

((;; ;); []nat; (;; ;); e0)
talloc
7�! (([p 7! nat]; ;); []nat; ([t 7! p]; ;); e1)
talloc
7�! ((TH 0; ;); []nat; (TE 0; ;); e2)
valloc
7�! ((TH 0; [l1 7! h0]; []nat; (TE 0; [x1:t1 7! l1]); e4)
valloc
7�! ((TH 0; [l1 7! h0; l3 7! 0]; []nat; E0; e5)
app
7�! ((TH 0; [l1 7! h0; l3 7! 0]); S0; (TE 0; [x

0:t1 7! l1; x:t 7! l3]); e3)
valloc
7�! ((TH 0;VH 0); S0; (TE 0; [x

0:t1 7! l1; x:t 7! l3; x2:t 7! l2]); x2)
return
7�! ((TH 0;VH 0); []nat; (TE 0; [x1:t1 7! l1; x3:t 7! l3; x4:t 7! l2]); x4)
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Applying printprog to the terminal state yields:

print [nat](VH 0; l2) = 1 + print [nat]([l1 7! h0; l3 7! 0]; l3) = 1 + 0 = 1

We de�ne the relation
R
7�! to be the union of the relations de�ned by the

transition rules, and write P
R
7�! P 0 if (P; P 0) is in

R
7�! . That is, P

R
7�! P 0

i� P 7�! P 0 via return, talloc, valloc, c-zero, c-succ, proj, app, or tapp.

We remark that, since at most one rule applies for a given program,
R
7�! de�nes

a partial function from closed programs to programs. We take
R
7�!� to be the

re
exive, transitive closure of
R
7�! . We say a program P diverges if there exists

an in�nite sequence of programs P1; P2; P3; � � � such that P
R
7�! P1

R
7�! P2

R
7�!

P3
R
7�! � � �.
In Figure 9, we de�ne a partial function from answers to results, where results

are either a natural number, pair of results, the token *fix*, or the token *tabs*.
The other results, ? and *wrong*, are used in our de�nition of evaluation below.

De�nition 3.2 (Stuck Program) A program P is stuck if either P is an answer

and printprog(P ) is unde�ned, or else P is not an answer and there exists no P 0

such that P
R
7�! P 0.

We de�ne evaluation as the following relation between programs and results:

De�nition 3.3 (Evaluation Relation)

1. P + r i� there exists an A such that P
R
7�!� A and printprog(A) = r.

2. P + ? i� P diverges.

3. P + *wrong* i� there exists a stuck P 0 such that P
R
7�!� P 0.

From the fact that at most one
R
7�! rule can apply for a given closed program,

it is clear that there is one and only one r such that P + r. Hence, we may treat
evaluation as a total function from closed programs to results.

De�nition 3.4 (Evaluation Function) eval(P ) = r i� P + r.

Finally, we will need a suitable notion of observational equivalence for programs.
We say two programs are equivalent i� they evaluate to the same results.

De�nition 3.5 (Kleene Equivalence) P1 ' P2 i� eval(P1) = eval(P2).
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3.4 Type Soundness

We prove the soundness of the type system (with respect to execution by the ab-
stract machine) by establishing that the transition system preserves typability, and
that well-typed programs are either answers, or admit a further transition. (This
viewpoint is inspired by Wright and Felleisen [44].) We state the important lem-
mas and give the proof of soundness here. Proofs of the most important lemmas,
Preservation and Progress, may be found in Appendix B.

Lemma 3.6 (TE Substitution) If ` TH + �, � ` TE + �, and � ` � + �, then
� ` T̂E(�) + �.

Lemma 3.7 (E Substitution) If ` TH + �, � ` VH : 	, � ` TE + �, 	;� `
VE : �, and �;� ` a : �, then �;	 ` Ê(a) : � where E = (TE ;VE ).

Lemma 3.8 Let �[t = �2](f�2=tg�
0) be a well-formed context.

1. If �[t]�0 ` � + �1, then �[t = �2](f�2=tg�
0) ` � + f�2=tg�1.

2. If �[t]�0 ` � + �1, then �[t = �2](f�2=tg�
0) ` � + f�2=tg�1.

Proof: Simultaneously, by induction on � and �. 2

Lemma 3.9 Let �[t = �2](f�2=tg�
0) be a well-formed context.

1. If �[t]�0; � ` e : �1, then �[t = �2](f�2=tg�
0); (f�2=tg�) ` e : f�2=tg�1.

2. If �[t]�0; � ` b : �1, then �[t = �2](f�2=tg�
0); (f�2=tg�) ` b : f�2=tg�1.

Proof: Simultaneously, by induction on e and b, using Lemma 3.8 2

Lemma 3.10 (Preservation) If ` P : � and P
R
7�! P 0, then ` P 0 : �.

Lemma 3.11 (Canonical Forms) If �;	 ` h : �, then:

1. if � = nat, then h is either 0 or succ l for some l.

2. if � = unit, then h is hi.

3. if � = �1 � �2, then h is hl1; l2i for some l1 and l2.

4. if � = �1 ! �2, then h is hhE; fix x:t(x1:t1):eii for some E, x, t, x1, t1, and
e.
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5. if � = 8t:� , then h is hhE;�t: eii for some E and e.

Proof: By inspection of the heap value typing rules. 2

Lemma 3.12 (Progress) If ` P : �, then either P is an answer or else there

exists a P 0 such that P
R
7�! P 0.

Lemma 3.13 If ` TH : �, � ` VH [l 7! h] : 	[l : �], then there exists an r such

that print [�](VH [l 7! h]; l) = r.

Corollary 3.14 If ` A : �, then there exists an r such that printprog(A) = r.

Theorem 3.15 (Soundness) If ` P : �, then eval(P ) 6= *wrong*.

Proof: If P diverges then eval(P ) = ?. If P does not diverge, then there exists

some P 0 such that P
R
7�!� P 0 and there is no P 00 where P 0 R

7�! P 00. By induction
on the number of rewriting steps taking P to P 0 using the Preservation Lemma,
we can show that ` P 0 : �. By the Progress Lemma, P 0 must be an answer. By
Corollary 3.14, there exists an r such that printprog(P

0) = r. Since *wrong* is not
in the image of printprog, r 6= *wrong* and hence eval(P ) 6= *wrong*. 2

4 Heap Garbage

In this section, we consider a general de�nition of \garbage" as a heap object that
is not needed by the program in order to produce the same result. (Notions of
\garbage" for the stack and environment are considered in Section 6 below.)

De�nition 4.1 (Heap Garbage) Let P = (H ]H 0; S; E; e) be a well-formed pro-

gram and take P 0 = (H;S;E; e). We say that H 0 is garbage with respect to P i� P 0

is well-formed and P ' P 0.

This de�nition of garbage allows us to eliminate any portion of the heap as long
as we do not change the observable behavior of the program. Notice that a heap
object is not regarded as garbage if it is required for the well-formedness of P , even
if the computation could proceed to a �nal answer without referring to that object.
It is possible to drop the well-formedness condition and consider a more semantic
de�nition of garbage, at the expense of considerable technical complication [31]. We
prefer the more restrictive de�nition because it is simpler and closer to practice.

Implementors use one of a variety of techniques to determine which portions of
the heap can be collected. One of the most important techniques is based on the
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idea of accessibility. Formally, we can drop a heap binding if the resulting program
has no free reference to the binding:

(GC)
FP(H;S;E; e) = ; FL(H;S;E; e) = ;

(H ]H 0; S; E; e)
GC
7�! (H;S;E; e)

The idea is that
GC
7�! models a garbage collector that drops zero or more bindings

from the heap, but ensures that none of the dropped bindings are accessible. Note

that for a well-formed program, the
GC
7�! rule is always enabled, since we can always

drop an empty heap. Furthermore, the composition of two
GC
7�! steps can always

be simulated by a single
GC
7�! step.

A key property of
GC
7�! is that it preserves typing in the same fashion as the

other rewriting rules.

Lemma 4.2

1. If ` (H[p 7! �]; S; E; e) : � and FP(H;S;E; e) = ;, then ` (H;S;E; e) : �.

2. If ` (H[l 7! h]; S; E; e) : � and FL(H;S;E; e) = ;, then ` (H;S;E; e) : �.

Proof (sketch): We argue the case for part 1, as the case for part 2 is similar.
Suppose H = (TH ;VH ) and E = (TE ;VE). Since ` (H[p 7! �]; S; E; e) : �, there
exists �, �0, 	, �

0, �, and � such that ` TH [p 7! �] + �[p = �0], �[p = �0] ` VH :
	, �[p = �0]; 	 ` S : �0 ! �, �[p = �0] ` TE + �, 	;� ` VE : �, and �;� ` e : �0.
Since FP(H;S;E; e) = ;, FP(H) = ;, FP(S) � Dom(TH ), FP(E) � Dom(TH ).
Hence we may construct derivations of ` TH + �, � ` VH : 	, �;	 ` S : �0 ! �,
and � ` TE + �. Therefore, ` (H;S;E; e) : �. 2

Lemma 4.3 (GC Preservation) If ` P1 : � and P1
GC
7�! P2, then ` P2 : �.

