
A Network Protocol Stack in Standard ML ∗

Edoardo Biagioni (esb@hawaii.edu)
University of Hawai’i at Mānoa, ICS Department
1680 East-West Road
Honolulu HI 96822 USA

Robert Harper (robert.harper@cs.cmu.edu) and Peter Lee
(peter.lee@cs.cmu.edu)
Carnegie Mellon University, School of Computer Science
5000 Forbes Avenue
Pittsburgh PA 15213 USA

Abstract.
The FoxNet is an implementation of the standard TCP/IP networking protocol

stack using the Standard ML (SML) language. SML is a type-safe programming lan-
guage with garbage collection, a unique and advanced module system, and machine-
independent semantics. The FoxNet is a user-space implementation of TCP/IP that
is built in SML by composing modular protocol elements; each element independently
implements one of the standard protocols. One specific combination of these elements
implements the standard TCP/IP stack. Other combinations are also possible and
can be used to easily and conveniently build custom, non-standard networking
stacks. This paper describes in detail the final design and implementation of the
FoxNet, including many of the details that are crucially affected by the choice of
SML as the programming language.

Keywords: Standard ML, computer networks, modules, signatures, types

1. Introduction

The Fox project was started in 1991 with the goal of writing systems-
level code in high-level programming languages. The purpose of doing
this was and is twofold: to improve the state of the art in systems
development by using more advanced languages, and to challenge both
the design and implementations of advanced languages by applying
them to some of the hardest programming problems known. At the time
it was hoped that these goals would lead to substantial improvement in
the practice of operating system development, as well as to a stronger
research and development focus on the performance and expressiveness
of advanced programming languages. These improvements are needed
for the following reasons:
∗ This research was sponsored by the Defense Advanced Research Projects

Agency, CSTO, under the title “The Fox Project: Advanced Languages for Systems
Software”, Contract No. F19628-95-C-0050.

c© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

final.tex; 28/09/2001; 10:27; p.1

2 Biagioni, Harper, Lee

− An operating system is a complex, often hardware-dependent, non-
deterministic, near-real-time program that is expected to be nearly
bug-free. In order to interact with hardware and to satisfy the
near-real-time property, operating systems are mostly written in
the C programming language. This design choice conflicts with the
requirement for reliability, and together with the complexities of
hardware dependencies leads to the necessity for large design and
testing efforts. Having a better language for operating system im-
plementations would reduce the effort, and perhaps lead to better
operating system designs.

− Advanced languages are usually designed by small teams, which
brings a very welcome focus on clean and concise design but also
may lead to gaps in the design corresponding to limitations in the
designers’ knowledge. Furthermore, advanced languages are often
designed to have particular mathematical or theoretical properties,
such as machine-independence or determinism, which may not hold
in the non-deterministic, hardware-dependent world of operating
system implementations. Using such an advanced language to im-
plement a networking protocol stack allows language developers to
focus on practical issues such as externalization of data structures
and efficient pointer manipulation.

− Implementation of advanced languages is often done by small re-
search teams which naturally focus on research issues. This can
lead to amazing breakthroughs, but these are sometimes coun-
terbalanced by a lack of emphasis on practical considerations.
Using an advanced language implementation to build a working
system with practical, near-real-time constraints points out both
the strengths and weaknesses of particular programming language
implementations.

The Fox project decided to build an implementation of the standard
TCP/IP protocol stack [23, 22] using the SML/NJ compiler [2] for the
Standard ML (SML) programming language [17, 18]. The result is the
FoxNet [4, 7], a standards-conforming implementation of TCP/IP that
runs on a variety of hardware architectures, supports everything from
devices to web servers, and has a modular, composable implementation.
This paper describes the FoxNet.

The design and implementation of the FoxNet is also a case study in
the application of several innovative principles:

− Each protocol building block follows a uniform system architec-
ture, described in Section 2. This common architecture allows for

final.tex; 28/09/2001; 10:27; p.2

A Network Protocol Stack in Standard ML 3

nearly arbitrary composition of protocol modules. When a specific
protocol needs to be layered above other protocols providing more
than specified in the system architecture, the uniform architecture
can be specialized as required.

− Different protocols often perform similar functions in managing
packets and connections. We have abstracted the commonality of
these different modules into a single generic protocol implementa-
tion module, the connection functor. This module is specialized
at compile time to take the correct, protocol-dependent action
when specific events occur, and is general enough to be used for
such diverse protocols as TCP and IP. The connection functor is
described in Section 3.1.

− Section 3.2 describes the FoxNet coroutines. This coroutine package
is designed specifically for the FoxNet, and is implemented entirely
in SML using native continuations. While the use of continuations to
implement multithreading is not novel [29], nor is it novel to SML [9,
21], extended use of the FoxNet helped us identify and correct a
storage leak [5] that is common to most such implementations and
that had not been previously identified.

− A fundamental issue in systems programming is the choice of effi-
cient data structures for manipulating potentially large amounts of
data. While C arrays and pointers are very efficient, they are also
very unsafe, frequently causing errors that are hard to locate and
identify. In Section 3.3 we describe word arrays, a data structure
we used in the FoxNet for safe and potentially efficient access to
large amounts of data.

− We and others, especially Derby [11], have also studied in detail
the performance of the resulting system. We report our findings
in Section 4. Studying the performance is important since one of
the concerns when using an advanced language such as SML is that
the advanced features will result in slow performance. Our study
shows that, even though the FoxNet is competitive with production
systems on some benchmarks, performance is indeed an issue, and
we look at some of the ways this issue can be addressed.

The language supported by the SML/NJ compiler, including minor
extensions that we introduced, is a superset of the Standard ML (SML)
language. SML is type-safe, meaning that the type system supports data
abstraction by precluding misuse of values of one abstract type as those
of another. Extensions of SML that are part of SML/NJ provide support

final.tex; 28/09/2001; 10:27; p.3

4 Biagioni, Harper, Lee

for continuations, byte arrays, and raw access to the network device.
Since there is little potential for confusion, in this paper we use SML to
refer both to the standard SML language [18] and to its superset, the
extended SML we used.

Section 2 presents the overall architecture of the FoxNet. This is
followed in Section 3 by a discussion of selected parts of the implemen-
tation, in Section 4 by an analysis of the performance of the FoxNet,
and in Section 5 by a summary of our experience using SML for this
project.

2. System Architecture

Networking protocols are conventions for communication among inter-
connected computers. These conventions are elegantly described by lay-
ered models such as OSI [10], in which each layer in a stack of protocols
defines a particular abstraction of a computer network; each layer log-
ically only communicates with its peers, and only uses the abstraction
provided by the next lower layer in defining its own abstraction.

The elegance of the layered model has inspired use of this same
model in the design and implementation of networking protocols. Tra-
ditional protocol stack implementations are monolithic, and the design
and implementation of each protocol can make assumptions about the
existence and the details of the design and implementation of other
protocols in the stack. In contrast, in a layered implementation of a
protocol stack each protocol is designed and implemented in isolation,
explicitly declaring any assumptions made about other protocols; these
protocols are then successively collected into a protocol stack. Layered
implementations allow flexibility in using the component protocols to
build special-purpose protocol stacks, can be easier to develop and
debug than monolithic implementations since protocols can be tested
in isolation, and are generally clearer than monolithic implementations
since the dependencies among protocols are explicit.

One project that has had some success in building a layered im-
plementation of standard networking protocols is the x-kernel project.
Since the x-kernel inspired the overall design of the FoxNet, we describe
it in detail in the next section, followed by a detailed description of the
design of the FoxNet itself.

2.1. The x-kernel

The x-kernel project [19] at the University of Arizona has built a suite
of such composable protocols, and used these protocols to build layered

final.tex; 28/09/2001; 10:27; p.4

A Network Protocol Stack in Standard ML 5

implementations of many standard and non-standard stacks. One con-
tribution of the x-kernel is the definition a minimal interface that must
be satisfied by all protocols in the x-kernel; this interface is called the
meta-protocol. For example, a protocol implementation for protocol P
that is to be layered on top of another protocol implementation Q can
rely on Q satisfying the meta-protocol, and thus use all the functions
from Q that are specified by the meta-protocol. The exact semantics
of each function differ from protocol to protocol and must be taken
into account when building protocol stacks from component protocols.
For example, addresses are represented as arrays of bytes, but different
layers need addresses of different lengths and would interpret the same
string of bytes as different addresses. However, at least syntactically, all
protocols implement the same functions with the same arguments, and
hence the only constraints on composition are given by the semantics
of the protocols. In contrast, in monolithic (“normal”) protocol stack
implementations, the exact layering is fixed and cannot be changed
without substantial re-coding.

A straightforward design for a layered implementation has each pro-
tocol P perform send and receive operations on protocol Q below it. The
receive operation must block waiting for data, as shown in Figure 1.
When data is delivered by Q to P, one of the threads blocked on receive
must be restarted and given the data. This requires a thread context
switch, which is expensive. The resulting cost makes such a layered
implementation infeasible for practical implementations.

The x-kernel avoids context switches by providing each lower layer
Q with a function f from each upper layer P; f takes as one of its
arguments a packet of data, and does the processing required by P.
This technique is known as upcalls [8], since the lower protocol Q is
calling a function from a higher protocol P. The function that handles
incoming data can be thought of as a data handler .

The results obtained by O’Malley and Peterson [19] show that, be-
cause there is no thread to be woken up and consequently no context
switch, upcalls allow layered implementations to be as efficient as con-
ventional, monolithic implementations. Instead of having a thread per
blocked receive call, a single thread is created for every data frame
received from the network. This thread shepherds the packet until it
is either delivered to the application (the topmost layer), processed by
the networking stack, or stored for future use.

The FoxNet follows the x-kernel in having a layered implementation
using upcalls and in creating a new thread for each upcall.

Some characteristics of the x-kernel are worth noting. The imple-
mentations of individual protocols are coded in C, but this language

final.tex; 28/09/2001; 10:27; p.5

6 Biagioni, Harper, Lee

?

6

?

-

6

-

P

Q

receive
upcall

P

Q

block

resume

call
to f

receivesend

f

call
to send to receive

call

send

call
to send

Figure 1. Context switch is required unless receive is an upcall.

does not provide mechanisms for expressing the meta-protocol, for
checking conformance of protocols with the meta-protocol, and for the
automatic renaming of exported functions needed when protocols are
composed. Protocol composition in the x-kernel is achieved externally
to the programming language, through a specialized language for defin-
ing protocol composition and through associated tools which process
these definitions and do essentially a linking pass on the protocol im-
plementations. These tools are sufficient to get the job done, but do
relatively little checking and hence do not even guarantee that every
protocol in a protocol stack syntactically satisfies the meta-protocol.
If this invariant should be broken, subtle problems may appear at
run-time. The programming language also limits the design of the meta-
protocol; in particular, it does not allow specification by inheritance of
specialized versions of the meta-protocol and does not support higher-
order functions. As discussed in Section 2.3, higher-order functions can
be used to define richer and more appropriate interfaces than those
used by the x-kernel.

2.2. Signature Hierarchy

The FoxNet is a layered implementation of standard networking pro-
tocols, and in overall design somewhat resembles the x-kernel. One

final.tex; 28/09/2001; 10:27; p.6

A Network Protocol Stack in Standard ML 7

crucial difference is that the FoxNet is implemented in SML. SML has a
rich module language with interface definitions (signatures) as integral
part of the language, and with the compiler automatically checking that
implementations actually conform to their signatures. Composition of
protocols to form a protocol stack is also expressed using the modules
language, and the compiler checks not only conformance of protocols
with the meta-protocol, but also any additional constraints that one
protocol may have placed on its lower protocol. Finally, in the FoxNet

the meta-protocol is expressed explicitly as a signature, the PROTOCOL

signature. This section describes how the signatures are used in com-
posing protocols to form a protocol stack. Later sections motivate the
specific features of our PROTOCOL signature.

The PROTOCOL signature has a large number of abstract types, and
is therefore generic: many different implementations may satisfy it by
instantiating the abstract types differently. Its generic nature makes
the PROTOCOL signature the equivalent of the meta-protocol of the x-
kernel. The meta-protocol is used to specify what is implemented by
each protocol P, and what P can expect to see in protocol Q that P is
layered over. This works well as long as the generic PROTOCOL signature
provides all the guarantees that P needs from Q. Sometimes, however, P
needs additional guarantees. For example, the standard protocol TCP
needs access to data from the IP protocol to compute its checksum.
For other reasons, TCP also needs to be able to compute an address
given a connection key.1

We can extend the PROTOCOL signature to produce a new signa-
ture that specifies these additional guarantees. The extended signa-
ture declares everything that the PROTOCOL signature declares, but may
place additional constraints on types that PROTOCOL leaves abstract,
and also may provide additional operations. To illustrate this point
we show how to extend the PROTOCOL signature to support the opera-
tions required by TCP. This extension is done by making an abstract
type, connection_extension, concrete, and by adding a new function,
key_to_address. We will call this new signature NETWORK_PROTOCOL, and
the definition is shown in Figure 2.

The signature NETWORK_PROTOCOL first includes PROTOCOL, declaring
everything that PROTOCOL declares. The next declaration defines a new
type abbreviation, network_connection_extension. This type abbre-
viation has one component, a function which computes the pseudo-
checksum needed by TCP. NETWORK_PROTOCOL then specifies, using the

1 An Internet socket is identified by TCP source and destination port number
as well as by IP source and destination number. In order to identify the socket
corresponding to an incoming packet, so an implementation of TCP must be able
to figure out the IP number of the sender of each data packet.

final.tex; 28/09/2001; 10:27; p.7

8 Biagioni, Harper, Lee

signature NETWORK_PROTOCOL = sig
include PROTOCOL
type network_connection_extension =

{pseudo_checksum: unit -> Word16.word}
sharing type connection_extension =

network_connection_extension
val key_to_address: Connection_Key.T

-> Network_Address.T
end

Figure 2. NETWORK PROTOCOL Signature

sharing declaration, that this type abbreviation is the same as the
abstract type connection_extension defined in PROTOCOL. A value of
type connection_extension is defined by the PROTOCOL signature to
be part of the connection. Hence, wherever the type connection ap-
pears in the PROTOCOL signature, in the signature NETWORK_PROTOCOL

it carries a component of type network_connection_extension which
has pseudo_checksum as its component. In addition, a module satisfy-
ing NETWORK_PROTOCOL also has a function key_to_address. In all other
respects the signature NETWORK_PROTOCOL is identical to the signature
PROTOCOL. Because NETWORK_PROTOCOL specializes and extends PROTOCOL

but is otherwise identical to it, any module satisfying NETWORK_PROTOCOL

will automatically also satisfy PROTOCOL. This should be kept in mind
in the following discussion.

PROTOCOL

DEVICE

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ
ETH

³³³³³³³³³³
ARP

´
´

´
´

´
NETWORK

B
B
BB

TRANSPORT

HHHHHHH
DNS

XXXXXXXXXXXXXX

IP TCP UDP

@
@

@@

Figure 3. Hierarchy of Protocol Signature for TCP/IP

By repeatedly including a signature and specializing it we obtain
a hierarchy of signatures. The hierarchy for the standard TCP/IP
protocol stack is shown in Figure 3.

This hierarchy of signatures is not unlike a class hierarchy, though
a class hierarchy may include executable code at each level, whereas

final.tex; 28/09/2001; 10:27; p.8

A Network Protocol Stack in Standard ML 9

a hierarchy of signatures is entirely independent of implementation. In
other words, a class hierarchy is usually a hierarchy of implementation,
but a hierarchy of signatures is a hierarchy of specification.

Several of the protocol signatures, e.g., ethernet and ARP, are de-
rived directly from PROTOCOL. The signatures NETWORK_PROTOCOL and
TRANSPORT_PROTOCOL are signatures for classes of protocols rather than
for individual protocols. In turn, two signatures are derived from the
TRANSPORT_PROTOCOL signature, and one from the NETWORK_PROTOCOL sig-
nature. The point of having such intermediate protocol signatures was
mentioned above: to allow layering over protocols specifying particular
operations without necessarily uniquely identifying the lower protocol.

As a further example, consider an application that is written to
run unchanged over any transport protocol. If this application relies
only on the TRANSPORT_PROTOCOL signature, then it can potentially run
unchanged on top of either TCP or UDP. The two protocols have signif-
icant differences that are not expressed in the signature2, so arbitrarily
layered protocols are not guaranteed to work correctly. Nonetheless, the
signature does describe constraints that aid in composing only correct
stacks.

The next section details our design choices in designing the PROTOCOL

signature.

2.3. The FoxNet PROTOCOL signature

This section describes the development of the meta-protocol for the
FoxNet. Successive figures in this section (Figures 4 to 8) show successive
refinements of the PROTOCOL signature.

The simplest possible PROTOCOL signature has a send and a receive

operation, as shown in Figure 4.

signature PROTOCOL = sig
type address
type data
val send: address -> (data -> unit)
val receive: address -> data

end

Figure 4. PROTOCOL signature, version 1: send and receive

This signature defines two abstract types, address and data. An
abstract type is one that is not further specified here; each type given

2 For example, TCP does not preserve segment boundaries, and UDP does not
guarantee in-order transmission.

final.tex; 28/09/2001; 10:27; p.9

10 Biagioni, Harper, Lee

as abstract in the protocol can be implemented by any concrete (that
is, fully specified) type. Semantically an address identifies one or more
peers in the communication, and different protocol layers will use dif-
ferent concrete types to instantiate this abstract type.

The send operation takes an address and returns a function special-
ized to send data to the given address. The receive operation takes an
address and returns the data when the data is available. These functions
correspond to the left-hand side of Figure 1.

An improvement to the signature in Figure 4 would recognize that
programs often call send and receive many times for any one address.
In Figure 4, send computes a function specialized for sending to a
specific host, but receive does not; we would like a way to allow both
send and receive to be specialized for communication with a given
address. Furthermore, there is no way for either function to allocate or
de-allocate cleanly any shared global storage that might be needed to
coordinate with other invocations of the same function. For example
a protocol providing reliable transmission must coordinate separate
executions of send and receive to make sure multiple streams sent
to the same host are kept distinct, and to determine when the peer has
received a particular item of data.

A well-known answer to both issues is to define a connection type.
Values of this type provide a context for communication with peers
at a given address, and must be explicitly allocated and de-allocated.
Such a connection refers to local state only, and is not necessarily an
end-to-end connection such as TCP would provide. For example, it can
be used to send IP and UDP packets. The resulting signature is shown
in Figure 5.

signature PROTOCOL = sig
type address
type data
type connection
val connect: address -> connection
val send: connection * data -> unit
val receive: connection -> data
val disconnect: connection -> unit

end

Figure 5. PROTOCOL signature, version 2: connect and disconnect

To ensure that accesses to shared data are done correctly, send and
receive now take a connection rather than an address. Values of type
connection may or may not contain information equivalent to that

final.tex; 28/09/2001; 10:27; p.10

A Network Protocol Stack in Standard ML 11

carried by values of type address, so for example in simple situations
the connection type could be the same type as address, connect could
return the address it is given, and send and receive would be the same
as for the first signature. In other cases connect and disconnect could
be very complex in order to let send and receive be as simple and
efficient as possible.

We want to modify the signature in Figure 5 to use upcalls to receive
data, rather than explicit calls to a receive function. This is done by
giving a data handler as a parameter to the connect call. The data
handler is a function with the same signature as send, but which is
passed in by the application or higher layer rather than supplied by this
protocol level. When a protocol needs to deliver data for a connection,
it simply calls the corresponding handler. A call to disconnect now not
only returns any shared global data but also disables the data handler.
The data handler is called by the protocol when data is available. The
resulting signature is shown in Figure 6.

We note at this point that the data handler, as is true for any upcall,
is similar in concept to interrupt or signal handlers — the handler is
called asynchronously when data becomes available, potentially inter-
rupting the currently executing program. To support this asynchronous
behavior, systems that provide upcalls have to rely on a thread mech-
anism to call the data handler asynchronously. The FoxNet’s thread
mechanism is described in Section 3.2. We also note that networking
protocol implementations generally need to be multi-threaded any-
way to support time-outs and retransmission [4], so providing multi-
threaded support for upcalls does not significantly complicate the pro-
tocol implementation.

signature PROTOCOL = sig
type address
type data
type connection
val connect: address *

{data_handler:
connection * data -> unit}

-> connection
val send: connection * data -> unit
val disconnect: connection -> unit

end

Figure 6. PROTOCOL signature, version 3: upcall

final.tex; 28/09/2001; 10:27; p.11

12 Biagioni, Harper, Lee

This signature is equivalent in many ways to the meta-protocol of the
x-kernel, except that so far we have omitted any mention of mechanisms
for opening connections passively, that is, in response to data received
from a peer.

A further improvement can be obtained by noting that in normal
operation, calls to connect and disconnect must be matched, that is,
logically there must be one call to disconnect following every call
to connect. Since function calls have the property that under nor-
mal circumstances3 a return follows every call [12], connection and
disconnection can be matched automatically by eliminating the func-
tion disconnect and passing to connect as an additional argument a
connection handler, which is a function used to specify the lifetime of
the connection. In other words, the connection is open exactly while
the connection handler is executing. The intent is that the connection
handler be called by the implementation of connect, and both it and the
data handler can call send at any time during their execution. The data
handler is disabled and any global resources are de-allocated once the
connection handler returns and before the call to connect completes.

As shown in Figure 7, the call to connect now computes the value
of type connection, installs the data handler, and calls the connection
handler. Once the connection handler returns, connect disables the data
handler, returns any global resources, and returns to the caller.

signature PROTOCOL = sig
type address
type data
type connection
val connect:

address *
{connection_handler: connection -> unit,
data_handler: connection * data -> unit}

-> unit
val send: connection * data -> unit

end

Figure 7. PROTOCOL signature, version 4: Matched open and close

It can be seen that the connection type is needed (by the client of
this interface) exclusively as an argument to send. Since this type is
held abstract, there is nothing else the client can do with values of this

3 If a program uses explicit continuations or multiple threads, calls and returns
may not be matched.

final.tex; 28/09/2001; 10:27; p.12

A Network Protocol Stack in Standard ML 13

type. Hence, the signature can be simplified by changing connection

from an abstract type to a type abbreviation; a type abbreviation is a
concrete type which is completely defined in a signature. In this case
connection is a type for values with one element, and that element is a
function named send with the given type. Since send is passed in to the
connection handler and the data handler, there is no longer a need for
a send function at top level in the signature, and the signature shown
in Figure 8 shows connect as the only required top-level function.

signature PROTOCOL = sig
type address
type data
type connection = {send: data -> unit}
val connect:

address *
{connection_handler: connection -> unit,
data_handler: connection * data -> unit}

-> unit
end

Figure 8. PROTOCOL signature, version 5: connect

We see in Figure 8 that send does not take a connection as an
argument. In fact, send must be a specialized function that given a
data item, somehow knows where to send it. The information provided
to the connect call, and specifically at least the address of the remote
host, has to be available to send in order for send to complete its task.
Any implementation of send must therefore be a higher-order function,
which allows pairing of executable code and specific values — in other
words, building a closure. SML and other functional languages automat-
ically and efficiently provide closures to implement such higher-order
functions.

The signatures so far have been simplified for expository purposes.
The full PROTOCOL signature is given in Appendix A. The major differ-
ences include the complete definition of handlers, listen to passively
open connections, abort to prematurely close a connection, initializa-
tion and finalization of the protocol as a whole, extensibility of most
concrete types, specification of operations on abstract types, and a
set of standard exceptions for all protocols. All these differences are
described in the remainder of this section, which covers detailed design
decisions.

The actual definition of the connection type is shown in Figure 9. As
well as send, a connection provides an abort function and an extension

final.tex; 28/09/2001; 10:27; p.13

14 Biagioni, Harper, Lee

type connection = {send: outgoing -> unit,
abort: unit -> unit,
extension: connection_extension}

Figure 9. connection

value. The send function is as described above except that the full
signature permits the types of incoming and outgoing data to be differ-
ent, and send transmits outgoing data. The function abort is called to
immediately terminate the connection – abort is similar to disconnect

in Figure 5 in that no data can be sent or received on this connection
after the abort function is called. When abort is called, the connect

call waits until the corresponding connection handler returns, then
returns immediately. While abort has some of the disadvantages of
the open/close mechanism shown in Figure 5, its occasional usefulness
for terminating connections led us to the decision to include it.

The extension value is of a type held abstract in the PROTOCOL sig-
nature; this type may be further specified in ways that are appropriate
to specific protocols, as explained in the previous section. This process
is analogous to subtyping in object-oriented systems, with PROTOCOL

analogous to the base type. We want the specific signatures to be able
to extend this base type as needed. If these extensions require additional
fields to be part of each connection, the connection extension can be
used to define these specific fields. This was discussed in Section 2.2,
using NETWORK_PROTOCOL as an example.

type connection_key
type handler =

connection_key
-> {connection_handler: connection -> unit,

data_handler: connection * incoming -> unit,
status_handler: connection * status -> unit}

val connect: address * handler -> unit,

Figure 10. handler Definition

The actual signature for connect uses a type abbreviation called
handler: a handler is a function from connection keys to a set of three
handlers, a connection handler, a data handler, and a status han-
dler. The connection key is a printable and comparable value that
uniquely identifies the connection; it is provided to the handler so the

final.tex; 28/09/2001; 10:27; p.14

A Network Protocol Stack in Standard ML 15

handler may compute functions that are customized for the given con-
nection. Connection handlers and data handlers were described above.
The status handler is used by the protocol to communicate any nec-
essary information that is not incoming data. For example, at least
one FoxNet protocol implementation (TCP) uses the status handler to
communicate that the peer has forcibly closed the connection.

type listen = {stop: unit -> unit,
extension: listen_extension}

val listen: pattern * handler * count -> listen,

Figure 11. listen Definition

As mentioned above, both the x-kernel and the FoxNet allow con-
nections to be initiated by a peer. A call to listen specifies that such
connections are now allowed. Like an address, a pattern describes
one or more peers for communication. As in the case of incoming and
outgoing data, the two types have been separated to provide greater
flexibility. The function listen also takes a handler which will be ap-
plied each time a connection is instantiated, and a value of type count

which specifies how many connections will be accepted. For maximum
flexibility, listen also returns a stop function which stops listening
independently of the number of connections opened, and an extension
value that is used in the same way as the connection extension.

type session =
{connect: address * handler -> unit,
listen: pattern * handler * count -> listen,
extension: session_extension}

val session: setup * (session -> ’a) -> ’a

Figure 12. session Definition

Connections and the connect function are used to structure access
to global data for communication with a single peer. In the same way,
session is used to structure access to global data for an entire protocol.
The basic idea is that a protocol as a whole may need to be initialized
before first use and finalized after last use. We could provide functions
initialize and finalize but since the two must be matched in the
same way as connect and disconnect, we combine the two into the
single function session. Like connect, session takes a handler called

final.tex; 28/09/2001; 10:27; p.15

16 Biagioni, Harper, Lee

the session handler. The type of the session handler is session -> ’a.
Whatever value the session handler returns at the end of the session will
in turn be returned by session. Since session does nothing with that
return value other than deliver it back to its own caller, session itself
puts no constraints on the type, and the type is therefore polymorphic
– any constraints are imposed by the caller of session or by the session
handler. This polymorphic type is expressed in the signature as ’a,
pronounced “alpha”.