Proof: By induction on the number of bindings dropped, using Lemma 4.2.
2

From this lemma and our original Progress result (see 3.12), we can conclude

that a well-typed program can never become stuck with respect to the
R
7�! rules,

even if the program takes a
GC
7�! step.

Corollary 4.4 (GC Progress) If ` P1 : �, and P1
GC
7�! P2, then either P2 is a

printable answer or else there exists a P3 such that P2
R
7�! P3.
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Consequently, no matter how we add
GC
7�! to our evaluation relation, a well-

typed program will never become stuck.

We would like to add
GC
7�! to the rewriting rules for our abstract machine to

model an implementation that interleaves evaluation with garbage collection. Since
the null collection (in which no bindings are eliminated) is always possible, this in-

troduces the potential for non-termination by in�nite repetition of
GC
7�! steps. In

practice garbage collection steps occur only after some number of standard evalu-
ation steps have occurred (e.g., at the beginning of each basic block), ruling out
in�nite repetition of vacuous collection steps. We adopt this restriction by de�ning

the
GCR
7�! relation to be the composition of the

GC
7�! and

R
7�! relations, and con-

sider computation as a sequence of
GCR
7�! steps. That is, if P1

GCR
7�! P2, then there

exists a P 0 such that P1
GC
7�! P 0 R

7�! P2. Note that by GC Progress, the fact that
R
7�! is a partial function, and the fact that

GC
7�! does not a�ect the expression of a

program, any
R
7�! step that can be taken before an arbitrary

GC
7�! step, can still

be taken after the
GC
7�! step. We say a program P is stuck with respect to

GCR
7�! if

either P is an answer and printprog(P ) is unde�ned or else P is not an answer and

there is no P 0 such that P
GCR
7�! P 0.

De�nition 4.5 (GC Evaluation Relation)

1. P +GCR r i� there exists an A such that P
GCR
7�!� A and printprog(A) = r.

2. P +GCR ? i� P diverges with respect to
GCR
7�! .

3. P +GCR *wrong* i� there exists a stuck P 0 such that P
GCR
7�!� P 0.

We would like to show that the addition of the
GC
7�! steps to our evaluator does

not a�ect the evaluation result of a given program. That is, we would like to show
that +GCR is a total function mapping closed programs to results, and is in fact
the same total function as our original eval . (Note that this result would fail if we
allowed in�nite repetition of garbage collection steps.)

We begin by showing that printing is una�ected by garbage collection. We then

show that, whenever a
GC
7�! step is followed by an

R
7�! step, we can postpone the

garbage collection until after the
R
7�! step has been taken. From this, it follows that

we can simulate any
GCR
7�! evaluation sequence with an

R
7�! evaluation sequence.

Lemma 4.6 (GC Answer) If A
GC
7�! A0 and printprog(A

0) = r, then printprog(A) =
r.
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Proof (sketch): Since
GC
7�! only drops bindings and does not change bindings in

the heap, and since
GC
7�! preserves typing, printprog(A

0) = r implies printprog(A) =
r. 2

Lemma 4.7 (GC Postponement) If ` P1 : � and P1
GC
7�! P2

R
7�! P3, then

there exists a P 0
2 such that P1

R
7�! P 0

2
GC
7�! P3.

Proof: Suppose P1 = (H1]H2; S; E; e), P2 = (H1; S; E; e), and P3 = (H 0; S0; E0; e0).

We can show via case analysis on the rewriting rule taking P2 to P3, that P1
R
7�!

(H 0 ]H2; S
0; E0; e0). By Preservation, we know that ` P3 : � and thus P3 is closed,

and thus, (H 0 ]H2; S
0; E0; e0)

GC
7�! (H 0; S0; E0; e0). 2

Corollary 4.8 For all n � 0, if P0

GCR
7�!n Pn, then there exists a P 0

n such that

P0

R
7�!n P 0

n and P 0
n

GC
7�! Pn.

Proof: By induction on n using the Postponement lemma. 2

Theorem 4.9 (GC Correctness) If ` P : �, then P + r i� P +GCR r.

Proof: We can simulate any
R
7�! step with a

GCR
7�! step by simply performing

an empty garbage collection. That is, if P
R
7�! P 0, then P

GC
7�! P

R
7�! P 0 and

thus P
GCR
7�! P 0. Consequently, if P + r, then P +GCR r.

Suppose P +GCR r. By GC Soundness, r 6= *wrong*. If r 6= ?, then there

exists an n and A such that P
GCR
7�!n A and printprog(A) = r. By Corollary 4.8,

there exists an A0 such that P
R
7�!n A0 GC

7�! A. By Lemma 4.6, printprog(A
0) =

printprog(A) = r.
If r = ? then there exists an in�nite sequence P 0; P1; P

0
1; P2; P

0
2; � � � such that

P
GC
7�! P 0 R

7�! P1
GC
7�! P 0

1
R
7�! P2

GC
7�! P 0

2
R
7�! � � � :

By Corollary 4.8, we can construct an in�nite sequence P 00; P 00
1 ; P

00
2 ; � � � such that

P
R
7�! P 00 R

7�! P 00

1
R
7�! P 00

2
R
7�! � � �

Thus, P + ?. Consequently, if P +GCR r, then P + r. 2
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Of course,
GC
7�! is too high-level to be taken as a primitive instruction, because

the side-conditions require a global constraint | no free references to pointers or
locations | and checking this constraint requires examining every variable in the
program's state. Some mechanism is needed to determine e�ciently which pointers
and locations can be safely garbage collected. The following section addresses this
issue.

5 Type-Based Tag-Free Heap Collection

In this section, we formulate a garbage collection rewriting rule that models type-
based, tag-free copying collection in the style of Tolmach [40] and the TIL/ML
compiler [38]. The key idea is to preserve all heap objects that can be reached
(either directly or indirectly) from the current environment and stack. We use
the type information recorded in environments during evaluation to determine the
shape of heap objects. This allows us to extract locations (and their types) from
heap objects without having to use any extra tags on the heap objects themselves.

We formalize the garbage collection process as a rewriting system. GC states
are 4-tuples of the form (Hf ; Q; L;Ht), where Hf and Ht are heaps, Q is a set of
pointers, and L is a set of location and pointer pairs:

(GC states) X ::= (Hf ; Q; L;Ht)
(type pointer sets) Q ::= fp1; � � � ; png (n � 0)
(typed location sets) L ::= fl1:p1; � � � ; ln:png (n � 0)

In the terminology of copying collectors, Hf is the \from-space", Ht is the \to-
space", and L and Q together constitute the \scan-set" or \frontier". Throughout,
Q and L contain those pointers and locations that are immediately accessible from
the current environment, stack, or to-space but have not yet been forwarded from
the from-space to the to-space. In addition, L tracks (pointers to) types of these
accessible locations. From this extra type information, we can determine the \shape"
of value objects referenced in the scan-set. For instance, if l:p is in the scan-set and
p is bound to a type heap value p1 � p2, then we know that l must be bound to a
heap value of the form hl1; l2i and furthermore, li is described by pi for i = 1; 2.
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The basic rewriting rules of the GC algorithm are as follows:

(gc-1) (Hf [p 7! �]; Q ] fpg; L;Ht) =) (Hf ; Q [ FP(�); L;Ht[p 7! �])

(gc-2)
p 62 Dom(Hf )

(Hf ; Q ] fpg; L;Ht) =) (Hf ; Q; L;Ht)

(gc-3)
F [(Hf ]Ht)(p)](p; h) = (Q0; L0)

(Hf [l 7! h]; Q; L ] fl:pg;Ht) =) (Hf ; Q [Q0; L [ L0;Ht[l 7! h])

(gc-4)
l 62 Dom(Hf )

(Hf ; Q; L ] fl:pg;Ht) =) (Hf ; Q; L;Ht)

where
F [nat] = �(p; h):case h of

0) (;; ;)
j succ l ) (fpg; fl:pg)

F [unit] = �(p; hi):(;; ;)
F [p1 � p2] = �(p; hl1; l2i):(fp1; p2g; fl1:p1; l2:p2g)
F [p1 ! p2] = �(p; hhE; fix x:t(x1:t1):eii):Fenv(E)

F [hhTE;8t:�ii] = �(p; hhE;�t: eii):Fenv(E)

and

Fenv(TE ; [x1:t1 7! l1; � � � ; xn:tn 7! ln]) = (Rng(TE ); fl1:TE (t1); � � � ; ln:TE (tn)g)

The gc-1 rule forwards a type binding p 7! � from the from-space to the to-space
when p is in the scan-set. All of the free pointers of the allocated type � are added to
the scan-set ensuring that these bindings are eventually forwarded to the to-space.
Notice that calculating the free pointers of an allocated type requires tags on the
allocated types so that we can tell, for instance, nat from p1 ! p2. The gc-2 rule
skips over a pointer in the scan-set when we determine that the pointer's binding
has already been forwarded to the to-space.