Also, the session handler takes as parameters connect, listen, and
an extension. Since connect and listen are given to the session handler,
they no longer need to be defined at top level in the signature, and as
a result session is the only function defined at top level.

structure Setup: KEY
structure Address: KEY
structure Pattern: KEY
structure Connection_Key: KEY
structure Incoming: EXTERNAL
structure Outgoing: EXTERNAL
structure Status: PRINTABLE
structure Count: COUNT

Figure 13. PROTOCOL Sub-Structures

Each of the abstract types that were used above — setup, address,
pattern, connection_key, incoming, outgoing, status, and count — is
in fact declared in a sub-structure (SML uses the keyword structure
to mark a fully instantiated module, whereas a functor is a module
that can be instantiated by providing the appropriate parameters).
This allows a number of functions to be defined on the abstract type
and encapsulated with the type definition in a separate module. For
example the structures Setup, Address, Pattern, and Connection_Key,
defining the corresponding types, must all satisfy the signature KEY,
shown in Figure 14.

The signature KEY is simple, defining an abstract type named T and
three operations on this type. The type is named T so that references
to the abstract type defined by the Address structure, for example, can
simply be Address.T, a usage which is idiomatic in SML. The operations
convert values of the given type to strings suitable for printing or to
unsigned integral values suitable for hashing, or compare them for
equality. These operations allow us to use values of type T as keys
in tables, hence the name of the signature. For example, it is always

final.tex; 28/09/2001; 10:27; p.16

A Network Protocol Stack in Standard ML 17

signature KEY = sig
type T
val makestring: T -> string
val equal: T * T -> bool
val hash: T -> word

end

Figure 14. KEY Signature

possible to build a table of values indexed by the address of a peer,
independently of the specific protocol which defines the address.

The signature PRINTABLE is like KEY but without equal or hash.
The signature EXTERNAL defines a number of operations on data ag-

gregates, including copying bytes into and out of such an aggregate,
appending aggregates, and allocating new aggregates.

The signature COUNT specifies that the count can be any one of an
integer, the special value Unlimited, or a function which is called to
determine whether future connections are allowed for a specific listen.

signature PROTOCOL_EXCEPTIONS = sig
exception Session of string
exception Listen of string
exception Connection of string
exception Send of string
exception Receive of string
val makestring: exn -> string option

end

Figure 15. PROTOCOL EXCEPTIONS signature

structure X: PROTOCOL_EXCEPTIONS
exception Already_Open of Connection_Key.T

Figure 16. Exceptions

Finally, each protocol defines a standard set of exceptions. Most of
these exceptions are independent of any types defined in the protocol,
and are declared by a substructure. The only exception declared at top
level is Already_Open, which carries as a value the key of the connection
which cannot be opened because it already is open. Since the type of

final.tex; 28/09/2001; 10:27; p.17

18 Biagioni, Harper, Lee

this key is defined in the top level, it would be awkward to define
Already_Open in the sub-structure, and it is defined at top level.

We need to mention an older release of the FoxNet [4], which had a
different PROTOCOL signature. The older signature was more conventional
in only having functions at top level, whereas the new PROTOCOL signa-
ture takes advantage of the ability we have in SML to return functions
as results.

2.4. Protocol and Stack Implementation

Each layer of the FoxNet corresponds to a protocol implementation,
and each protocol implementation is parametrized by a lower-layer
protocol. For example, as shown in Figure 17, the IP protocol takes as
parameter a protocol satisfying the ARP_PROTOCOL signature and itself
satisfies the IP_PROTOCOL signature. It is worth remembering that —
since IP_PROTOCOL is derived from NETWORK_PROTOCOL which is derived
from PROTOCOL — any protocol which satisfies the IP_PROTOCOL signature
also automatically satisfies both NETWORK_PROTOCOL and PROTOCOL.

Within the implementation of IP, the structure Arp provides all the
functions of the next lower protocol in the stack. No actual implemen-
tation of Arp is needed until the IP implementation is instantiated. At
instantiation time, the only requirement will be that the lower protocol
satisfy the ARP_PROTOCOL signature.

functor Ip_Protocol
(structure Arp: ARP_PROTOCOL): IP_PROTOCOL =

struct
(* actual implementation, not shown here *)

end

Figure 17. IP Protocol Implementation Header

The parameters to the implementation of the TCP protocol are
almost identical, except that the lower protocol (which here is named
Lower rather than Arp) is constrained by the NETWORK_PROTOCOL signa-
ture.

Once all the protocol implementations have been written and com-
piled, building a stack is a matter of composing individual protocols.
In Figure 19 we assemble a standard TCP/IP stack given protocol
implementations for IP, TCP, UDP, ARP, and Ethernet, and a “device”
protocol which allows communication with the raw device. Each of
these implementations except for the device is parametrized by a lower
protocol.

final.tex; 28/09/2001; 10:27; p.18

A Network Protocol Stack in Standard ML 19

functor Tcp_Protocol
(structure Lower: NETWORK_PROTOCOL): TCP_PROTOCOL =

struct
(* actual implementation, not shown here *)

end

Figure 18. TCP Protocol Implementation Header

structure Dev = Dev_Protocol ();
structure Eth = Eth_Protocol (structure Dev = Dev);
structure Arp = Arp_Protocol (structure Eth = Eth);
structure Ip =

Ip_Protocol (structure Arp = Arp);
structure Tcp =

Tcp_Protocol (structure Lower = Ip);
structure Udp =

Udp_Protocol (structure Lower = Ip);

Figure 19. TCP/IP Protocol Stack Construction

When the statements in Figure 19 are given to an SML compiler,
the compiler automatically checks that each of the argument struc-
tures satisfies the parameter signature specified in the definition. For
example, the compiler checks that the parameter to the Ip_Protocol

satisfies the ARP_PROTOCOL signature, and the parameters to TCP and
UDP satisfy the NETWORK_PROTOCOL signature. The latter is verified by
the compiler since at the time Ip_Protocol was compiled the com-
piler checked that Ip_Protocol satisfied the IP_PROTOCOL signature, and
as described above any module satisfying IP_PROTOCOL automatically
satisfies NETWORK_PROTOCOL.

After compilation of the stack construction shown in Figure 19, the
stack is ready to use. The entire meta-protocol specification, protocol
implementation, and stack composition is done in SML, without a need
for external languages to specify how the pieces fit together. This is
in part because the SML module language, i.e. signatures, functors, and
structures, was used to structure the program. We have seen in the
examples above that SML signatures are used for interface definitions,
and that signatures can be structured hierarchically. SML structures
are collections of types, values, and functions, and may or may not
satisfy a given signature. Functors are essentially parametrized struc-

final.tex; 28/09/2001; 10:27; p.19

20 Biagioni, Harper, Lee

tures, and in fact yield structures when instantiated on the appropriate
parameters.

structure Dev = Dev_Protocol ();
structure Eth = Eth_Protocol (structure Dev = Dev);
structure Non_Ip =

Pseudo_Ip_Protocol (structure Eth = Eth);
structure Tcp =

Tcp_Protocol (structure Lower = Non_Ip);

Figure 20. Non-standard Protocol Stack Construction

Figure 20 shows the construction of a non-standard stack. In this
stack, TCP is layered almost directly over Ethernet. The module given
by the Pseudo_Ip_Protocol functor is a very simple protocol which satis-
fies the NETWORK_PROTOCOL signature. This protocol records the length of
outgoing segments in a two-byte header, which is needed since Ethernet
will extend any segments with a payload shorter than 46 bytes and since
TCP does not record segment length. Unlike IP, this protocol is unable
to reach a host that is not on the same local net, so this protocol stack
can be used to communicate reliably within a single local area network.

2.5. Access Control

One of the drawbacks of using conventional languages such as C or even
C++ is the lack of protection against misbehaving parts of the program
– the global nature of particular types of errors, for example pointer
errors. One advantage of using a modular language such as SML is the
controlled access to other parts of the program. For example, in the
absence of errors in the compiler, in the FoxNet it is impossible for a
protocol to have access to the functions of any protocol other than the
one it is directly layered on top of. And no module can have access
to the internal variables and functions of another module. Although
applications run in the same address space as the protocol stack, this
language-enforced modularity at least guarantees the correct behavior
of each module. All locks, for example, are local to each module, and
cannot be misused by code outside the module.

Given these statements, it is interesting to see whether the FoxNet is
in some sense secure, that is, protected against malicious misuse, both
from the network and from the application programs.

In brief, there are very few guarantees about the behavior of a
FoxNet protocol stack as a whole. Even if there were no programming

final.tex; 28/09/2001; 10:27; p.20

A Network Protocol Stack in Standard ML 21

errors4, and even though the FoxNet does not suffer from the buffer over-
flow problems occasionally present in C programs, the non-preemptive
scheduler, for example, can be hijacked by an application program that
never yields control5. In addition, since an application is able to build
arbitrary protocol stacks, it is relatively easy to build nonsense stacks
or stacks that will not function correctly. The Connection functor, de-
scribed in the next section, is carefully coded against accidental misuse,
so there are as few assumptions as possible about whether applications
or higher-level protocols are using the API correctly. Careful coding,
combined with the safety offered by the SML module system, is very
helpful in protecting against errors, but does not guarantee protection
against intentional misuse.

Many operating systems define different capabilities for different
“users”, with some users allowed to (having the capability to) perform
certain operations, and others restricted from performing these oper-
ations. For example, in Unix port numbers 0-1023 can only be used
by programs running under the system administrator account. Since
the focus of the FoxNet is networking rather than security, we did not
address these issues, and any application is allowed to, for example, use
any TCP or UDP port.

3. Basic Mechanisms

This section describes a number of mechanisms that have been used
in the implementation of the FoxNet. In particular, it describes the
connection functor, the FoxNet implementation of coroutines, the word
array data structure, and ways to marshal and unmarshal data in the
FoxNet.

3.1. The Connection Functor

The protocol signature imposes certain requirements on any protocol
that satisfies it. Specifically, the required functionality includes the
following.

1. Session management. This is responsible for maintaining any state
that is associated with a protocol as a whole, for example the
routing tables of an IP protocol.

4 Most programs have programming errors.
5 Early versions of the Mac Operating System had no pre-emption and could also

suffer from programs not yielding control.

final.tex; 28/09/2001; 10:27; p.21

22 Biagioni, Harper, Lee

2. Connection management. This is responsible for opening and clos-
ing connections, in response to requests from both the applica-
tion program (higher-level protocols) or the network (lower-level
protocols).

3. Data dispatch. This is the process of delivering incoming data to
the appropriate higher-level protocol. Sometimes there is only one
higher-level protocol, and then this process is simple, and some-
times there are many, so we must determine which protocol the
data is for.

4. Passive connection management. This allows a higher-level protocol
to listen for incoming connection requests.

fun nonmultiplex_upcall next_higher packet =
let val new_packet = local_processing packet
in next_higher new_packet
end

fun multiplex_upcall packet =
connection_id = identify_connection (packet);
if in_table (connection_id, connection_table) then

let val next_higher = receiver_table connection_id
val new_packet = local_processing packet

in next_higher new_packet
end

else
try to open a connection, or discard the packet

Figure 21. Pseudocode for non-multiplexing and multiplexing upcalls.

We want to distinguish two types of protocols: multiplexing and
non-multiplexing. A non-multiplexing upper protocol P layered on top
of a lower protocol Q uses a separate connection in Q for each con-
nection in P. In contrast, a multiplexing protocol P can use a single
connection in Q to support multiple connections for P. The distinction
is significant: a non-multiplexing protocol generally has a much simpler
implementation than an equivalent multiplexing protocol. Pseudocode
for the two is shown in Figure 21, where some of the complexity of the
multiplexing protocol is hidden in the calls to identify_connection,
receiver_table, and in the pseudocode to try to open a new connection.
A non-multiplexing protocol can often implement each function directly
in terms of the corresponding functions in the lower protocol. State-
less non-multiplexing protocols can have stateless implementations. For

final.tex; 28/09/2001; 10:27; p.22

A Network Protocol Stack in Standard ML 23

example, a trivial protocol that simply adds a checksum to outgoing
packets and verifies it for incoming packets need not maintain any state
or connection information.

In contrast, a multiplexing protocol has to co-ordinate the sharing
of lower connections among the connections supported by the protocol.
This sharing necessarily involves global state. Since a lower connection
must remain active as long as any one connection using it is active,
and since a connection is active only until its connection handler com-
pletes, lower connections must be opened within a thread other than the
thread(s) that open the upper connection(s). Hence the implementa-
tion of any multiplexing protocol must be able to correctly synchronize
multiple threads of control accessing the shared state.

The substantial complexity of a correct implementation of a multi-
plexing protocol has motivated our design of a single generic module
to implement exactly once the session management, the active and
passive connection management, and the data dispatch for multiplexing
protocols. This implementation is shared among all the protocols that
need it. This module is called the Connection functor. The module is a
functor because the SML functor mechanism is used to parametrize the
implementation over:

− the types and structures of the protocol being implemented (for
example, Address),

− the type of the state that must be maintained for each protocol,

− functions to do protocol-dependent processing (such as converting
protocol addresses to lower-protocol addresses), and

− other utilities and debugging information.

The functor header for the Connection functor is shown in Ap-
pendix B. This functor header lists all the types, structures, and func-
tions that the functor takes as parameters; it is readily apparent that
the parameters fall neatly under these four groups.

We now describe in some detail the implementation of two of the
four major functions of the Connection functor: data dispatch and
connection management.

3.1.1. The Data Handler for Lower Connections
The part of the Connection functor that is most interesting is the data
delivery algorithm for received data. The data handler passed to the
lower protocol is the same function for all lower connections, each time
specialized using different connection information. This specialization,

final.tex; 28/09/2001; 10:27; p.23

24 Biagioni, Harper, Lee

or partial application, is called currying, and is one of the ways that
functional languages support higher-order functions. An example of
currying is shown in Figure 22.

fun generic_handler connection data =
...

val specific_connection = ...
val specialized_handler: data -> unit =

generic_handler specific_connection

Figure 22. Example of a higher-order function used to create a specialized function.
The generic handler is curried, that is, applied to only one of its two arguments,
yielding a single-argument specific function.

A data handler specific to a connection is created (instantiated) by
currying the handler on some of its arguments to create a closure. This
closure is then passed to the lower protocol as the data handler to be
used specifically for this connection. The arguments on which the data
handler is curried are the lower connection key and a set of closures.
These closures are created by currying other functions, for example the
functor parameter identify, on some of their arguments. The signature
for identify is shown in Figure 23.

val identify:
(Lower.Connection_Key.T * protocol_state)
-> Lower.Incoming.T -> Connection_Key.T list

Figure 23. Signature for the function identify.

The function identify is called by the data handler to select one or
more appropriate connections for an incoming packet.

The first argument to identify is the one over which identify is
curried. In theory, the fact that identify is applied to some of its ar-
guments once and the resulting curried function is applied many times
allows some computation to be performed only once and the resulting
function to execute more efficiently. In practice the last argument (the
packet) is needed in order to do any of the computation, so it has
not been possible to achieve substantial optimization via currying the
identify function.

The curried data handler is called by the lower protocol and takes
two arguments: a (lower protocol) connection, including a specialized
send function to send on the lower connection, and a unit of data, a

final.tex; 28/09/2001; 10:27; p.24

A Network Protocol Stack in Standard ML 25

packet. The handler first applies identify to this packet and receives
back a list of connection keys identifying potential connections that
this packet could be for. If the list is empty, the packet is discarded. If
the list holds one or more connection keys, the first one is used as an
index into a table listing all connections supported by this protocol. One
table is maintained for each lower connection, and the lower connection
argument to the data handler is used to identify this table.

A connection can be in one of three states: active, pending, and
inactive.

Active connections can send and receive data. If the connection is
active, the data handler for the connection is identified and the data is
delivered.

Pending connections are connections that have been created, but are
not yet ready to receive data. If the connection is pending, the data is
queued in the per-connection queue.

Inactive connections are connections that are not in a state to send
or receive data. If the connection is inactive, the algorithm first checks
to see whether the key matches one of the pending passive connection
requests (“listen” operations). If so, the connection is instantiated and
the packet queued for delivery. Otherwise, the remainder of the list
returned by identify is examined for other possible keys.

Systems programs must often handle many different cases, but in
order to be efficient, must carefully optimize the common case. For
receiving data, the common case is that the connection is already es-
tablished, i.e., active. An optimization we made to the common case
is to avoid locking shared data. The remainder of this section explains
why locking is not necessary in this implementation.

If the connection is active, the algorithm reads shared state (the
connection table) but does not modify it. Since the FoxNet uses non-
preemptive co-routines for multi-threading (see Section 3.2) and the
control path for active connections does not yield control, in the com-
mon case data can be delivered without explicit locking and synchro-
nization. This is true if the call to identify returns without yielding
control to other threads, since the call to identify is part of the com-
mon case. Note that identify inspects the data received and returns a
list of keys that can be used to find the connection to which this packet
can be delivered, if any – identify is generally stateless, that is, has no
knowledge of which connections have been established. The function
identify is passed as a parameter to the functor, so the Connection

functor has no information about whether or not identify will yield
control to other threads before completing. In case identify does not

final.tex; 28/09/2001; 10:27; p.25

26 Biagioni, Harper, Lee

yield, the lack of locking does not cause any problem. In the FoxNet

protocols, none of the identify functions yields control.
In case identify does yield control to other coroutines, we must

verify that the Connection functor still functions correctly. The only
consequence in the current implementation is that packets might be
delivered out of order. We consider this consequence acceptable. Un-
acceptable behavior would be for global or connection state data to
become corrupted, or to have packets queued forever causing a memory
leak. We know that the state will not be corrupted because:

− in the common case, the data handler does not modify the global
state.

− in all other cases (e.g., before instantiating a pending passive con-
nection request), the data handler synchronizes (locks) before mod-
ifying the shared global state, so even if identify suspends, the
locks will allow for synchronized access.

In the common case, packets will be delivered as soon as the call to
identify completes, so there is no risk of memory leaks. In the other
cases, again, explicit synchronization takes care of avoiding possible
memory leaks due to unexpected state changes while processing.

3.1.2. Connection Management
The most complex task for the Connection functor is the connection
management. This is due to a number of factors:

− Connections can be opened actively by the higher-layer protocol,
or passively as a result of receiving data.

− A lower connection is opened by a thread other than the thread
that requests the opening of the upper connection. This requires
synchronization, since the upper connection must be placed in the
“pending” state until the lower connection is open.

− A new connection may need to use a pre-existing lower connection
or may have to open a new lower connection.

− When a session is closed, all connections opened within that session
must also be closed.

− Any exceptions raised by a connection handler, data handler, or
status handler must be handled correctly.

− As soon as a connection handler exits, no more data may be
delivered to the corresponding data handler.

final.tex; 28/09/2001; 10:27; p.26

A Network Protocol Stack in Standard ML 27

These requirements make the implementation of this part of the
Connection functor challenging, and in fact multiple bugs due to in-
sufficient or incorrect synchronization were found in the connection
management code during development. As is often the case with syn-
chronization problems, finding and reproducing any given bug was often
a much more demanding task than fixing it. SML does provide protection
against some kinds of type errors, pointer errors, and memory misuse,
but provides no special protection against synchronization errors. In
this case, since all our protocols used the same code, we had more
chances to observe the bugs and, once the problem was fixed, it was
fixed for all our code – a strong argument for a modular implemen-
tation, which was made possible by the amount of parametrization
permitted by SML.

3.2. Coroutines

The FoxNet uses a non-preemptive multithreading (coroutine) package
written for the most part in SML (a system call is used to obtain the
system time, everything else is in SML). Following Wand [29], we use
continuations to implement coroutines. Continuations are implemented
very efficiently in SML/NJ [1, 2], with a typical continuation transfer of
control taking only as much time as calling a function.

signature COROUTINE = sig
val reset: unit -> unit
exception No_Ready_Thread
val fork: (unit -> unit) -> unit
val exit: unit -> ’a
exception No_Such_Suspension
type ’a suspension
val suspend: (’a suspension -> ’b) -> ’a
val resume: ’a suspension * ’a -> unit
val sleep: int -> unit

end

Figure 24. FoxNet COROUTINE Signature

Figure 24 gives the highlights of the coroutine signature used in the
FoxNet. A call to fork executes a given function as a separate thread.
Calling exit terminates the current thread and starts execution of some
other thread, or raises No_Ready_Thread if there are no threads left to
execute. In the current implementation fork suspends the child (forked)
thread and continues execution of the parent thread, but this is not

final.tex; 28/09/2001; 10:27; p.27

28 Biagioni, Harper, Lee

explicitly specified by the signature, so it is good programming practice
not to rely on this property.

A suspension is an abstraction of a single coroutine (thread). A
running coroutine may suspend itself; the argument to suspend is a
function which is applied to the suspension of the running coroutine.
This function typically either calls resume immediately, or stores the
suspension into some global state for future use. The two functions
suspend and resume together allow the implementation of both a yield

function and of subsidiary schedulers. The function yield can be im-
plemented by suspend (fn s => resume (s, ())). This suspends the
thread and immediately requeues it for execution, but all other threads
queued for execution get a chance to run before this thread is executed
again. A subsidiary scheduler could define its own “suspend” by calling
this suspend routine, storing the suspension as needed, and perhaps
resuming other suspensions. Resume is like fork in that the calling
coroutine continues execution, and the resumed coroutine is queued for
execution. Again, it is bad practice for users of the coroutine package
to rely on these implementation details.

Finally, sleep sleeps at least the specified number of milliseconds,
then gets queued for execution again. Milliseconds were used because
the granularity is sufficiently fine and the range sufficiently large for
every use we have encountered in networking protocols.

As mentioned above, the use of continuations to implement corou-
tines is well-established. There is however one subtlety in the imple-
mentation of coroutines which some of the authors have published
elsewhere [5], namely the interaction between exceptions and continu-
ations6. We will briefly describe this problem as follows. For purposes
of illustration, consider the following implementation for fork:

fun fork f =
if callcc (fn c => (enqueue c; false))
then (f (); exit ())
else ()

In this implementation, fork obtains the current continuation, puts
it on the queue, and then immediately returns, so the calling thread
continues immediately. Once the queued continuation reaches the front
of the queue, the scheduler will throw the value true to this contin-
uation, so that the then branch of the conditional will be executed

6 Part of the reason for this oversight is undoubtedly that much of this work
has been done in Scheme, which lacks an established exception mechanism. These
remarks apply to the version of SML/NJ that we used, and may no longer be true,
though as noted elsewhere, it is hard to see how to get around this problem in any
reasonable compiler.

final.tex; 28/09/2001; 10:27; p.28

A Network Protocol Stack in Standard ML 29

and the argument to fork (i.e., the child code) will be executed. After
its execution is complete, exit is called to schedule the next available
thread.

Now consider what would happen if the function f raises an excep-
tion. The call to fork would have “returned” twice, once immediately
after forking, and once with the exception. This means the continuation
of fork would be executed more than once, which could be very con-
fusing. The intuitive thing to do is to wrap the call to f in an exception
handler:

fun fork f =
if callcc (fn c => (enqueue c; false))
then (f () handle _ => (); exit ())
else ()

This will correctly terminate any thread that ends in an exception
and immediately schedule the next available thread. Let us assume
for the time being that exit goes into an infinite loop if no thread is
available, and hence never returns (this will be relaxed later).

Now consider what happens if the thread explicitly calls exit. The
call to exit will schedule new threads and at any rate never return.
However, the compiler and runtime system are unaware of this7, and
hence the garbage collector will be unable to determine that the stack
of the thread can now be reclaimed. If there is a constant number of
threads in the system but at least some of them call exit explicitly
(after forking other threads to keep the total number constant) then
the total amount of space in the system will grow without bound, since
the garbage collector will fail to collect the continuations of all the
terminated threads. In this case, the exception handler in the scheduler
has caused a memory leak. We observed this memory leak in actual
trials with earlier versions of the FoxNet.

There are several possible solutions to this problem, none of them
completely satisfactory. One solution is to allow fork to return should
the forked thread raise an exception. This places responsibility for han-
dling thread exceptions on the programmer of the thread, but poses the
same storage leak risks should the programmer do the “natural” thing
and try to handle any exceptions the thread might raise.

A better solution is to have the scheduler (the function exit) be a
continuation rather than a function, as follows:

7 This is true for every implementation of SML that the authors are familiar with.
It is even hard to imagine a compiler that could automatically deduce this.

final.tex; 28/09/2001; 10:27; p.29

30 Biagioni, Harper, Lee

fun fork f =
if callcc (fn c => (enqueue c; false))
then (f () handle _ => ();

throw exit_continuation ())
else ()

Since there is no regular continuation (i.e., no return) from a call to
throw, and even no exception continuation, the compiler and runtime
system know that the continuation can be discarded and garbage col-
lected. This is the algorithm currently used within the FoxNet coroutine
package.

This definition of fork requires that we establish a continuation,
called exit_continuation, to which we can transfer control. A contin-
uation is the control context of the running program at the point at
which callcc is invoked. In contrast, the exit_continuation is log-
ically a continuation that is separate from and independent of the
running program. The exit_continuation can almost be thought of
as a constant continuation. However, since all continuations in SML/NJ

are obtained from callcc, there are a number of choices for selecting
the continuation to be used as the exit_continuation:

− Obtain a continuation at functor instantiation time. This is ele-
gant, but the continuation will have references to the control con-
text of the compiler, which may be large and take up unnecessary
unclaimable storage.

− Obtain a continuation the first time fork or exit is called. This
requires a conditional in fork or exit (to see if the continuation
exists), and slows down the scheduler.

− Use a separate function (such as the function doit in CML [21])
to bracket the entire use of threads, and use its continuation.

The last suggestion is certainly the most elegant, since it does not
require a distinct main thread. Unfortunately, the model does not work
well with the way the FoxNet is commonly used, since every application
would then need to call the bracketing function or be called within the
bracketing function. The current version of the FoxNet uses the second
option.

It should be noted that other SML threads systems we have looked
at, including ML-threads [9] and CML [21] suffer from the space leak
described here. We conjecture that the problem has not been detected
because of the lack of long-running applications written using these
systems. It must be emphasized that the problem is independent of

final.tex; 28/09/2001; 10:27; p.30

A Network Protocol Stack in Standard ML 31

whether the threads system is preemptive, and instead is due specif-
ically to the fork call trying to do the “right thing” when the forked
function raises an exception, in combination with exit being explic-
itly callable by threads. More details are available in a publication [5]
co-authored by two of the authors of this paper.

3.3. Word Arrays

Systems programming and network programming often have to be con-
cerned with efficiently moving data around. In a protocol stack, data
must be transferred across protocol layers, meanwhile adding protocol
headers to outgoing data and removing headers from incoming data.
For efficiency, all this must be done without copying the data. For
networking, a given collection of data can variously be viewed as:

− an ordered sequence of bytes (for example for error checking) — a
byte array

− an addressable “chunk of memory” (for buffering) — a memory
buffer

− a collection of words (for efficient transmission to the device) — a
word array

− an ordered collection of words of different sizes (for header decod-
ing) — a structured type

In what follows, we generally use “byte array” to refer to the data
type provided by SML — currently this is referred to as Word8Array —
and “word array” to refer to the data type described in this section.

One effective and well-known abstraction for this issue of multiple
views of the same data is provided by C pointers; this abstraction of-
fers efficient word-wise and byte-wise random and sequential access to
arbitrary data (using casts for structured data). The problem with C

pointers is that they are unsafe, and in fact problems in C programs are
often due to inadvertent misuse of pointers.