The gc-3 rule, like the gc-1 rule, forwards a value binding l 7! h from the from-
space to the to-space when l:p is in the scan-set. All of the free pointers and free
locations of h, along with pointers to types describing these locations, are added
to the scan-set. Unlike the �rst rule, we use the type information p recorded with
a location to determine the shape of the corresponding heap value, and to extract
the free pointers and locations. In particular, the function F takes an allocated
type (�), and returns a function which when given a pointer to that allocated type
(p) and a heap value of the appropriate type (h), returns appropriate Q and L sets
for the heap value. In other words, F calculates the free pointers and locations of
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the heap value, as well as the types of those locations. Furthermore, F requires no
run-time tags on h to distinguish, for instance, naturals from pairs, or pairs from
closures. We need some tag information in the case that � = nat to determine
whether the heap value is 0 or succ l. However, such a tag is needed anyway to
support evaluation of case expressions.

The gc-4 rule, like the gc-2 rule, skips over a location/pointer pair in the scan-
set when we determine that the location's binding has already been forwarded to
the to-space.

The Tag-Free GC algorithm is initialized and �nalized as follows:

(tf-gc)

Fenv(E) = (Q1; L1) Fstack(S) = (Q2; L2)

(H;Q1 [Q2; L1 [ L2; ;) =)� (Hf ; ;; ;;Ht)

(H;S;E; e)
tf-gc
7�! (Ht; S; E; e)

where

Fstack([]�) = (;; ;)
Fstack(S � hhE; �x:t:eii) = (Qa [Qb; La [ Lb)

(where (Qa; La) = Fstack(S) and (Qb; Lb) = Fenv(E))

The algorithm begins by calculating the free pointers and free locations (along with
their types) of the current environment and stack. This set of pointers and typed
locations is taken as the initial scan-set, and the heap of the program is taken as
the initial from-space. Then, the algorithm repeatedly applies the gc rewriting rules
until the scan-set is empty. At this point, we take the to-space as the \new" heap
of the program.

Two important properties of the GC system are readily apparent. First, the GC
system only drops bindings from the heap | it does not introduce new bindings
nor change existing bindings. Hence, at each stage of the computation, the original
heap can be recovered by taking the union of the from- and to-spaces. Second,
the rewriting system must terminate, since (a) each heap binding is moved at most
once from the from-space to the to-space, and (b) at each step either an element is
discarded from the scan-set, or else a binding is moved from the from-space to the
to-space.

With these properties in mind, to prove the correctness of the collection algo-
rithm it su�ces to show that the Tag-Free GC system does not get stuck (i.e., it
is always possible to empty the scan-set), and the resulting program is closed. If
the system always results in a closed program, then the system can be simulated

by the original
GC
7�! rewriting rule, which we have already proven to be a correct

speci�cation of garbage collection.
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The critical step in showing that the Tag-Free GC algorithm can run to com-
pletion is proving a variant of the Canonical Forms lemma. In particular, we must
show that when we add a location/pointer pair l:p to the scan-set, then p is bound
to a type that describes the heap value to which l is bound. This ensures that the
F function is in fact de�ned on this location/pointer pair. Furthermore, we must
show that this property holds of any new bindings we add to the scan-set.

Lemma 5.1 (Unexpanded Canonical Forms) If ` TH + �, � ` VH : 	, and
�(p) = 	(l), then:

1. if TH (p) = nat, then VH (l) = 0 or VH (l) = succ l0 for some l0. Furthermore,

	(l0) = nat.

2. if TH (p) = unit, then VH (l) = hi.

3. if TH (p) = p1 � p2, then VH (l) = hl1; l2i for some l1 and l2. Furthermore,

�(pi) = 	(li) for i = 1; 2.

4. if TH (p) = p1 ! p2, then VH (l) = hh(TE ;VE); fix x1:t1(x2:t2):eii for

some TE, VE, x1, t1, x2, t2, and e. Furthermore, for all x:t 7! l0 in VE,

�(TE (t)) = 	(l0).

5. if TH (p) = hhTE 0;8t:�ii, then VH (l) = hh(TE ;VE);�t: eii for some TE, VE,

and e. Furthermore, for all x:t 7! l0 in VE, �(TE (t)) = 	(l0).

Proof (sketch): Again, by inspection of the typing rules. For example, consider
case 4: We know that TH (p) = p1 ! p2. So, by inspection of the type heap
value reduction rules, only th-arrow applies. Thus, we know that there exist �1
and �2 such that � ` p1 ! p2 + �1 ! �2 by the th-arrow rule. Therefore,
�(p) = �1 ! �2, and by assumption, 	(l) = �1 ! �2. By inspection of the
heap typing rules, �;	 ` VH (l) : �1 ! �2 can only hold via the vh-arrow rule.
Thus, VH (l) = hh(TE ;VE ); fix x1:t1(x2:t2):eii for some TE , VE , x1, t1, x2, t2,
and e. Furthermore, we know there exist � and � such that � ` TE + � and
�;	 ` VE : �. By the cons-ve rule, we can conclude that for all x:t 7! l in VE ,
�(TE (t)) = 	(l). 2

Lemma 5.2 If ` TH + �, � ` VH : 	, �(p) = 	(l), � ` TE + �, and 	;� `
VE : �, then for some Q and L,

1. Fenv(TE ;VE) = (Q;L),

2. FP(TE ;VE) = Q,
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3. FL(TE ;VE) = Dom(L),

4. for all l0:p0 2 L, �(p0) = 	(l0).

Corollary 5.3 If ` TH + �, � ` VH : 	, and �(p) = 	(l), then for some Q and
L:

1. F [TH (p)](p;VH (l)) = (Q;L),

2. FP(VH (l)) = Q,

3. FL(VH (l)) = Dom(L),

4. for all l0:p0 2 L, �(p0) = 	(l0).

Proof: The result follows directly from the de�nition of F , the Unexpanded
Canonical Forms Lemma, and Lemma 5.2. 2

Corollary 5.4 If ` TH + �, � ` VH : 	, and �;	 ` S : �1 ! �2, then for some

Q and L,

1. Fstack(S) = (Q;L),

2. FP(S) = Q,

3. FL(S) = Dom(L),

4. for all l0:p0 2 L, �(p0) = 	(l0).

Proof: The result follows directly from the de�nition of Fstack and Lemma 5.2.
2

Next, we formulate a set of invariants that a GC state has throughout the rewrit-
ing system.

De�nition 5.5 (Well-Formed GC State) Let P = (H;S;E; e) be a well-typed

program such that H = (TH ;VH ), ` TH + �, and � ` VH : 	. We say a GC

state (Hf ; Q; L;Ht) is well-formed with respect to P i�:

1. H = Hf ]Ht,

2. FP(Ht; S; E; e) � Q,

3. FL(Ht; S; E; e) � Dom(L),

4. for all l:p in L, �(p) = 	(l),
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5. Q � Dom(TH ),

6. for all l:p in L, l 2 Dom(VH ) and p 2 Dom(TH ).

Roughly speaking, the �rst requirement is that the from- and to-spaces, when
taken together, constitute the original program's heap. Thus, no bindings are ever
lost or created by the system. The second and third invariants tell us that Q holds
the free pointers of the to-space, while L holds the free locations of the to-space.
The fourth invariant ensures that for all location/pointer pairs l:p 2 L, p is bound
to a type which, when normalized, is the same type assigned to the location l in the
proof that the original program is well-formed. Finally, the �fth and sixth invariants
ensure that all pointers and locations in the scan set are drawn from those pointers
and locations bound in the program's heap.

Next, we show that the GC transition system preserves well-formedness of GC
states, and then show that well-formedness is su�cient to guarantee that a GC state
is either terminal (i.e., the scan set is empty) or else there exists a transition to an-
other well-formed GC state. These lemmas are the direct analogs of the Preservation
and Progress Lemmas for the proof of type soundness for the abstract machine (see
Section 3.4). Proofs of these Lemmas may be found in Appendix B.

Lemma 5.6 (GC State Preservation) If X is well-formed with respect to P and

X =) X 0, then X 0 is well-formed with respect to P .

Lemma 5.7 (GC State Progress) If X = (Hf ; Q; L;Ht) is well-formed with re-

spect to P , then either Q and L are empty or else there exists a GC state X 0 such

that X =) X 0.

Finally, correctness of the GC transition system is established by showing that
the initial GC state is well-formed, and that well-formedness of a terminal state is
a su�cient condition to guarantee that the to-space contains all bindings needed to
keep the program closed.

Theorem 5.8 (Tag-Free GC Correctness) If ` P : �, then there exists a P 0

such that P
tf-gc
7�! P 0. Furthermore, P

GC
7�! P 0.