A safe language such as SML does not provide pointers. The im-
plementation we use augments the language with the built-in type
bytearrays, with operations sub and update which allow safe reading
and writing of individual bytes in the array. This interface provides the
basic functionality needed for data manipulation but is insufficient for
fast access to data.

Fast access requires word-wise access to data and as few bounds
checks as possible. When looping over an SML/NJ byte array, typically
we have to have a conditional to check for the end of the array and a

final.tex; 28/09/2001; 10:27; p.31

32 Biagioni, Harper, Lee

val new: (’a -> (element * ’a) option) -> ’a -> T
val create: element * size -> T
val tabulate: (index -> element) * size -> T
val create_uninitialized: size -> T

Figure 25. Functions for Array Creation

statement to access the data; this is equivalent to two bounds checks
per byte or word accessed, one for the end of the array and the second
to make sure the word accessed is within bounds. It is easy to reduce
this to a single check if the Subscript exception is used to detect out-
of-bounds accesses, but for short arrays the overhead of handling the
exception might be significant, and if more than one array is being
looped over, the out-of-bounds condition for the different arrays may
need to be handled differently. Finally, the need for arithmetic when
performing sequential access on arrays is generally error-prone and
specifically allows fence-post (off-by-one) errors.

Because of these shortcomings, we have defined and use a new
abstraction that provides all of the following:

− All accesses are safe, i.e., it is impossible to access beyond the
bounds of the array.

− Automatic initialization of newly created arrays is optional and is
supported through a variety of functions, shown in Figure 25.

− As with pointers, only one check is required in each iteration of a
loop.

− Accesses are provided for word sizes of 8, 16, 32, 64, 128, and 256
bits.

− Little- and big-endian accesses are supported for all multi-byte
sizes.

Figure 25 includes a function create_uninitialized. Whereas SML

makes it impossible to create uninitialized values, this function allows
the creation of “uninitialized” arrays, that is, arrays of bytes where each
byte may have an arbitrary byte value. This could in theory be used to
create non-deterministic programs (programs that behave differently
when run on different systems), which may arguably be called “un-
safe”.8 However, non-determinism is possible whenever a program has

8 There is also a security issue, since uninitialized arrays could contain data that
should remain private. See also Section 2.5.

final.tex; 28/09/2001; 10:27; p.32

A Network Protocol Stack in Standard ML 33

(* with conventional arrays: *)
fun loop (a, i, result) =

(* 1st call to Array.length, 1st comparison *)
if i >= Array.length a then

return result
else
(* bounds check: 2nd call to Array.length,

2nd comparison *)
loop (a, i + 1, something with Array.sub (a, i))

(* with word arrays: *)
fun loop (NONE, result) = result

| loop (SOME (first, a), result) =
(* bounds check: only one call to Array.length,

only one comparison *)
loop (Word_Array.next a, something with first)

Figure 26. Typical loop over an array, with conventional arrays and with word
arrays.

access to the time of day, and we do not believe that non-determinism
necessarily leads to lack of safety. Since any byte value in memory is
a valid byte value, creating an uninitialized byte array is quite safe in
that it does not provide the program with any means of (accidentally
or otherwise) subverting the run-time system. For this reason, and
because it allows somewhat higher performance, we provide and use
this function. No part of the FoxNet code makes use of this potential
non-determinism.

Access to the elements of an array is mainly through the next and
update functions. Typical styles of iteration over arrays, comparing
conventional byte arrays to Word Arrays, are shown in Figure 26.

The function next is modeled after the SML pattern matching access
to lists, and update is a corresponding way of changing the contents of
an array. Both functions return the “rest of the array”, if there is any
such, or the special value NONE if the end of the array has been reached.

Random access is provided by the seek function.
Arrays are of two different types, T which can only be read, and U

which can only be written. These are two separate types since next

and update have different invariants, corresponding to different ways of
testing for the end of the array:

− next must first test for the end of the array, and return the next
item only if the array is not finished.

final.tex; 28/09/2001; 10:27; p.33

34 Biagioni, Harper, Lee

− update guarantees it can store at least one element into the array,
so it first stores the element (without checking), then returns a
result appropriate to whether the remaining array is empty.

Why have different types for reading and writing? Consider having
the same array type for both operations. For next, the same check that
verifies that the array is non-empty also verifies that the operation
succeeded, and also returns the new element. For update, the check is
not functionally required, since update does not return a useful new
element, so we could have a “silent failure”. This is a common and
often a severe problem with many C libraries, and it seems unnecessary
to encourage such programming practices in SML. One alternative is to
require two operations: a check before writing, and another operation
to give us the “rest of the array”. This is expensive. The only way
we have found to have a single check per array element is to pay the
price at the beginning of a loop, by converting the readable type to
an updateable type which guarantees that an update operation will
succeed. If the return value from update (the rest of the array) is not
used, there is no need to check it. If the return value from update is
needed, it will necessarily be checked to make sure it is non-empty, and
the loop will terminate if it is empty.

The signatures for these functions are shown in Figure 27.

val next: T -> (element * T) option
val seek: T * index -> T

val update: U * element -> U option

val write: T -> U option
val read: U -> T

Figure 27. Functions for Array Creation

The functions read and write convert between the two types.
The conversion of U (write-only) array to a T (read-only array), using

read, always succeeds, since a U always has at least one element and a
T has zero or more elements. Converting a T to a U will succeed only
if the array has at least one element. If the array is empty, write will
return NONE instead of a new array.

With next or update, arrays can only grow smaller, not larger. That
is, we can use these functions to hide part of the data and give to
a function only a portion of the array, with the guarantee that the
function will not be able to reach “outside” the portion it was given.

final.tex; 28/09/2001; 10:27; p.34

A Network Protocol Stack in Standard ML 35

To support many different styles of access to word arrays, each of
these functions is provided by a number of different structures providing
all the different combinations of the following:

− Word size. All power-of-two sizes between 8 and 256 bits are sup-
ported.

− Aligned or unaligned access. On most architectures aligned access
is faster than unaligned access, and aligned arrays provide such ac-
cess without needing to check whether a pointer is aligned. Aligned
arrays are of three types, aligned at one or the other of the two ends
or at both ends. The SML type system guarantees that a function
that requires alignment will only take aligned arrays as arguments.

− Forward or backward access. All arrays are accessible equally from
the front or the back, except as restricted by alignment. Arrays
that are only guaranteed to be aligned at one end only support
access at the aligned end.

− Big-endian, little-endian, and native-endian access.

The Word_Array structure provides all of these sub-structures and
functions to convert between different types of arrays. The top-level
signature for Word_Array is shown in Appendix C.

One of the motivations for word arrays is efficiency. Unfortunately,
as seen in Section 4, our implementation of word arrays fails to live up
to its promise. Whereas the definition of word arrays would allow very
efficient implementation if the arrays were implemented directly by the
compiler, we have chosen not to modify the compiler.

The optimal implementation of word arrays would use two machine
addresses, one to the first and one to the last element of the array.
Checking that there is an element means comparing the two pointers.
Accessing the element means dereferencing the appropriate pointer and
incrementing it or decrementing it. Since these operations are extremely
efficient on current hardware, such an implementation (which would
require compiler modifications) is quite efficient. Some of the obstacles
to implementing word arrays directly in the compiler include having to
reserve two separate registers for each word array value, and modifying
the garbage collector to preserve word arrays that have no pointer to the
beginning, but may have pointers to the middle of the array. Garbage
collectors exist that can handle this. This notably includes conservative
garbage collectors for languages such as C. There is no reason why such
a garbage collector has to be conservative, though the overhead would
be greater than for the current SML/NJ garbage collector.

final.tex; 28/09/2001; 10:27; p.35

36 Biagioni, Harper, Lee

3.4. Marshaling and Unmarshaling

Word arrays are used throughout the FoxNet to store incoming and
outgoing data. Most protocol layers add a header to to outgoing data,
and strip a header from incoming data. The header must be writ-
ten and read as a sequence of bytes, using a specified byte ordering
for multi-byte fields. For example, big-endian ordering is standard for
TCP/IP. Converting an internal representation to such a linearized
representation is called marshaling. Reading a header from a linearized
representation and constructing the equivalent internal representation
is called unmarshaling. For uniformity and convenience, we have defined
a generic signature, EXTERN (shown in Figure 28), satisfied by many
marshaling and unmarshaling structures in the FoxNet.

signature EXTERN = sig
type T
type extern_in
type extern_out
type cursor
val size: T -> int
exception Extern
val marshal: (extern_out * T) -> (cursor -> cursor)
val unmarshal: (extern_in * cursor) -> (T * cursor)

end

Figure 28. EXTERN Signature

Modules satisfying the signature EXTERN use T for the type of the
internal representation, and extern_out and extern_in as the types of
the linearized representations used when marshaling and unmarshaling
respectively. The linearized representation is assumed to be indexable
or addressable, and the type of such an index or address is the type
cursor.

The marshal function is designed to be composed: partial application
of the function to the external and to the internal representations
yields a new function which accepts a cursor, linearizes the internal
representation at the given index, and returns a new cursor for the
next function to use. This use of marshal is shown in Figure 29.

It would be nice to be able to compose unmarshal functions in the
same way that we compose marshal functions. A marshal function cur-
ried on its first argument yields a function from cursors to cursors which
can be further composed with other curried marshaling functions. The
same is not possible with unmarshal. unmarshal needs to return both
a value of type T and a new cursor. We have been unable to find a

final.tex; 28/09/2001; 10:27; p.36

A Network Protocol Stack in Standard ML 37

fun marshal (array, self, peer, proto) =
(Word16X.marshal (array, proto) o
Word48X.marshal (array, self) o
Word48X.marshal (array, peer))

Figure 29. Ethernet composition of marshal functions to produce a new marshaling
function. Word16X and Word48X are local structures created by instantiating functors
that provide 16-bit and 48-bit big-endian marshaling and unmarshaling. The result
of calling marshal is a new function which takes as argument a cursor, and returns
a new cursor corresponding to the position after the header has been marshaled.

simple mechanism in functional languages to express that a function
should return two values, one to a function we are composed with
and one to a different expression. Such a mechanism would somehow
be equivalent to “currying” function return values (regular currying
curries function parameters). We know of no mechanism to do this.
Continuations can be used to return multiple values, but are unwieldy
for the purpose, are hard to use, and require the use of global state.
The simpler solution which we have adopted is to not allow unmarshal

functions to be composed.

Sun XDR [24] (eXternal Data Representation) is a widely used lan-
guage for describing data formats to be sent over communication chan-
nels, and specifically was designed for data to be sent using the RPC [25]
protocol. Data format descriptions are compiled to a collection of mar-
shaling and unmarshaling procedures [20] which are invoked to trans-
form data from the “internal” representation, which is system- and
compiler-dependent, to a standard “external” representation which can
be exchanged among systems. Some differences between XDR and the
marshaling system described here include:

− the XDR language is a data description language rather than a
programming language. This means its expressiveness is limited
specifically to describing data layout using a restricted set of for-
mats.

− type-checking and safety in XDR is limited to what can be provided
within the context of C programming, whereas for the FoxNet the
compiler provides the usual strong safety guarantees provided for
all SML programs.

− XDR requires an external “compiler” to convert it to C code, whereas
in the FoxNet the same compiler that compiles the marshaling and
unmarshaling functors also compiles the remainder of the code.

final.tex; 28/09/2001; 10:27; p.37

38 Biagioni, Harper, Lee

In addition to marshaling and unmarshaling basic types, XDR pro-
vides functions to marshal structured types. We have done this for the
FoxNet as well: a functor takes, as parameters, structures to marshal
specific component types, and results in a structure which will marshal
structured types such as tuples or arrays whose components have the
given types. This is shown for arrays in Figure 30.

functor Array_Extern
(structure Int: INT_EXTERN
structure Element: EXTERN

sharing type Element.extern_in = Int.extern_in
and type Element.extern_out = Int.extern_out
and type Element.cursor = Int.cursor

): EXTERN =
struct
type T = Element.T Array.array

...

Figure 30. Array Marshaling Functor

The Array_Extern functor takes as parameters two structures, both
of which satisfy the EXTERN signature: the first marshals integers, the
second marshals array elements. The two structures must have the same
types for extern_in, extern_out, and cursors: this is called sharing these
types. The integer marshaling structure is used to encode the length of
the array, and the element marshaling structure to encode each of the
elements.

structure Int_Extern =
Int_Extern (type extern_in = in_type,

type extern_in = out_type);
structure Int_Array_Extern =

Array_Extern (structure Int = Int_Extern
structure Element = Int_Extern);

structure Int_AArray_Extern =
Array_Extern (structure Int = Int_Extern

structure Element = Int_Array_Extern);

Figure 31. Using an array marshaling functor to marshal arrays of arrays.

We can use this functor to instantiate a structure S that will marshal,
for example, arrays of integers. S can then be used as the Element pa-
rameter in a new instantiation of this functor, giving us a new structure

final.tex; 28/09/2001; 10:27; p.38

A Network Protocol Stack in Standard ML 39

that can marshal arrays of arrays of integers. This example is shown in
Figure 31.

functor Tuple2_Extern
(structure Elt_1: EXTERN
structure Elt_2: EXTERN

sharing type Elt_1.extern_in = Elt_2.extern_in
and type Elt_1.extern_out = Elt_2.extern_out
and type Elt_1.cursor = Elt_2.cursor

): EXTERN =
struct
type T = Elt_1.T * Elt_2.T

...

Figure 32. Functor Header for a Two-Element Tuple Marshaling Functor

We also have functors to marshal tuples. Figure 32 shows the header
of a functor to marshal two-element tuples (pairs). As is the case with
arrays, this functor is parametrized over the types of its elements and
the types of the argument structures must share.

These building blocks can be composed to give marshaling and un-
marshaling structures for almost any SML type (i.e., except function,
datatype, and continuation types), including user-defined types. The
compiler checks that the type T provided by the marshaling module
matches the type to be marshaled or unmarshaled and hence prevents
misuse of the marshaling and unmarshaling operations.

4. Performance Measurement

One of the goals of the Fox project has always been to develop high-
quality software that is competitive with production software. The high
quality is reflected not only in the modularity and ease of maintenance,
but should be seen in the overall performance as well. One advantage of
building standard software protocol stacks is that there is an abundance
of competing software, with similar functionality, that we can compare
against.

4.1. Code Sizes

One frequent question about the FoxNet is how much code is in
our stack compared to code in other other stacks implementing the

final.tex; 28/09/2001; 10:27; p.39

40 Biagioni, Harper, Lee

Table I. Lines of code.

FoxNet x-kernel

total code comments total code comments

project 75091 39370 16631 180222 110647 46382

.sig/.h 13907 3786 4993 44203 26756 11029

.fun/.c 61184 35584 11638 136019 83891 35353

protocols 37798 20709 6903 31453 20352 6749

TCP 8191 4550 1542 5506 3207 1687

IP 9488 5866 1279 2969 1804 760

ARP 1491 809 207 1574 1046 306

same protocol or almost the same protocols. The use of line counts to
estimate code size or complexity is one with many pitfalls, especially
when comparing programs with different structures, somewhat different
purposes, possibly very different levels in the quality and completeness
of the implementation, and different coding styles. There is also no
widely accepted measure of either code complexity or code quality, and
no known way to relate the two. In the absence of other easily computed
metrics, we report in Table I our measurements of the lines of code in
both the x-kernel (version 3.3.1) and the FoxNet.

We have used a script to count lines. For the FoxNet we counted the
lines in .sig and .fun files, for the x-kernel the count includes the .h

and .c files. Source code lines are non-blank lines that contain more
than just a comment, comment lines include only comments. We have
not counted the lines of code in the “glue” sections (.str files in the
FoxNet, template files in the x-kernel).

In spite of the similarity in the goals and overall design of the two
projects, it is hard to draw meaningful conclusions. The only number
that stands out is the substantially larger size of the FoxNet IP protocol
implementation, probably because the IP module in the FoxNet con-
tains functionality which the x-kernel distributes among other protocol.
Other protocol implementations are roughly comparable, which may
suggest that both languages result in approximately the same code
size for implementations of the same networking protocol. The overall
project size for the x-kernel includes custom protocols that are not
part of the standard TCP/IP stack, a much larger thread package than
our scheduler, a substantial simulator, and porting packages to run the
x-kernel over several different operating systems.

final.tex; 28/09/2001; 10:27; p.40

A Network Protocol Stack in Standard ML 41

4.2. Test Environment

We have measured the performance of the FoxNet on two identical Intel
Pentium II 266 MHz systems with 512K of level-2 cache and 128MB
of memory. Both systems were running Linux 2.0.36 and were on an
otherwise isolated, hub-connected 10Mb/s ethernet connecting the two
test systems and a third, mostly idle computer (the control computer).
For the SML code, we compiled with SML/NJ version 110.9.1 (Flint version
1.41) dated October 19, 1998. In order to gain access to the network,
we used the unsafe features of SML/NJ to access the Linux raw device.
These extensions allow the FoxNet to access the Ethernet directly from
a user process.

The tests are based on ttcp version 1.12, compiled with -O and with
version 2.7.2.3 of gcc (the same gcc was used for all other C programs in
this sections). We wrote a simple SML program that approximates the
tests performed by ttcp9, in other words, measures the time to send a
fixed amount of data over the FoxNet TCP. We note that most of the
protocol stack for the standard ttcp is in the kernel, whereas for the
FoxNet the entire protocol stack is in user space. This means that for
ttcp a context switch occurs for every buffer sent by the application,
for the FoxNet a context switch occurs for every packet sent by the
lowest layer of the protocol stack.

4.3. Test Results

Our first two tests measure basic network parameters: latency (for small
packets) and bandwidth (when sending larger amounts of data).

We used ping to measure latency. Out of 100 packets, each 56 bytes
long, sent using the Linux version of ping and echoed by the Linux on
the other test machine, we had zero packet loss and 0.3 ms (3× 10−4

seconds) minimum and average round-trip time, with 0.4 ms maximum.
Using the FoxNet version of ping and using the FoxNet on the other
machine to reply to the echo packets, we had zero packet loss and 1 ms
(10−3 seconds) minimum, average, and maximum round-trip time. We
note that the granularity of the clock in the FoxNet version of ping is 1
ms.

We tested throughput by sending 1 MB of data in one direction over
TCP. The measurement shows the throughput measured when sending
a single payload size of 1,048,576 bytes (220 bytes). In each case we
ran one test in each direction between the two machines, in each case

9 The entire SML code for our test, as well as the source to ttcp, is available from
the author’s web site [6].

final.tex; 28/09/2001; 10:27; p.41

42 Biagioni, Harper, Lee

getting results within 10% of the performance in the opposite direction.
The average of each pair of tests is given in Table II.

Table II. FoxNet throughput measurements. Throughput is in Mb/s.

Test Linux native ttcp FoxNet FoxNet no checksum

Ethernet 7.1 6.5 6.4

These measurements show that our goal, of producing systems soft-
ware with performance comparable to that of carefully optimized pro-
duction software, has been met.

In analyzing the performance, we wondered whether the checksum
computation might require substantial time — this has been suggested
by Derby [11]. From our measurements no such effect can be seen10. The
difference in performance with checksums on or off was not significant.
The system load was observed using the Unix/Linux uptime command
during a larger bulk transfer, and there was no detectable difference
between the two versions (with and without TCP checksums) of the
FoxNet, though the load did appear to be higher than with ttcp.

The remainder of this section follows Derby [11] in analyzing in
detail the costs of the TCP checksum computation.

4.4. Small Functions

Derby has claimed [11] that the overhead of calling a function is a
substantial and overly large component of the cost of executing small
functions. This claim is based on a comparison of the performance of
two equivalent functions, checksum and inline_checksum (reproduced,
and corrected, in Figure 33. The code for the fold function called as
Word_Array.W32.Little.F.fold is shown in Figure 34). The results of
our measurements are shown in Table III, and show that inlining does
indeed produce some speedup.

In the FoxNet, the need to call unknown functions arises from the
desire to maintain modularity. The Word_Array data structure should

10 TCP checksums are not optional, so this protocol is non-standard and was only
used for performance testing. IP checksums were computed as usual.

final.tex; 28/09/2001; 10:27; p.42

A Network Protocol Stack in Standard ML 43

fun check_one(new, accumulator) =
Word32.+ (Word32.+ (Word32.>> (new, 0w16),

Word32.andb (new, 0wxffff)),
accumulator)

fun checksum buffer =
Word_Array.W32.Little.F.fold check_one 0w0 buffer

fun i_check_all(byteBuffer, first, last) =
let
fun loop(index, accumulator) =

if index > last then accumulator
else
loop(index + 1,

let val new =
Pack32Little.subArr(byteBuffer, index)

in Word32.+ (Word32.+
(Word32.>> (new, 0w16),
Word32.andb (new, max32)),
accumulator)

end)
in loop(first, 0w0)
end

fun inline_checksum buffer =
i_check_all(buffer, 0,

(Word8Array.length buffer - 1) div 4)

Figure 33. Equivalent functions for computing the Internet checksum. The second
function only takes about 85% of the time of the first.

fun fold f init (A data, first, last) =
let fun loop (index, value) =

if index > last then value
else
loop (index + 1,

f (Pack32Little.subArr (data, index),
value))

in loop (first, init)
end

Figure 34. The implementation of Word Array.W32.Little.F.fold.

final.tex; 28/09/2001; 10:27; p.43

44 Biagioni, Harper, Lee

Table III. Performance change with inlined
small function.

106 bytes 107 bytes

modular version 178ms 1.8s

inlined version 150ms 1.6s

ratio 84% 89%

be independent of the applications that use it, and therefore provides
only a generic looping operation (fold) rather than a specific, optimized
Internet checksum operation. SML supports this modularity by allowing
us to pass a specific function to fold (in other cases we pass to fold

functions that are partially instantiated, or curried). This modularity
makes the code easier to maintain, but is somewhat less efficient than
a mechanism which would provide direct inlining.

4.5. Foreign Memory

Any systems program must, as part of its function, access memory
structures either from hardware devices, or defined by programs written
in other languages. This is a task at which C excels — the efficient
pointer mechanism and the lack of bounds checks all contribute to
this ability. Derby has performed tests to compare the performance of
the SML inlined checksum computation and an equivalent C version to
similar code that performs the same computation without accessing the
contents of an array. The “no-access” code does the same arithmetic on
the value of a global variable. Since the variable is global, neither the
C nor the SML compilers should be able to optimize away the reference
and the resulting computation, though we have not actually verified
this.

The code for the SML version of this computation is shown in Fig-
ure 33. The code for the corresponding C computation is shown in
Figure 35, and the equivalent no-access test code in Figure 36.

The performance of these codes is shown in Table IV.

Table IV. Time (in milliseconds) for the 4 versions of the
checksum code to checksum 106 (one million) bytes.

Language Array Access No Array Access ratio

SML 150 ms 20 ms 13%

C 3.8 ms 2.3 ms 61%

final.tex; 28/09/2001; 10:27; p.44

A Network Protocol Stack in Standard ML 45

unsigned int inlineChecksum (unsigned int * byteBuffer,
int first, int last)

int index = first;
unsigned int sum = 0;
while (index <= last)

unsigned int w32 = byteBuffer[index];
index += 1;
sum += ((w32>>16) + (w32&0xFFFF));

return sum;

Figure 35. Reference C checksum code. This code is about 40 times faster than the
equivalent SML code.

val dummy = ref 0
fun i_check_all (byteBuffer, first, last) =

let fun loop (index, accumulator) =
if index > last then accumulator
else
loop(index + 1,

let val new = ! dummy
in
Word32.+(Word32.+(Word32.>> (new, 0w16),

Word32.andb (new, max32)),
accumulator)

end)
in loop(first, 0w0)
end

unsigned int dummy = 0;
unsigned int inlineChecksum (unsigned int * byteBuffer,

int first, int last)
int index = first;
unsigned int sum = 0;
while (index <= last)

unsigned int w32 = dummy;
index += 1;
sum += ((w32>>16) + (w32&0xFFFF));

return sum;

Figure 36. SML and C checksum code with array references removed. The SML code
executes in about 15% of the time of the original. The C code executes in about 60%
of the time of the original.

final.tex; 28/09/2001; 10:27; p.45

46 Biagioni, Harper, Lee

The Word_Array structure (Section 3.3) was designed to be imple-
mented as a built-in data structure — a more general, elegant, and
efficient version of the currently standard Word8Array. Word_Array could
be more efficient than Word8Array if directly supported by the compiler,
since Word_Array would only require a single bounds check per loop
iteration instead of the two required when using Word8Array. Using
only safe user code11, however, we have been unable to implement
Word_Array as efficiently as we know it could be implemented.

4.6. Related Performance Measurements

Derby has reported in detail on the performance of the FoxNet. Unfortu-
nately, we find that the report lacks some of the information that would
be essential for an adequate understanding and repeatable testing of
the data presented. We also find that some of the data itself strains our
credulity under any reasonable assumptions about the missing context.
In spite of repeated attempts, we have been unable to personally con-
tact the author of the report. Where possible, the results described
above have been obtained by following Derby’s stated measurement
methodology, but running the tests ourselves.

Some of our results differ significantly from those obtained by Derby,
while others confirm his results. Specifically:

− we were unable to confirm Derby’s claim that the checksum com-
putation adds substantial overhead to TCP.

− we were able to confirm that the system load when running the
FoxNet throughput test is substantially higher than when running
ttcp.

− we were not able to confirm Derby’s result that inlining the check-
sum computation produces a 62% speedup — our inlining only
gave about a 10%-15% speedup. We did confirm that the SML

function call is expensive compared to C.

− the cost we measured for memory access differed from Derby’s,
but again we were able to confirm that the current SML/NJ imple-
mentation of word access primitives will substantially affect the
performance of any memory-intensive program.

11 To avoid “cheating” and to preserve the safety benefits of using SML, we have
restricted the FoxNet to only use safe features of SML/NJ. This has been relaxed
in one place in the Linux version of the FoxNet, where unsafe features are used to
access the raw device.

final.tex; 28/09/2001; 10:27; p.46

A Network Protocol Stack in Standard ML 47

The large numerical discrepancy between our measurements and
those reported by Derby, especially for inlining functions, may simply
be due to the different choices of architectures and compiler versions.
The version of the compiler that we used has been designed to be
more aggressive at inlining functions, even unknown functions, than
the version used by Derby.

5. Evaluation

The FoxNet is a significant SML project. By one count, the sources
include over 50,000 lines of code and comments, with contributions
from at least half a dozen programmers over several years. The FoxNet

is significant in other ways as well. By using an advanced functional
language to implement code normally written in C, we have helped to
advance the state of the art in language design, compiler implementa-
tion, and systems programming, contributing to or helping to inspire
many other projects.

In this section, we take stock of the specific features of our system
which are novel or unusual compared to pre-existing systems. We are
especially interested in interactions between language features and the
FoxNet implementation.

5.1. Features of SML that support the FoxNet
Implementation

In this section we describe the features of SML that were helpful in imple-
menting the FoxNet: the modules language, strict typing, continuations,
exceptions, and garbage collection.