Proof: Let P = (H;S;E; e) where H = (TH ;VH ) and E = (TE ;VE). Since
` P : �, there exists �, 	, �, �, and �0 such that ` TH + �, � ` VH : 	,
�;	 ` S : �0 ! �, � ` TE + �, and 	;� ` VE : �.

By Lemma 5.2, we know that there exists Q1 and L1 such that Fenv(E) =
(Q1; L1), FP(E) = Q1, FL(E) = Dom(L1), and for all l:p in L1, �(p) = 	(l). By
Lemma 5.4, we know that there exists Q2 and L2 such that Fstack(S) = (Q2; L2),
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FP(S) = Q2, FL(S) = Dom(L2), and for all l:p in L2, �(p) = 	(l). There-
fore, taking Q = Q1 [ Q2 and L = L1 [ L2, we know that FP(;; S; E; e) = Q,
FL(;; S; E; e) = Dom(L), and for all l:p in L, �(p) = 	(l).

Therefore, the initial GC state X = (H;Q;L; ;) is well-formed with respect
to P . Since the GC rewriting system cannot diverge, there exists some GC state
X 0 = (Hf ; Q

0; L0;Ht) such that X =)� X 0 and no step can be taken from X 0. By
induction on the length of this rewriting sequence using the GC State Preservation
Lemma, X 0 is well-formed with respect to P . Since no transition exists from X 0,

we know via GC State Progress that both Q and L are empty. Hence, P
tf-gc
7�! P 0

where P 0 = (Ht; S; E; e).
Now, since X 0 is well-formed with respect to P , we know that FP(P 0) � Q0 = ;

and FL(P 0) � Dom(L0) = ;. Consequently, P 0 is closed and thus P
GC
7�! P 0. 2

6 Other Kinds of Garbage

In the previous sections, we showed how to specify a certain class of heap garbage and
how to collect this garbage without e�ecting the observational behavior of programs.
However, for our abstract machine, garbage is not limited to the heap. In this
section, we consider two additional forms of garbage, stack garbage and environment

garbage, each of which may be the source of \space leaks" in a program. We show
how an implementation may avoid these leaks.

In the most general sense, a frame on the stack is garbage if removing that frame
results in a Kleene-equivalent program (i.e., an observationally equivalent program).
Likewise, a binding in an environment is garbage if removing that binding results
in a Kleene-equivalent program. The following de�nitions make these notions of
garbage precise.

De�nition 6.1 (Stack Garbage) Let P = (H;S1 �S2 �S3; E; e) be a well-formed

program and take P 0 = (H;S1 �S3; E; e). We say that the sub-stack S2 is garbage

with respect to P i� P 0 is well-formed and P ' P 0.

De�nition 6.2 (Environment Garbage) Let P be a well-formed program with

environment E occurring somewhere in P (i.e., either the program environment, or

the environment of a closure), and let P 0 be the program obtained by replacing E
with E n E0, where E0 � E. We say that the sub-environment E0 is garbage with

respect to P i� P 0 is a well-formed program and P ' P 0.

It may not be practical to re-claim space for stack frames or environment entries
except at certain points during evaluation. Hence, most implementations restrict
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their attention to a certain class of garbage stack frames or environment bindings. In
the remainder of this section, we examine two speci�c approaches for collecting cer-
tain classes of stack and environment garbage, namely tail-call elimination for stack
garbage collection, and environment strengthening (also known as \black-holing")
for environment garbage collection.

6.1 Tail-Call Collection

Tail-call elimination is a space optimization used in many implementations to avoid
unnecessary accumulation of control information1. The goal of tail-call elimination
is to ensure that tail-recursive procedures execute in iterative fashion, with no space
requirements not imposed by the code itself. In our framework the tail-call opti-
mization can be phrased as the elimination of identity continuations on the stack.
The idea is formalized by the following transition rule:

(
ID
7�! ) (H;S1 � hhE

0; �x:t:xii �S2; E; e)
ID
7�! (H;S1 �S2; E; e)

The
ID
7�! rule eliminates any stack frame if the code of the frame is syntactically

equivalent to the identity function. The following lemmas show that
ID
7�! preserves

types and hence, cannot cause a well-typed program to become stuck.

Lemma 6.3 (ID Preservation) If ` P : � and P
ID
7�! P 0, then ` P 0 : �.

Proof: P must be of the form (H;S1 � hhE1; �x:t:xii � S2; E; e), where H =
(TH ;VH ), E1 = (TE 1;VE1), and E = (TE ;VE). Since ` P : �, there ex-
ists a �, 	, �, �, and �0 such that (a) ` TH + �, (b) � ` VH : 	, (c)
�;	 ` S1 � hhE1; �x:t:xii � S2 : �0 ! �, (d) � ` TE + �, (e) 	;� ` VE : �,
and (f) �; � ` e : �0. It su�ces to show that �;	 ` S1 �S2 : �

0 ! �.
Now (c) can only hold via cons-s. Thus, by induction on the size of S2, we can

show that there exists a �1 such that (g) �;	 ` S1 � hhE1; �x:t:xii : �1 ! � and
(h) �;	 ` S2 : �

0 ! �1. It su�ces to show that �;	 ` S1 : �1 ! �, for then, by
induction on the size of S2 we may show that �;	 ` S1 �S2 : �

0 ! �.
Since (g) can only hold via cons-s, there must exist �1, �1, and �2 such that (i)

�;	 ` S1 : �2 ! �, (j) � ` TE1 + �1, (k) �1 ` t + �1, (l) 	;�1 ` VE1 : �1, and
(m) �1; �1[x:�1] ` x : �2. But (m) can only hold via the var rule and thus �1 = �2.
Consequently, �;	 ` S1 : �1 ! �. 2

1Tail-call elimination may also improve the running time of programs by avoiding unnecessary
stack manipulations, and by decreasing the time taken to extract pointers and locations for heap
garbage collection.
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Corollary 6.4 (ID Progress) If ` P1 : � and P1
ID
7�! P2, then either P2 is a

printable answer or else there exists a P3 such that P2 7�! P3.

As with the
GC
7�! rule of Section 4, we wish to show that adding

ID
7�! to the

rewriting rules for our abstract machine does not e�ect the observable behavior of

program evaluation. Let
IDR
7�! be the union of the

R
7�! and

ID
7�! relations.

De�nition 6.5 (ID Evaluation Relation)

1. P +IDR r i� there exists an A such that P
IDR
7�!� A and printprog(A) = r.

2. P +IDR ? i� P diverges with respect to
IDR
7�! .

3. P +IDR *wrong* i� there exists a stuck P 0 such that P
IDR
7�!� P 0.

We would like to show that +IDR is the same total function as our original eval .

As with the +GCR relation, we show that, whenever a
ID
7�! step is followed by an

R
7�! step, we can postpone the identity frame collection until after the

R
7�! step

has been taken. From this, it follows that we can simulate any
IDR
7�! evaluation

sequence with an
R
7�! evaluation sequence.

Lemma 6.6 (ID Postponement) If ` P1 : �, P1
ID
7�! P2

R
7�! P3, then there

exists a P 0
2 such that P1

R
7�!� P2

ID
7�!� P3.

Proof (sketch): The argument proceeds by case analysis on the
R
7�! rewriting

rule taking P2 to P3. The most interesting case is when P2 steps to P3 via the return
rule. For this case, there are two possible sub-cases depending upon whether or not

the identity frame eliminated by the
ID
7�! transition is the right-most stack frame.

sub-case return-a: P1 is of the form (H;S;E; x), where

S = S1 � hhE1; �x1:t1:e1ii � hhE
0; �x0:t0:x0ii;

and

P1
ID
7�! (H;S1 � hhE1; �x1:t1:e1ii; E; x)

return
7�! (H;S1; E1[x1:t1 7! E(x)]; e1)

But then

P1
return
7�! (H;S1 � hhE1; �x1:t1:e1ii; E

0[x0:t0 7! E(x)]; x0)
return
7�! (H;S1; E1[x1:t1 7! E0[x0:t0 7! E(x)](x0)]; e1)
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Thus, P1

R
7�!� P3

ID
7�!� P3.

sub-case return-b: P1 is of the form (H;S;E; x), where

S = S1 � hhE
0; �x0:t0:x0ii � S2 � hhE1; �x1:t1:e1ii

and

P1
ID
7�! (H;S1 � S2 � hhE1; �x1:t1:e1ii; E; x)
return
7�! (H;S1 � S2; E1[x1:t1 7! E(x)]; e1)

But then

P1
return
7�! (H;S1 � hhE

0; �x0:t0:x0ii � S2; E1[x1:t1 7! E(x)]; e1)
ID
7�! (H;S1 � S2; E1[x1:t1 7! E(x)]; e1)

Thus, there exists a P 0
2 such that P1

R
7�!� P 0

2

ID
7�!� P3. 2

Corollary 6.7 For all n � 0, if P0

IDR
7�!n Pn, then there exists a P 0

n such that

P0

R
7�!� P 0

n and P 0
n

ID
7�!� Pn.