5.1.1. Modules
As can be seen starting in Section 2.3, the FoxNet relies heavily on
the SML modules language for structuring and organizing the code. The
SML modules provide us with unparalleled flexibility in composing the
code building blocks while preserving all the safety, error-checking, and
compile-time consistency checking of the SML language. While subsets
of these features are available for other languages12, as far as we are
aware only the dialects of ML provide all of these.

Our focus on using the modules language made us wish for features
that are not present in SML/NJ. One is the ability to generate specialized
code for a functor at functor application time (when the parameters

12 Java, for example, provides safety and error- and consistency-checking, but not
at compile time. At any rate, our project began before Java was available.

final.tex; 28/09/2001; 10:27; p.47

48 Biagioni, Harper, Lee

are supplied to the functor) instead of generic code produced at functor
definition time (before the parameters are available to the functor).
Currently, SML/NJ generates code for each functor when the functor is
compiled. Internally, the result is similar to a polymorphic function, and
the code generated is correspondingly generic. This strategy is effective
when each functor is applied many times, since it yields substantial
code savings. The alternative, which we are advocating here, is to not
generate machine code until the functor is applied to its arguments.
This happens at compile time, so code generation is straightforward.
The advantage of generating the code at functor application time is
that more types are known and therefore the code can be specialized
more, and hence can be more efficient, than code generated at functor
definition time. SML/NJ will not generate code at functor application
time, in part because in extreme cases it can lead to code explosion.
We conjecture that our performance (and most likely that of many
other SML programs) might improve if we had such a feature. Perhaps
what is needed is simply a mechanism to let the programmer specify for
each functor whether code should be produced at functor compilation
or functor application time.

5.1.2. Strict Typing
In general, the strict typing of SML worked in our favor. We came to
take it almost for granted that even after making a pervasive change in
a large number of modules, fixing the compilation errors shown by the
compiler would give us a correctly running system. While it is remotely
possible that this is due to the programmers’ skills, the experience
of these same programmers with large and complex C programs has
been quite different, suggesting that the strict typing and safety of the
language contributed substantially to coding productivity.

There is exactly one point at which the strict typing got in our
way. A careful study of the PROTOCOL signature in Appendix A shows
that both the connection_handler and the connect call return a value
of type unit. In our original design, the connection handler would be
polymorphic, returning an arbitrary value which is returned by the
corresponding call to connect. The corresponding types would be:

type ’a handler =
Connection_Key.T
-> connection_handler: connection -> ’a,

...
type session =

connect: Address.T * ’a handler -> ’a,
...

final.tex; 28/09/2001; 10:27; p.48

A Network Protocol Stack in Standard ML 49

Unfortunately, the SML type system is not sufficiently powerful to
express this type.13 The need is for “deep” or “nested” polymorphism,
which SML does not support.

In all other cases, the SML type system was entirely adequate to the
task, and coupled with type inference that is mostly automatic, we
found it both convenient and helpful.

One only needs to consider the many type casts required in any
systems program (and in most application programs) written in C to
appreciate the significance of the FoxNet compiling entirely within the
SML type system.

The lack of type casts required us to copy data when marshaling
and unmarshaling headers. Since many C programs do this anyway, for
example when putting headers and data into a standard byte order, it
is not clear that our type-safe solution is necessarily any worse than
the unsafe solutions that are used with other languages. As described
in Section 4.5, in practice we had performance issues for word and byte
accesses that were caused by the poor performance of memory access
operations in the specific version of SML/NJ that we used.

5.1.3. Continuations and Exceptions
Two features of SML that we used heavily were continuations and ex-
ceptions.

Continuations were used to implement co-operative multi-threading
(multi-tasking). Our entire scheduler, except for obtaining the system
time (needed to wake up sleeping threads), is written in SML. Continu-
ations are not part of the standard SML language, and are provided as
one of the SML/NJ extensions.

We note that the Hello project at the University of Hawai’i [14]
ported the FoxNet to run on a bare machine. The system clock was
maintained by SML code, so in Hello the entire scheduler was written in
SML.

In the FoxNet, exceptions are used to report unusual conditions.
Since SML and SML/NJ provide flawless specification and implementation
of exceptions and exception handling, we were generally happy with our
use of exceptions. Our only difficulty was sometimes identifying which
particular piece of code raised a particular exception. This difficulty
was compounded by the size and multi-threaded nature of the FoxNet.
We are pleased to note that later versions of SML/NJ now report the site
at which an unhandled exception (technically, an exception handled
by the compiler’s interactive front end) was raised. Unfortunately, this

13 The compiler could be changed to accept this type, but a new type system and
a new type theory would be needed to discriminate against other, unsafe types.

final.tex; 28/09/2001; 10:27; p.49

50 Biagioni, Harper, Lee

is of limited usefulness in a systems program that must continue to
execute, and therefore must under every circumstance handle any and
all exceptions generated in the code. Short of an exhaustive analysis of
which pieces of code can generate what exceptions14, our recourse was
the clumsy one of adopting a programming style whereby “error” uses
of raise are encapsulated with an identifying print statement. This
leads to occasionally undesirable printing (and occasionally mystifying
exceptions), again acceptable for a research project but unacceptable in
a production environment. We emphasize that this problem only arises
because the SML exception mechanism is extremely useful for systems
programming.

One way of ameliorating this problem would be to provide a debug-
ger for SML/NJ that could keep track of where exceptions are raised. The
versions of SML/NJ we used in developing the FoxNet has no debugger,
and since the stack frame format is different from the native stack
frame format on the system, it is not possible to use a generic debugger
to debug a program compiled with SML/NJ. Interestingly, the lack of
debugger, while annoying, was rarely a major nuisance. Since we only
used safe programming constructs, we never had pointer errors or unde-
tected out-of-bounds accesses, never corrupted our stack or accidentally
overwrote unrelated data structures. The consistency of our data being
guaranteed by the SML implementation, print statements were generally
sufficient to debug the FoxNet. Nonetheless, though we have shown that
it is possible to debug SML programs without a debugger, we are happy
to report that a more recent version of SML/NJ, version 110.29, has at
least a rudimentary stack tracing utility.

5.1.4. Garbage Collector
A final feature we found consistently helpful was the garbage collector.
Now that Java has swept the world, garbage collection is much more ac-
ceptable than it was in 1993, when we started implementing the FoxNet.
Moreover, even now garbage collectors are regarded suspiciously for
real-time and near-real-time programs. A network protocol stack is a
near-real-time program: performance suffers if response is not within
a predictable time. Since garbage collection can occur at any time,
response time is not accurately predictable and the argument can be
made that this will affect performance.

Again, while we are unable to prove that there is no such effect, our
measurements do not show substantial performance penalty from using

14 Java now supports specifications of which methods can generate what excep-
tions, but not automatically and very conservatively — programmers must manually
specify all the exceptions a method can raise, and Java only checks the consistency
of the specification.

final.tex; 28/09/2001; 10:27; p.50

A Network Protocol Stack in Standard ML 51

a garbage collector. One reason is that most of the pauses of the SML/NJ

garbage collector are short, on the order of a few milliseconds. Another
reason may be that even in a more conventional operating system,
response time is not guaranteed — other, higher priority events and
interrupts may cause unexpected delays.

If the costs of garbage collection are uncertain, the benefits are very
clear. Relatively little programmer effort is spent managing memory,
and complex sharing schemes where many different modules can refer
to the same data are no harder than having a single module own each
piece of data — the latter being almost necessary in writing reliable C

programs.

5.2. Limitations of SML

5.2.1. Memory Leaks and Synchronization
It would be nice to believe that garbage collection would prevent mem-
ory leaks. Memory leaks occur when a long-running program allocates
memory that is no longer used but never returned to the heap. Unfortu-
nately, the garbage collector only succeeds in preventing most memory
leaks.

One of our most interesting memory leaks [5] was caused by our use
of continuations to implement threads. This is described in detail in
Section 3.2.

As mentioned in Section 3.1.2, SML is similar to most program-
ming languages in offering no special protection against synchronization
errors.

5.2.2. 32-bit Integers
Another feature that was missing from SML when we began the project
was any kind of 32-bit integer type. SML/NJ has 31-bit integers, since
one of the 32 bits of a word (on 32-bit architectures) allows the garbage
collector to distinguish integers from pointers. This works for pointers
since the low-order bits of a word pointer on a byte-addressable archi-
tecture are not significant and all SML/NJ pointers are word pointers.
Since the Internet protocols often require 32-bit storage and 32-bit
arithmetic, one of the features we added to SML/NJ was support for 32-
bit signed and unsigned integers. These types have since been added
to the SML standard, but in SML/NJ are still implemented relatively
inefficiently: in memory, 32-bit integers are always represented by a
pointer to a 32-bit word containing the integer. This boxed represen-
tation would not be necessary with a different garbage collector, such
as some of the conservative garbage collectors available for C. Since

final.tex; 28/09/2001; 10:27; p.51

52 Biagioni, Harper, Lee

the selection of a garbage collection algorithm is a complex process
involving many tradeoffs in both space and time, it may well be that
this is the best that can be done for SML, but certainly any improvement
would improve the performance of SML/NJ for typical systems programs.

5.2.3. Byte Arrays
As we mentioned in Section 3.3, the whole concept of byte arrays (or
Word8Arrays, as they are currently referred to in SML) is somewhat
primitive. The concept of Word Arrays is that of an elegant, safe, and
efficient pointer. Byte arrays are inefficient because typically one range
check must be done in the program to check whether we’ve reached the
end of the array, and another in the (compiler generated) array access
code to verify that the index is within bounds. The alternative of not
explicitly checking for the end of the array in the program and instead
handling the Subscript exception is clumsy and error prone, and re-
quires the use of global reference variables to return results of an inner
loop. Word Arrays as currently defined and implemented are overly
complex and inefficient, but there is no reason why a compiler should
not be able to provide an efficient, elegant, and safe implementation
for safe pointers. Some of the requirements of such a system include:

− pattern matching for dereference, analogous to lists and streams,
and returning a distinct value when the end of the array is reached

− allowing a pointer to the interior of an array

− efficient implementation

− if it is possible to specify a standard layout for SML structured types
(tuples, records), allowing a pointer to the interior of such a type

We believe that at least the first three requirements are possible.
An optimal implementation of word arrays is described at the end of
Section 3.3.

5.3. Limitations of the FoxNet Implementation

Our choice to implement the FoxNet as a user-space application program
accessing data via raw device interfaces imposes overheads that are
hard to quantify and measure, and makes it harder to argue that we
are truly in a head-to-head comparison when we compare against a
kernel-resident implementation. The Hello project at the University of
Hawai’i [14] has addressed this issue.

final.tex; 28/09/2001; 10:27; p.52

A Network Protocol Stack in Standard ML 53

Our choice to use non-preemptive threads has simplified the imple-
mentation, but also imposed some burdens, especially on the applica-
tion programmer – applications must be thread-aware and yield when
they are not being productive.

Finally, considerably more work is needed before we can believe the
FoxNet is as finely tuned as a production system, and be comfortable
that the performance is as good as it can be within the limitations of
the current (and constantly evolving) SML/NJ system.

5.4. Related Work

The Ensemble project [15] has also developed communications software
in ML. Similarities with the FoxNet include the use of the ML language,
careful attention paid to structuring and efficiency, and dealing with
multiple threads of control. Differences include using a different dialect
of ML (CAML instead of SML), run-time protocol composition, and the
focus of the project being more on protocol design than on protocol
implementation – Ensemble did not attempt to implement standard
protocols. It can be argued that at least some of the efficiency they
claim comes from their unconventional coding of protocol headers,
which was not an option in the FoxNet.

The Express project’s goals are to explore the interaction between
advanced programming languages, operating systems, and compilers,
and develop the software technology to make advanced programming
languages practical, useful tools for systems programming [27]. The
project to date has focused more on enabling technology than on build-
ing actual systems. There has been a paper on new ways to express
concurrency [26] and the project has participated in building the Flux
OS kit [13]. All these activities are relevant to systems building, but
none of them compare directly to the activity of building a running
system and evaluating its performance.

The Spin project [3] has developed an operating system using an-
other type-safe, strongly-typed language, Modula-3. The focus in Spin
has been on building the operating system rather than the networking
protocols, and the Spin OS is a stand-alone operating system. Some of
the challenges faced in Spin, for example access to hardware resources
from a safe language, were bypassed in building the FoxNet (which runs
in user space), whereas other challenges, such as structuring the overall
system, were emphasized a lot more in the FoxNet than in Spin. In spite
of both being type-safe and strongly typed15, the languages differ sub-
stantially. Modula-3 is not a functional language, and both the module
constructs and the compilation of Modula-3 are fairly conventional. In

15 Modula-3 provides optional unsafe modules.

final.tex; 28/09/2001; 10:27; p.53

54 Biagioni, Harper, Lee

contrast, SML and specifically SML/NJ provide higher-order functions,
a powerful module language, and continuation passing compilation.
The latter results in fast continuation creation at the expense of more
frequent garbage collections. All these language differences, and the
Spin focus on having a running, stand-alone operating system, still lead
the conclusion that it is possible and often profitable to use advanced
languages for systems programming.

The Prolac project [16] has developed implementations of network-
ing protocols, most notably TCP, in an advanced modular object-
oriented language. The Prolac project is similar to the FoxNet in a
number of respects, including the fact that the Prolac language is type
safe. The Prolac language differs from SML in being object-oriented, in
being directly linkable with C (which allows the Prolac TCP to run
in the Linux kernel), and perhaps in being better optimized for perfor-
mance, most especially by inlining. The report mentions the FoxNet and
states that the FoxNet is not built for protocol extensibility – which says
more about the focus of the Prolac project than about the extensibility
of the FoxNet. Since Prolac and Spin were initiated after the FoxNet, it
is gratifying to think that the FoxNet may have contributed to inspiring
these projects.