Proof: By induction on n using the
ID
7�! Postponement lemma. 2

Lemma 6.8 (ID Answer) If ` P : �, and P
ID
7�!� A for some A, then P

R
7�!�

A.

Theorem 6.9 (ID Correctness) If ` P : �, then P + r i� P +GCR r.

Proof: We can simulate any
R
7�! step with a

IDR
7�! step by simply never per-

forming an
ID
7�! transition. Consequently, if P + r, then P +IDR r.

Suppose P +IDR r. By GC Soundness, r 6= *wrong*. If r 6= ?, then there exists

an n and A such that P
IDR
7�!n A and printprog(A) = r. By Corollary 6.7, there

exists an P 0 such that P
R
7�!� P 0

ID
7�!� A. By Lemma 6.8, P 0

R
7�!� A.

If r = ? then there exists an in�nite sequence P 0; P1; P
0
1; P2; P

0
2; � � � such that

P
ID

7�!� P 0 R
7�! P1

ID

7�!� P 0

1

R
7�!� P2

ID
7�!� P 0

2
R
7�! � � � :

By Corollary 6.7, we can construct an in�nite sequence P 00; P 00
1 ; P

00
2 ; � � � such that

P
R
7�! P 00 R

7�! P 00

1
R
7�! P 00

2
R
7�! � � �
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Thus, P + ?. Consequently, if P +IDR r, then P + r. 2

Whereas the proof of the
ID
7�! postponement lemma relies crucially upon the

ability to throw away frames in the middle of the stack, real implementations avoid
pushing identity frames onto the stack. In e�ect, every transition that can push a
frame on the stack is split into two transitions: If the frame to be pushed on the
stack is an identity frame, then the frame is simply discarded; otherwise it is pushed
on the stack.

In our abstract machine, only the c-zero, c-succ, app, and tapp rules push

frames on the stack. Composing these transitions with the
ID
7�! transition (applied

to the right-most stack frame) yields the following new transition rules:

(tail-zero)
H(E(x0)) = 0

(H;S;E; let x:t = case(x0; e0; �x1:t1:e1) in x) 7�! (H;S;E; e0)

(tail-succ)
H(E(x0)) = succ l

(H;S;E; let x:t = case(x0; e0; �x1:t1:e1) in x) 7�!
(H;S;E[x1:t1 7! l]; e1)

(tail-app)
H(E(x1)) = hhE0; fix x01:t

0

1(x
0

2:t
0

2):e
0ii

(H;S;E; let x:t = x1 x2 in x) 7�!
(H;S;E0[x01:t

0
1 7! E(x1); x

0
2:t

0
2 7! E(x2)]; e

0)

(tail-tapp)
H(E(x1)) = hhE0;�t01: e

0ii

(H;S;E; let x:t = x1 [t1] in x) 7�! (H;S;E0[t01 7! E(t1)]; e
0)

It is easy to see that adding these new rules, and always choosing the appropriate
tail- transition when possible, yields a computation without any identity stack
frames. For certain classes of programs, this optimization is crucial in order to bound
the amount of stack space needed to run programs. In particular, when programs are
written in continuation-passing style (CPS) [22], then the return transition is never
enabled until the end of the computation, assuming the computation terminates.
Instead, each function is passed an extra argument function (the continuation),
and the result of the function is passed to the continuation. In e�ect, all function
applications turn into potential tail-app transitions. But if no tail-call elimination
is performed, then this coding style delays all of the return transitions until the
end of the computation (assuming the program terminates) and at worst results
in unbounded stack-space requirements (assuming the program diverges). While
this is reasonable behavior in an observational sense, it is unreasonable behavior
in practice. Furthermore, a heap garbage collector must process and preserve all
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objects that are reachable from these unnecessary frames, so the total amount of
garbage in the state of the abstract machine grows quickly.

Some languages, notably Scheme [17], require that all implementations faith-
fully implement tail-call elimination in order to address these practical concerns2.
Yet, the standard models for Scheme make neither the control stack nor heap ex-
plicit [17], and thus the tail-call requirement is at best an informal contract between
the language speci�cation and its implementors. In contrast, the model we use here
allows the language designer to specify the requirement precisely: asymptotically,
an implementation should use no more space than our abstract machine requires
with the tail- rules. Nevertheless, our model is su�ciently abstract that we can
argue the correctness of such an implementation in the observational sense, without
overly constraining implementations.

6.2 Environment Strengthening

Collecting garbage bindings in environments is much like collecting garbage bindings
in the heap. In particular, a reasonable strategy for collecting bindings in an envi-
ronment is to determine which bindings are inaccessible from the code associated
with the environment, and drop those bindings.

We formulate an environment garbage collector by specifying two inference rules
that allow us to strengthen the environment of a type or value closure:

(STE)
FTV (�) � Dom(TE 1)

hhTE 1 ]TE 2; �ii
STE
7�! hhTE 1; �ii

(SE)
FV (e) � Dom(VE1) FTV (VE 1) [ FTV (e) � Dom(TE 1)

hh(TE 1 ] TE 2;VE 1 ]VE 2); eii
SE
7�! hh(TE 1;VE 1); eii

The
STE
7�! rule allows us to strengthen the type environment of a type closure by

discarding those bindings not referenced by the type. Similarly, the
SE
7�! rule allows

us to strengthen the type and value environment of a value closure, as long as all of
the free variables of the code are in the domain of the resulting value environment,
and all of the free type variables of both the code and the value environment are in
the domain of the resulting type environment.

We use
STE
7�! and

SE
7�! to formulate rewriting rules that allow us to strengthen

the various environments that may arise in an abstract machine state:

(SE-th)
hhTE 1; �ii

STE
7�! hhTE 2; �ii

(H[p 7! hhTE 1; �ii]; S; E; e)
SE-th
7�! (H[p 7! hhTE 2; �ii]; S; E; e)

2See Chase [14] for a further discussion of practical space safety issues.
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(SE-vh)
hhE1; e

0ii
SE
7�! hhE2; e

0ii

(H[l 7! hhE1; e
0ii]; S; E; e)

SE-vh
7�! (H[l 7! hhE2; e

0ii]; S; E; e)

(SE-stack)
hhE1; �x

0:t0:e0ii
SE
7�! hhE2; �x

0:t0:e0ii

(H;S1 � hhE1; �x
0:t0:e0ii � S2; E; e)

SE-stack
7�!

(H;S1 � hhE2; �x
0:t0:e0ii � S2; E; e)

(SE-env)
hhE1; eii

SE
7�! hhE2; eii

(H;S;E1; e)
SE-env
7�! (H;S;E2; e)

Taken together, these rules allow us to trim the size of all the kinds of environments
that may occur in a machine state. As with tail-call collection, trimming envi-
ronments may also allow more heap garbage to be collected, since there are fewer
references to heap allocated objects. Finally, proving that these rules preserve types
and do not a�ect the observable behavior of programs can be accomplished in the

same way we argued these results for the
GC
7�! and

ID
7�! rules3.

In practice, implementations only perform environment strengthening at certain
points during evaluation, just as most implementations only perform tail-call elimi-
nation in conjunction with function application. In particular, Appel suggests that
a space-safe implementation strategy for closures is to trim their environment only
to those variables that occur free in the associated code [4]. However, it is often im-
practical to trim the current environment (at every instruction), or to even trim the
environments of closures as they are pushed on the stack. Instead, some implemen-
tations, including the TIL/ML compiler, delay trimming the current environment
and the environments of stack frames until garbage collection is invoked.

Many implementations of functional languages perform a program transforma-
tion known as closure conversion [6, 4, 29] to eliminate nested, higher-order func-
tions. As a result of the transformation, nested functions are replaced with a record,
where the �rst component is a pointer to some code, and the second component is a
pointer to a data structure containing bindings for the free variables of the original
function. The code abstracts both the environment and the argument to the func-
tion. Application is replaced with operations to extract the code and environment,
and to apply the code simultaneously to the environment and the argument. In this
respect, closure conversion rei�es the heap closures of our abstract machine as lan-
guage constructs in the same fashion that CPS conversion rei�es the stack closures
of our abstract machine as functions.

3Some care must be taken, as with the
GC
7�! transition, to rule out in�nite sequences of envi-

ronment strengthening.
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During closure conversion, when emitting the operations to construct the envi-
ronment for a particular closure, it is possible to strengthen the environment. It is
also possible for di�erent closures to share portions of the same environment. In
particular, many implementations, such as the CAM [18], allow closures in the same
lexical scope to share an environment for that scope. However, care must be taken
when two closures share an environment in order to avoid a class of space leaks [37].
In particular, the shared portion of the environment should only contain bindings
for those variables that occur free in the code of both closures. Though the abstract
machine presented here does not support shared environments, it is fairly straight-
forward to add environments to the set of heap-allocated values so that they may
be shared.

7 Related Work

The ideas in this paper are derived from our previous work withMatthias Felleisen [31]
and Morrisett's dissertation [30], where we presented a much simpler abstract ma-
chine that relied upon meta-level substitution and meta-level evaluation contexts
to implicitly represent the control state and environment of a computation. In this
paper, we chose to make these details explicit so that issues like tail-call elimination
and environment strengthening could be addressed. We further extended the pre-
vious work by addressing the issues of allocating and collecting type information,
and by giving a full treatment of tag-free collection in the context of a polymorphic
language.

The literature on garbage collection in sequential programming languages con-
tains few papers that attempt to provide a compact characterization of algorithms
or correctness proofs. Demers et al. [19] give a model of memory parameterized
by an abstract notion of a \points-to" relation. As a result, they can characterize
reachability-based algorithms including mark-sweep, copying, generational, \conser-
vative," and other sophisticated forms of garbage collection. However, their model
is intentionally divorced from the programming language and cannot take advantage
of any semantic properties of evaluation, such as type preservation. Consequently,
their framework cannot model the type-based, tag-free collector of Section 5. Net-
tles [32] provides a concrete speci�cation of a copying garbage collection algorithm

using the Larch speci�cation language. Our
GC
7�! transition rule is essentially a

high-level, one-line description of his speci�cation, and the
tf-gc
7�! rule is a particu-

lar implementation.
Hudak gives a denotational model that tracks reference counts for a �rst-order

language [27]. He presents an abstraction of the model and gives an algorithm for
computing approximations of reference counts statically. Chirimar, Gunter, and
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Riecke give a framework for proving invariants regarding memory management for a
language with a linear type system [15]. Their low-level semantics speci�es explicit
memory management based on reference counting. Both Hudak and Chirimar et al.
assume a weak approximation of garbage (reference counts). Barendsen and Smet-
sers give a Curry-like type system for functional languages extended with uniqueness
information that guarantees an object is only \locally accessible" [9]. This provides
a compiler enough information to determine when certain objects may be garbage
collected or over-written.

Tolmach [40] built a type-recovery collector for a variant of SML that passes type
information to polymorphic routines during execution, e�ectively implementing our
�!8
gc language and the type-based, tag-free collector of Section 5. Aditya and Caro

gave a type-recovery algorithm for an implementation of Id that uses a technique
that appears to be equivalent to type passing [1]; Aditya, Flood, and Hicks extended
this work to garbage collection for Id [2].

Over the past few years, a number of papers on inference-based, tag-free collec-
tion in monomorphic [11, 43, 12] and polymorphic [3, 25, 26, 23] languages appeared
in the literature. Appel [3] argued informally that \tag-free" collection is possible
for polymorphic languages, such as SML, by a combination of recording information
statically and performing what amounts to type inference during the collection pro-
cess, though the connections between inference and collection were not made clear.
Baker [8] recognized that Milner-style type inference can be used to prove that
reachable objects can be safely collected, but did not give a formal account of this
result. Goldberg and Gloger [26] recognized that it is not possible to reconstruct the
concrete types of all reachable values in an implementation of an ML-style language
that does not pass types to polymorphic routines. They gave an informal argument
based on traversal of stack frames to show that such values are semantically garbage.
Fradet [23] gave another argument based on Reynolds's abstraction/parametricity
theorem [35]. None of these papers give a complete formulation of the underlying
dynamic and static semantics of the language and thus, the proofs of correctness
are necessarily ad hoc.

Blelloch and Greiner give an abstract machine for evaluation of the parallel
programming language NESL [10]. The goal of their work was to provide provable
space and time bounds for an implementation of NESL. Their machine is based
directly on the CESK machine [20]. However, some details in their formulation,
such as the representation of control information, are left implicit.

39



8 Summary and Conclusions

We have presented an abstract machine for describing the evaluation of polymorphically-
typed, functional programs. Unlike traditional models of functional languages, our
abstract machine exposes many important details of memory management such as
the heap, control stack, and environment. Nevertheless, our machine is su�ciently
abstract that we are able to use conventional techniques to specify its static seman-
tics, and to prove soundness of the static semantics with respect to the transitions
of the abstract machine.

Since the abstract machine exposes memory management issues, we are able to
precisely specify important classes of garbage that arise during the evaluation of
programs, including unreachable heap values, tail-call stack frames, and unrefer-
enced environment bindings. For each class of garbage, we presented an abstract
speci�cation of a collector which reclaims the garbage objects, and proved that
these collectors do not a�ect the observable behavior of well-formed programs. In
addition, we gave a detailed speci�cation of Tolmach's type-based, tag-free, copying
garbage collector [40] and proved its correctness. The techniques used to specify
and prove correctness for all of the collectors were based on those used to establish
type soundness for the abstract machine.

Admittedly, our machine abstracts many important low-level implementation
details for memory management. In particular, we a priori considering programs
equivalent up to �-conversion of bound variables and any re-ordering of heap or
environment bindings; we also ignore representation and sharing issues for environ-
ments. However, abstracting these details greatly simpli�es our reasoning and keeps
us from over-constraining implementations. Hence, we claim that such a model pro-
vides an important intermediate step in establishing the correctness of a wide class
of existing and future implementations.
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A Typing Rules for the Abstract Machine

5. � ` TE + �

(empty-te) � ` ; + ;
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(cons-te)
� ` TE + � �(p) = �

� ` TE [t 7! p] + �[t = �]

6. � ` � + �

(th-nat) � ` nat + nat (th-unit) � ` unit + unit

(th-prod)
�(pi) = �i

� ` p1 � p2 + �1 � �2
(i = 1; 2)

(th-arrow)
�(pi) = �i

� ` t1 ! t2 + �1 ! �2
(i = 1; 2)

(th-all)
� ` TE + � � ` 8t:� + 8t:�

� ` hhTE ;8t:�ii + 8t:�

7. ` TH + �

(empty-th) ` ; + ;

(cons-th)
` TH + � � ` � + �

` TH [p 7! �] + �[p = �]

Figure 10: Type Environment and Heap Reduction
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8. 	;� ` VE : �

(empty-ve) 	;� ` ; : ; (Abstr(�) = ;)

(cons-ve)

	;� ` VE : �

	(l) = � � ` t + �

	;� ` VE [x:t 7! l] : �[x:�]

9. �;	 ` h : �

(vh-zero) �;	 ` 0 : nat (vh-succ)
	(l) = nat

�;	 ` succ l : nat

(vh-unit) �;	 ` hi : unit

(vh-prod)
	(li) = �i

�;	 ` hl1; l2i : �1 � �2
(i = 1; 2)

(vh-arrow)

� ` TE + � 	;� ` VE : �

�; � ` fix x:t(x1:t1):e : �1 ! �2

�;	 ` hh(TE ;VE ); fix x:t(x1:t1):eii : �1 ! �2

(vh-all)

� ` TE + � 	;� ` VE : �

�; � ` �t: e : 8t:�

�;	 ` hh(TE ;VE);�t: eii : 8t:�

10. � ` VH : 	

(empty-vh) � ` ; : ;

(cons-vh)
� ` VH : 	 �;	 ` h : �

� ` VH [l 7! h] : 	[l:�]

Figure 11: Value Environment and Heap Typing
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11. �;	 ` S : �1 ! �2

(empty-s) �;	 ` []� : � ! � (FTV (�) = ;)

(cons-s)

�;	 ` S : �3 ! �2 � ` TE + � 	;� ` VE : �

� ` t + �1 �;�[x:�1] ` e : �3

�;	 ` S � hh(TE ;VE); �x:t:eii : �1 ! �2

12. ` P : �

(prog)

` TH + � � ` VH : 	

�;	 ` S : �0 ! � � ` TE + �

	;� ` VE : � �; � ` e : �0

` ((TH ;VH ); S; (TE ;VE ); e) : �

Figure 12: Stack and Program Typing

B Proofs of Main Lemmas

Lemma 3.10 (Type Preservation) If ` P : � and P
R
7�! P 0, then ` P 0 : �.

Proof: Let P = ((TH 0;VH 0); S0; (TE 0;VE0); e0). The judgment ` P : � can
only hold via the prog rule, so there must exist �0, 	0, �0, �0, and �0 such that:

(a) ` TH 0 + �0,
(b) �0 ` VH 0 : 	0,
(c) �0; 	0 ` S0 : �0 ! �,
(d) �0 ` TE 0 : �0,
(e) 	0;�0 ` VE0 : �0, and
(f) �0; �0 ` e0 : �0.

The proof proceeds by cases on the rewriting rule that takes P to P 0 (see Figure 8),
using the syntax-directed nature of the typing rules.

case return: e0 is x
0 and S0 is S � hh(TE ;VE ); �x:t:eii for some x

0, S, TE , VE ,
x, t, and e, and

P 0 = ((TH 0;VH 0); S; (TE ;VE [x:t 7! VE0(x
0)]); e):

Hence, (c) must be derived from the cons-s rule and thus there exists a �1, �, and
� such that �0; 	0 ` S : �1 ! �, �0 ` TE + �, 	0;� ` VE : �, � ` t + �0,
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and �;�[x:�0] ` e : �1. Now, (f) must hold via the var rule and thus �0(x
0) = �0.