Marshaling and unmarshaling, described in Section 3.4, is similar
to what in the systems world is often done by Sun XDR [24] (eXternal
Data Representation), a widely used language for describing data for-
mats to be sent over communication channels. Data format descriptions
are compiled to collection of marshaling and unmarshaling procedures
which are invoked to transform data from the “internal” representation,
which is system- and compiler-dependent, to a standard “external” rep-
resentation which can be exchanged among systems. Some differences
between XDR and the marshaling system are described in Section 3.4.

Several optimizing compilers for XDR are available, including the
Universal Stub Compiler [20].

Also notable are the optimizations introduced by the Tempo Partial
Evaluator [28], which can automatically optimize the Sun RPC code.
The code marshaling and unmarshaling code is regular and suitable
for automatic partial evaluation. The speedup from applying Tempo
to this code was up to 3.7 times faster. The optimizations introduced
by Tempo are not unlike the optimizations we tried to introduce by
currying the marshaling function, but apparently considerably more
effective, perhaps in part because the code produced by Tempo does
not need to be as modular as the original source code.

final.tex; 28/09/2001; 10:27; p.54

A Network Protocol Stack in Standard ML 55

6. Concluding Remarks

6.1. Future Work

The runtime system of SML/NJ is written in C. Of this runtime, the
largest single component is undoubtedly the garbage collector. Having
this garbage collector in C is currently necessary, as SML and SML/NJ

provide no efficient mechanisms for manipulating memory in the ways
required of a garbage collector.16 Implementing the garbage collector in
SML would not only substantially shrink the runtime, it would make it
easier to provide the kind of modularity and invariants that a garbage
collector needs as much as any other complex program.

Another promising avenue to explore is the further modularization
of the protocol stack. The FoxNet essentially has one module for each
of the protocols in the TCP/IP stack, for example, TCP, IP, ARP,
DNS. There is some reason for believing that even these individual
protocols need not be implemented monolithically, and can instead be
broken up into smaller functional blocks. IP, for example, might have
one section devoted to fragmentation and reassembly, a different sub-
protocol devoted to header checksums, and so on. While both we and
others have spent time looking at this issue, there is undoubtedly a
more elegant and interesting solution still waiting to be developed.

Finally, preliminary work by Fu [14], in collaboration with the first
author, has succeeded in porting the FoxNet to run directly on bare
hardware, eliminating the requirement for a user space implementation
and for communicating with the system to access the raw device. This
also requires writing device drivers and dealing with true concurrency,
but is a very interesting and exciting avenue of future work.

6.2. Conclusions

We set out to design and implement a networking system using an
advanced programming language, using modularity and structure wher-
ever possible, relying on strict typing, and rigorous adhering to safe
programming practices. The resulting system is modular and compos-
able, can be maintained fairly painlessly, and has the performance one
would expect of a research system. We have demonstrated that SML

is an adequate programming language for systems programming, and
have listed a number of features that we believe would improve the

16 There is also the challenge of garbage collecting the garbage collector itself. For
a stop-and-copy garbage collector, for example, this could be done very efficiently
by allocating a space specifically for the collector at the beginning of a run. At the
end of the run, this entire space can be reclaimed.

final.tex; 28/09/2001; 10:27; p.55

56 Biagioni, Harper, Lee

language’s overall usefulness. We have also showed how we used the
features of this advanced programming languages to improve the imple-
mentation of such stock systems programs as schedulers and networking
protocols.

Acknowledgements

It is impossible to adequately acknowledge the contributions made to
the Fox project by all of the following individuals: Perry Cheng, Herb
Derby, Mootaz Elnozahy, Robby Findler, Guangrui Fu, Brian Milnes,
J. Gregory Morrisett, Eliot Moss, George Necula, Chris Stone, David
Tarditi, Daniel Wang.

We also want to acknowledge the many other individuals not directly
involved with the project, who nonetheless contributed to its success.
This includes reviewers of this and other reports, who must remain
anonymous.

final.tex; 28/09/2001; 10:27; p.56

A Network Protocol Stack in Standard ML 57

Appendix

A. PROTOCOL Signature

signature PROTOCOL =
sig
structure Setup: KEY
structure Address: KEY
structure Pattern: KEY
structure Connection_Key: KEY
structure Incoming: EXTERNAL
structure Outgoing: EXTERNAL
structure Status: PRINTABLE
structure Count: COUNT
structure X: PROTOCOL_EXCEPTIONS
exception Already_Open of Connection_Key.T
type connection_extension
type listen_extension
type session_extension
type connection = {send: Outgoing.T -> unit,

abort: unit -> unit,
extension: connection_extension}

type listen =
{stop: unit -> unit, extension: listen_extension}

type handler =
Connection_Key.T
-> {connection_handler: connection -> unit,

data_handler: connection * Incoming.T -> unit,
status_handler: connection * Status.T -> unit}

type session =
{connect: Address.T * handler -> unit,
listen: Pattern.T * handler * Count.T -> listen,
extension: session_extension}

val session: Setup.T * (session -> ’a) -> ’a
end

final.tex; 28/09/2001; 10:27; p.57

58 Biagioni, Harper, Lee

B. Parameters for the Connection Functor

functor Connection
(structure Lower: PROTOCOL
(* types and structures of the protocol that this

instantiation implements *)
structure Setup: KEY
structure Address: KEY
structure Pattern: KEY
structure Connection_Key: KEY
structure Incoming: EXTERNAL
structure Outgoing: EXTERNAL
structure Status: PRINTABLE
structure Count: COUNT
structure X: PROTOCOL_EXCEPTIONS

(* the types of the state that must
be maintained for this protocol. *)

type connection_extension
type listen_extension
type session_extension
type connection_state
type protocol_state

(* functions to do
protocol-dependent processing *)

val lower_setup: Setup.T -> Lower.Setup.T

val init_proto:
Setup.T * Lower.session
* (Connection_Key.T * Status.T -> unit)
-> (protocol_state * session_extension)

val fin_proto: protocol_state -> unit

val resolve: protocol_state * Address.T
-> Lower.Address.T option

val make_key:
protocol_state * Address.T
* Lower.Connection_Key.T
* {conns: unit -> Connection_Key.T list,

listens: unit
-> (Pattern.T * listen_extension) list}

-> Connection_Key.T

final.tex; 28/09/2001; 10:27; p.58

A Network Protocol Stack in Standard ML 59

val map_pattern:
protocol_state * Pattern.T
* {conns: unit -> Connection_Key.T list,

listens: unit -> (Pattern.T
* listen_extension) list}

-> (listen_extension * Lower.Pattern.T) option

val match: protocol_state * Pattern.T
* listen_extension * Connection_Key.T
-> bool

val init_connection:
protocol_state * Connection_Key.T
* Lower.connection
-> connection_state * connection_extension

val fin_connection: connection_state -> unit

val send: Connection_Key.T * connection_state
-> Outgoing.T -> Lower.Outgoing.T list

val identify: Lower.Connection_Key.T
* protocol_state

-> Lower.Incoming.T
-> Connection_Key.T list

val receive: Connection_Key.T * connection_state
-> Lower.Incoming.T
-> Incoming.T option

val undelivered: Lower.Connection_Key.T
* protocol_state

-> (Lower.connection
* Lower.Incoming.T)

-> unit

val lower_status: protocol_state
* Lower.Connection_Key.T
-> Lower.Status.T -> unit

(* miscellaneous utilities and debugging *)
structure B: FOX_BASIS
val module_name: string
val debug_level: int ref option): PROTOCOL =

(* actual implementation, not shown here *)
end

final.tex; 28/09/2001; 10:27; p.59

60 Biagioni, Harper, Lee

C. WORD ARRAY Signature

signature WORD_ARRAY = sig
type T
structure W8 : BYTE_ACCESS_ARRAY
structure W16 : BYTE_ACCESS_ARRAY
structure W32 : BYTE_ACCESS_ARRAY
structure W64 : BYTE_ACCESS_ARRAY
structure W128: BYTE_ACCESS_ARRAY
structure W256: BYTE_ACCESS_ARRAY
sharing type W8.element = Word8.word

and type W16.element = Word16.word
and type W32.element = Word32.word
and type W64.element = Word64.word
and type W128.element = Word128.word
and type W256.element = Word256.word

val from8 : W8.T -> T
val from16 : W16.T -> T
val from32 : W32.T -> T
val from64 : W64.T -> T
val from128: W128.T -> T
val from256: W256.T -> T
val to8 : T -> W8.T
val to16 : T -> W16.T
val to32 : T -> W32.T
val to64 : T -> W64.T
val to128: T -> W128.T
val to256: T -> W256.T
val alignment_f: T -> Word.word
val alignment_r: T -> Word.word

end

References

1. Appel, A.: 1992, Compiling with Continuations. Cambridge University Press.
2. Appel, A. and D. MacQueen: 1991, ‘Standard ML of New Jersey’. In: J.

Maluszynski and M. Wirsing (eds.): Third International Symposium on Pro-
gramming Languages Implementation and Logic Programming. New York, pp.
1–13.

3. Bershad, B., C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak, S.
Savage, and E. Sirer: 1994, ‘SPIN - An Extensible Microkernel for Application-
specific Operating System Services’. In: SIGOPS 1994 European Workshop.
Dagstuhl, Germany.

4. Biagioni, E.: 1994, ‘A Structured TCP in Standard ML’. In: Proceedings, 1994
SIGCOMM Conference. London, UK, pp. 36–45.

final.tex; 28/09/2001; 10:27; p.60

A Network Protocol Stack in Standard ML 61

5. Biagioni, E., K. Cline, P. Lee, C. Okasaki, and C. Stone: 1998, ‘Safe-for-Space
Threads in Standard ML’. Higher-Order and Symbolic Computation 11(2).

6. Biagioni, E. et al.: 2000, ‘FoxNet Performance Test Code’.
http://www.ics.hawaii.edu/˜esb/prof/foxtest200004.tar.gz.

7. Biagioni, E., R. Harper, P. Lee, and B. Milnes: 1994, ‘Signatures for a Network
Protocol Stack – A Systems Application of Standard ML’. In: 1994 ACM
Conference on Lisp and Functional Programming. Orlando, FL.

8. Clark, D.: 1985, ‘The Structuring of Systems using Upcalls’. In: Proceedings of
the 10th SOSP. Orcas Island, Wash., pp. 171–180.

9. Cooper, E. and J. G. Morrisett: 1990, ‘Adding Threads to Standard ML’.
Technical Report CMU-CS-90-186, Carnegie Mellon University.

10. Day, J. D. and H. Zimmerman: 1983, ‘The OSI Reference Model’. Proceedings
of the IEEE 71(12), 1334–1340.

11. Derby, H.: 1999, ‘The Performance of FoxNet 2.0’. Technical Report CMU-CS-
99-137, School of Computer Science, Carnegie Mellon University.

12. Dijkstra, E. W.: 1960, ‘Recursive programming’. In: Numerische Mathematik.
pp. 312–318.

13. Ford, B., G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers: 1997, ‘The
Flux OSKit: A substrate for kernel and language research’. In: Proceedings of
the Sixteenth ACM Symposium on Operating Systems Principles (SOSP-16).
Saint-Malo, France.

14. Fu, G.: 1999, ‘Design and Implementation of an Operating System in Stan-
dard ML’. Master’s thesis, University of Hawai’i at Mānoa. Available at
http://www.ics.hawaii.edu/˜esb/prof/proj/hello/guangrui/thesis/.

15. Hayden, M.: 1998, ‘The Ensemble System’. Ph.D. thesis, Cornell University.
http://simon.cs.cornell.edu/Info/People/hayden/thesis.ps.

16. Kohler, E., M. F. Kaashoek, and D. Montgomery: 1999, ‘A Readable TCP in
the Prolac Protocol Language’. In: SIGCOMM. pp. 3–13.

17. Milner, R., M. Tofte, and R. Harper: 1990, The Definition of Standard ML.
The MIT Press.

18. Milner, R., M. Tofte, R. Harper, and D. MacQueen: 1997, The Definition of
Standard ML(Revised). The MIT Press.

19. O’Malley, S. and L. Peterson: 1992, ‘A Dynamic Network Architecture’. ACM
Transactions on Computer Systems 10(2).

20. O’Malley, S., T. Proebsting, and A. B. Montz: 1994, ‘USC: A Universal Stub
Compiler’. In: Proceedings, 1994 SIGCOMM Conference. London (UK), pp.
295–306.

21. Reppy, J. H.: 1991, ‘CML: A Higher-Order Concurrent Language’. In: Proceed-
ings of the SIGPLAN ’91 Conference on Programming Language Design and
Implementation.

22. RFC 0791: 1981, ‘Internet Protocol’. Information Sciences Institute, USC.
23. RFC 0793: 1981, ‘Transmission Control Protocol’. Information Sciences

Institute, USC.
24. RFC 1014: 1987, ‘XDR: External Data Representation Standard’. Sun

Microsystems, Inc.
25. RFC 1057: 1988, ‘RPC: Remote Procedure Call Protocol Specification, Version

2’. Sun Microsystems, Inc.
26. Shivers, O.: 1997, ‘Continuations and threads: Expressing machine concurrency

directly in advanced languages’. In: Proceedings of the Second ACM SIGPLAN
Workshop on Continuations. Paris.

final.tex; 28/09/2001; 10:27; p.61

62 Biagioni, Harper, Lee

27. Shivers, O.: 2000, ‘The Express Project’.
http://www.ai.mit.edu/projects/express/.

28. Thibault, S., C. Consel, J. L. Lawall, R. Marlet, and G. Muller: 2000, ‘Static
and Dynamic Program Compilation by Interpreter Specialization’. Higher-
Order and Symbolic Computation 13(3).

29. Wand, M.: 1999, ‘Continuation-based multiprocessing’. Higher-Order and Sym-
bolic Computation 12(3), 285–299. Reprinted from the proceedings of the 1980
Lisp Conference.

final.tex; 28/09/2001; 10:27; p.62