Therefore, (e) must hold via the cons-ve rule and thus 	0 ` VE0(x
0) : �0. Hence,

by the cons-ve rule, 	0;� ` VE [x:t 7! l] : �[x:�0].
case talloc: e0 is let type t = � in e for some t, �, and e, and

P 0 = ((TH 0[p 7! ^TE 0(�)];VH 0); S; (TE 0[t 7! p];VE0); e):

Hence, (f) holds via the let-type-exp rule, so there exists a �0 such that �0 `
� + �0, and �0[t = �0]; �0 ` e : �. Since (a) and (d) hold, Lemma 3.6 implies that
�0 ` ^TE 0(�) + �0. Therefore, by cons-th, ` TH 0[p 7! ^TE 0(�)] : �0[p = �0]. Hence,
by cons-te, �0[p = �0] ` TE 0[t 7! p] : �0[t = �0].

For the remainder of the cases, e0 must be of the form let x:t = b in e for
some x, t, b, and e. Therefore, (f) must hold via the let-exp rule, and hence there
exists some �0 such that:

(g) �0 ` t + �0,
(h) �0; �0 ` b : �0, and
(i) �0; �0[x:�

0] ` e : �0.
The proof proceeds by cases on b.

case valloc: b is some a and

P 0 = ((TH 0;VH 0[l 7! Ê0(a)]); S0; (TE 0;VE0[x:t 7! l]); e);

where E0 = (TE 0;VE 0). Since (a), (b), (d) and (e) hold, Lemma 3.7 implies that
�0; 	0 ` Ê0(a) : �

0. Therefore by cons-vh, �0 ` VH 0[l 7! Ê0(a)] : 	0[l:�
0]. Thus,

by cons-ve, 	0[l:�
0] ` VE0[x:t 7! l] : �0[x:�

0].
case c-zero: b is case(x0; e00; �x1:t1:e1) for some x

0, e00, x
0
1, t1, and e1. Further-

more, VH 0(VE 0(x
0)) = 0 and thus

P 0 = ((TH 0;VH 0); S0 � hh(TE 0;VE 0); �x:t:eii; (TE 0;VE 0); e
0

0):

By (c), (d), (e), (g), (i) and the cons-s rule, �0; �0 ` S0 � hh(TE 0;VE 0); �x:t:eii :
�0 ! �. The only way (h) can be derived is via the nat-E rule, and thus �0; �0 `
e00 : �

0.
case c-succ: e0 is case(x0; e00; �x1:t1:e1) for some x0, e00, x

0
1, t1, and e1. Fur-

thermore, VH 0(VE 0(x
0)) = succ l for some l and thus

P 0 = ((TH 0;VH 0); S0 � hh(TE 0;VE0); �x:t:eii; (TE 0;VE 0[x1:t1 7! l]); e1):

By (c), (d), (e), (g), (i) and the cons-s rule, �0; �0 ` S0 � hh(TE 0;VE 0); �x:t:eii :
�0 ! �. Now (i) must hold via nat-E, so we can conclude that �0; �0 ` x0 : nat,
�0 ` t1 + nat, and �0; �0[x1:nat] ` e1 : �

0. Therefore, through (e) and the cons-ve
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rule, we can conclude that 	0(VE 0(x
0)) = nat. Thus, through (b) and the cons-

vh rule, �0; 	0 ` VH 0(VE 0(x
0)) : nat and consequently, �0; 	0 ` succ l : nat.

Hence, working backwards from the vh-succ rule, 	0(l) = nat. Therefore, 	0;�0 `
TE 0[x1:t 7! l] : �0[x1:nat].

case proj: b is �i x
0 for some x0, i is either 1 or 2, and VH 0(VE 0(x

0)) = hl1; l2i
for some l1 and l2. Thus,

P 0 = ((TH 0;VH 0); S0; (TE 0;VE 0[x:t 7! li]); e):

Now (h) must hold via the prod-E rule, and thus �0; �0 ` x0 : �1 � �2 for some
�1 and �2, where �0 = �i. Thus, through (b) and (e), we can conclude that
	0(VE 0(x

0)) = �1 � �2. Therefore, working backwards from the vh-prod rule,
	0(li) = �i. Thus, 	0;�0 ` VE0[x:t 7! li] : �0[x:�i].

case app: b is of the form x1 x2 for some x1 and x2, and VH 0(VE0(x1)) is
hh(TE ;VE); fix x01:t

0
1(x

0
2:t

0
2):e

0ii. Thus, P 0 is:

((TH 0;VH 0); S0�hh(TE 0;VE 0); �x:t:eii; (TE ;VE [x
0

1:t
0

1 7! VE 0(x1); x
0

2:t
0

2 7! VE0(x2)]); e
0):

By (c), (d), (e), (g), (i), and the cons-s rule, �0; 	0 ` S0 � hh(TE 0;VE 0); �x:t:eii :
�0 ! �. Now (h) can only hold via the arrow-E rule and thus there exists
a �1 such that �0; �0 ` x1 : �1 ! �0 and �0; �0 ` x2 : �1. Therefore,
	0;�0 ` VE0(x1) : �1 ! �0 and 	0;�0 ` VE 0(x2) : �1. Consequently, �0; 	0 `
hh(TE ;VE); fix x01:t

0
1(x

0
2:t

0
2):e

0ii : �1 ! �2. Now this can only hold via the vh-
arrow rule. Thus, there exists a � and � such that �0 ` TE + �, � ` t01 + �1 ! �0,
� ` t02 + �1, 	0;� ` VE : �, and �;�[x01:�1 ! �0; x02:�1] ` e0 : �0. By cons-ve,
	0;�0 ` VE [x01:t

0
1 7! VE0(x1); x

0
2:t

0
2 7! VE0(x2)] : �[x

0
1:�1 ! �0; x02:�1].

case tapp: b is x1 [t2] for some x1 and t2, and VH 0(VE0(x1)) =
hh(TE ;VE);�t0: e0ii for some (TE ;VE ), t0, and e0. Thus,

P 0 = ((TH 0;VH 0); S0 � hh(TE 0;VE0); �x:t:eii; (TE [t
0 7! TE 0(t2)];VE ); e

0):

From (c), (d), (e), (g), (i), and the cons-s rule, we can conclude that �0; 	0 ` S0 �
hh(TE 0;VE 0); �x:t:eii : �

0 ! �. Now (h) must hold via the all-E rule, and thus there
exists �1 and �2 such that �0; �0 ` x1 : 8t0:�1,�0 ` t2 + �2, and �0 = f�2=t

0g�1.
From this, we can conclude that �0; 	0 ` hh(TE ;VE);�t0: e0ii : 8t0:�1. Now this
can only hold through the vh-all rule, and thus there exists � and � such that
�0 ` TE + �, 	0;� ` VE : �, and �[t0]; � ` e0 : �1. Since �0 ` t2 + �2, we
can conclude from the cons-te rule that TE [t0 7! TE0(t2)] + �[t0 = �2]. Now, by
Lemma 3.9, �[t0 = �2]; � ` e0 : f�2=t

0g�1 = �0. 2

Lemma 3.12 (Progress) If ` P : �, then either P is an answer or else there

exists a P 0 such that P
R
7�! P 0.
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Proof: Let P = (H0; S0; E0; e0), where H0 = (TH 0;VH 0) and E0 = (TE 0;VE 0).
Since ` P : � must be derived from the prog rule, there exists �0, 	0, �0, �0, and
�0 such that:

(a) ` TH 0 + �0,
(b) �0 ` VH 0 : 	0,
(c) �0; 	0 ` S0 : �0 ! �,
(d) �0 ` TE 0 : �0,
(e) 	0;�0 ` VE0 : �0, and
(f) �0; �0 ` e0 : �0.

The proof proceeds by cases on e.

case: e0 = x0. If S0 = []�0 , then P is an answer. Suppose S0 = S � hhE; �x:t:eii.
Since (f) holds, it must be the case that x0 2 Dom(�0). By (e), this implies that
x0 2 Dom(VE 0). Consequently, P 7�! (H0; S; E[x:t 7! VE0(x

0)]; e) by the return
rule.

case: e0 = let type t = � in e. Thus (f) must hold via the let-type rule
and we can conclude that, since �0 ` � + �0 for some �0, FTV (�) � Dom(�0).
Since �0 ` TE0 : �0, we know that Abstr(�0) = ;. Thus, FTV (�) � Dom(TE 0).
Consequently, ^TE 0(�) is de�ned. Thus P 7�! (H0[p 7! ^TE0(�)]; S0; E0[t 7! p]; e)
by the talloc rule.

For the remainder of the cases, e0 must be of the form let x:t = b in e for
some x, t, b, and e. Therefore, (f) must hold via the let-exp rule, and hence there
exists some �0 such that:

(g) �0 ` t + �0,
(h) �0; �0 ` b : �0, and
(i) �0; �0[x:�

0] ` e : �0.
The proof proceeds by cases on b.

case: b = a. Since (h) holds, FV (a) � Dom(�0). Since 	0;�0 ` VE0 : �0,
we know that FV (a) � Dom(VE0). Consequently, Ê0(a) is de�ned. Thus P 7�!
(H0[l 7! Ê0(a)]; S0; E0[x:t 7! l]; e) by the valloc rule.

case: b = case(x0; e00; �x
0
1:t

0
1:e

0
1). Now (h) must hold through the nat-E rule.

Thus, �0; �0 ` x0 : nat. Since (h) holds, FV (b) � Dom(�0) and thus x0 2 Dom(�0).
But then (e) implies x0 2 Dom(VE0). In turn, this implies that 	0(VE0(x

0)) =
nat. Since (b) holds, this implies that �0; 	0 ` VH 0(VE 0(x

0)) : nat. By the
Canonical Forms lemma, VH 0(VE 0(x

0)) is either 0 or succ l for some l. Thus,
P 7�! (H0; S0 � hhE0; �x:t:eii; E

0; e0) where either E0 = E0 and e0 = e00, or else
E0 = E0[x

0
1:t

0
1 7! l] and e0 = e01, by either the c-zero or c-succ rule respectively.

case: b = �i x
0. Now (h) must hold via the prod-E rule. Thus, �0; �0 ` x0 :

�1 � �2 for some �1 and �2 such that �i = �0. Since (e) holds, x0 2 Dom(VE 0).
Therefore, VE0(x

0) 2 Dom(	0) and thus VE 0(x
0) 2 Dom(VH 0). Since (b) holds,

�0; 	0 ` VH 0(VE 0(x
0)) : �1 � �2. By the Canonical Forms lemma, VH 0(VE0(x

0))

50



must be of the form hl1; l2i for some l1 and l2. Thus, P 7�! (H0; S0; E0[x:t 7! li]; e)
by the proj rule.

case: b = x1 x2. Now (h) must hold via the arrow-E rule. Thus, �0; �0 ` x1 :
�1 ! �0 and �0; �0 ` x2 : �1 for some �1. Thus, x1 and x2 are in Dom(�0) and since
(e) holds, x1 and x2 are in Dom(VE 0). Furthermore, VE0(x1) 2 Dom(	0) and since
(b) holds, VE 0(x1) 2 Dom(VH 0) and �0; 	0 ` VH 0(VE0(x1)) : �1 ! �0. By the
Canonical Forms lemma, VH 0(VE 0(x1)) must be of the form hhE; fix x01:t

0
1(x

0
2:t

0
2):e

0ii
for some E, x01, t

0
1, x

0
2, t

0
2, and e0. Thus, P 7�! (H0; S0 � hhE0; �x:t:eii; E[x

0
1:t

0
1 7!

VE0(x1); x
0
2:t

0
2 7! VE 0(x2)]; e

0) by the app rule.
case: b = x1 [t1]. Now (h) must hold via the all-E rule. Thus �0; �0 ` x1 : 8t

0:�1
and �0 ` t1 + �2 such that f�2=t

0g�1 = �0. Since (d) holds, Abstr(�0) = ;. Thus,
TE 0(t1) is de�ned. Furthermore, since (e) holds, x1 2 Dom(�0) and thus x1 2
Dom(VE 0). Furthermore, VE0(x1) 2 Dom(	0) and by (b), VE0(x1) 2 Dom(VH 0).
Consequently, �0; 	0 ` VH 0(VE0(x1)) : 8t

0:�1. By the Canonical Forms lemma,
VH 0(VE 0(x1)) must be of the form hhE;�t0: e0ii for some E, t0, and e0. Thus P 7�!
(H0; S0 � �x:t:e; E[t

0 7! TE 0(t1)]; e
0) by the tapp rule.

2

Lemma 5.6 (GC State Preservation) If X is well-formed with respect to P
and X =) X 0, then X 0 is well-formed with respect to P .

Proof: Let P = (H;S;E; e), H = (TH ;VH ), ` TH + �, � ` VH : 	, and let
X = (Hf ; Q; L;Ht) be well-formed with respect to P and X =) X 0. Since X is
well-formed, we know that:

(a) Hf ]Ht = H,
(b) FP(Ht; S; E; e) � Q,
(c) FL(Ht; S; E; e) � Dom(L),
(d) for all l:p 2 L, �(p) = 	(l),
(e) P � Dom(TH ), and
(f) for all l:p in L, l 2 Dom(VH ) and p 2 Dom(TH ).

The argument continues by cases on the rule taking X to X 0. Throughout, it is
clear that any free pointers or locations entered into the scan-set must be bound in
the original heap.

case gc-1: Hf = H 0

f [p 7! �], Q = Q0]fpg, andX 0 = (H 0

f ; Q
0[FP(�); L;Ht[p 7!

�]). By (a), we know that H 0

f ]Ht[p 7! �] = H. Suppose Ht = (TH t;VH t). Then
from (b), we know that FP(Ht) � Q0 ] fpg. Therefore,

FP(Ht[p 7! �]) = (FP(Ht) n fpg) [ (FP(�) n (Dom(TH t) [ fpg))
� ((Q0 ] fpg) n fpg) [ (FP(�) n (Dom(TH t) [ fpg))
= Q0 [ (FP(�) n (Dom(TH t) [ fpg))
� Q0 [ FP(�):
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Thus, FP(Ht[p 7! �]; S; E; e) � Q0. Hence, from (c) and (d) we can conclude that
X 0 is well-formed with respect to P .

case gc-2: Q = Q0 ] fpg, p 62 Dom(Hf ), and X 0 = (Hf ; Q
0; L;Ht). By (a) and

the fact that H is well-formed, we can conclude that pmust be bound in eitherHf or
Ht. Since p is not bound in Hf , it must be bound in Ht. Thus, p 62 FP(Ht; S; E; e)
and from (b) we can conclude that FP(Ht; S; E; e) � Q0. Hence from (d) and (e),
we can conclude that X 0 is well-formed with respect to P .

case gc-3: Hf = H 0

f [l 7! h], L = L0 ] fl:pg, and X 0 = (Hf ; Q [ Q1; L [
L2;Ht[l 7! h]) where F [(Hf [Ht)(p)](p; h) = (Q1; L1). Since X is well-formed, we
know that �(p) = 	(l) and thus FP(h) � Q1 and FL(h) � Dom(L1). Thus, from
(b), (c), (d) and Lemma 5.3, we know that FP(Ht[l 7! h]; S; E; e) � Q [ Q1 and
FL(Ht[l 7! h]; S; E; e) � Dom(L [ L1), and for all l0:p0 2 L [ L1, �(p

0) = 	(l0).
Therefore, X 0 is well-formed with respect to P .

case gc-4: L = L0 ] fl:pg, l 62 Dom(Hf ), and X 0 = (Hf ; Q; L
0;Ht). By (a) and

the fact that H is well-formed, we can conclude that l must be bound in either Hf

or Ht. Since l is not bound in Hf , it must be bound in Ht. Thus, l 62 FL(Ht; S; E; e)
and from (c) we can conclude that FL(Ht; S; E; e) � L0. Hence from (b) and (e),
we can conclude that X 0 is well-formed with respect to P . 2

Lemma 5.7 (GC State Progress) If X = (Hf ; Q; L;Ht) is well-formed with

respect to P , then either Q and L are empty or else there exists a GC state X 0 such

that X =) X 0.

Proof: Let X = (Hf ; Q; L;Ht) be a GC state such that Q or L is non-empty and
assume X is well-formed with respect to the program P = (H;S;E; e). Thus,

(a) Hf ]Ht = H,
(b) FP(Ht; S; E; e) � Q,
(c) FL(Ht; S; E; e) � Dom(L),
(d) for all l:p 2 L, �(p) = 	(l),
(e) P � Dom(TH ), and
(f) for all l:p in L, l 2 Dom(VH ) and p 2 Dom(TH ).
If Q is non-empty, then Q = Q0 ] fpg for some Q0 and p. By conditions (a) and

(e), we know that p is either bound in Hf or Ht. If p is bound in Ht then gc-2

applies. If p is bound in Hf , then gc-1 applies.
If L is non-empty, then L = L0 ] fl:pg for some L0, l, and p. By condition (a)

and (f), l must be bound in either Hf or Ht. If l is bound in Ht, then the gc-4 rule
applies. If l is bound in Hf , then there exists an H 0

f and h such that Hf (l) = h.
By condition (a) and (f), p is bound in Hf ] Ht. By conditions (e) and (d), the
well-formedness of P , and Lemma 5.3, we know that F [(Hf ]Ht)(p)](p; h) = (Q0; L0)
for some Q0 and L0. Consequently, gc-3 applies. 2
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