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ABSTRACT
We develop an explicit two level system that allows program-
mers to reason about the behavior of effectful programs. The
first level is an ordinary ML-style type system, which confers
standard properties on program behavior. The second level
is a conservative extension of the first that uses a logic of type

refinements to check more precise properties of program be-
havior. Our logic is a fragment of intuitionistic linear logic,
which gives programmers the ability to reason locally about
changes of program state. We provide a generic resource se-
mantics for our logic as well as a sound, decidable, syntactic
refinement-checking system. We also prove that refinements
give rise to an optimization principle for programs. Finally,
we illustrate the power of our system through a number of
examples.

1. INTRODUCTION
One of the major goals of programming language design

is to allow programmers to express and enforce properties
of the execution behavior of programs. Conventional type
systems, especially those with polymorphism and abstract
types, provide a simple yet remarkably effective means of
specifying program properties. However, there remain many
properties which, while apparent at compile-time, cannot be
checked using conventional type systems.

For this reason, there has been substantial interest in the
formulation of refinements of conventional types that al-
low programmers to specify such properties. For example,
Davies and Pfenning [6] show how to extend ML with in-
tersection types and domain-specific predicates, and Xi and
Pfenning [40] popularized the use of singleton types. They
also present compelling applications including static array-
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bounds checking [39].
A separate research thread has shown how to use “type-

and-effect” to check properties of programs involving state.
These properties include safe region-based memory manage-
ment [36], safe locking [11], and the correctness of correspon-
dence assertions for communication protocols [15].

However, neither refinement types nor the many type-and-
effect systems attempt to provide a general-purpose logical
framework for reasoning about effectful computations. Xi
and Pfenning’s dependent type system and related work [8,
2, 5, 6] only seek to capture properties of values and pure
computations, rather than properties of effectful computa-
tions. For example, they are unable to describe protocols

that require effectful functions to be used in a specified or-
der. Therefore, these systems cannot be used to enforce im-
portant invariants such as the fact that that a lock be held
before a data structure is accessed or that a file is opened
before being read or closed. On the other hand, with few
exceptions type-and-effect systems, which clearly take state
into account, have focused on applying the type-and-effect
methodology to solve specific problems, rather than on sup-
porting a parameterized theory and general-purpose logic
for encoding domain-specific program invariants.

We propose a new system of type refinements that al-
lows the programmer to reason about effectful properties
of programs, without being tied to a particular problem
area. Our system contains three classes of type refinements.
World refinements are logical formulas describing the state
of the world (that is, program state). Term refinements
are much like conventional types and describe values such
as constants or functions. The function refinement includes
both argument and result world refinements, thereby allow-
ing programmers to add logical pre- and post-conditions to
higher-order functions. Expression refinements describe ef-
fectful expressions and include both a term refinement that
describes the value produced by the expression, as well as
a world refinement that describes the state of the world (i.e
program environment) after execution of the expression.

Our work can be seen as a continuation of earlier work on
refinement types, as well as a general language in which to
design and use type-and-effect systems. It also serves to pro-
vide a semantic framework for understanding practical work
in this area such as the Vault programming language [7].
Overall, the goal of our research is to provide a general, ro-
bust and extensible theory of type refinements that captures
sound techniques for local reasoning about program state.
We describe the main contributions of our system below.

A Two-Level System Based on Conservative Extension.



We formalize the notion of a type refinement and construct
a two level system for checking properties of programs. The
first level involves simple type checking and the second level
introduces our logic of refinements for reasoning about pro-
gram properties that cannot be captured by conventional
types. We establish a formal correspondence between types,
which define the structure of a language, and a refinements,
which define domain-specific properties of programs written
in a language. Only Denney [8] has explicitly considered
such a two level system in the past, but he restricted his
attention to pure computations.

We are careful to ensure that type refinements are a con-

servative extension of types. In other words, type refine-
ments refine the information provided by the underlying,
conventional type system rather than replace it with some-
thing different. The principle of conservative extension makes
it possible for programmers to add type refinements gradu-
ally to legacy programs or to developing programs, to make
these programs more robust.

A Parameterized Theory. The computational lambda cal-
culus [21] serves as our basic linguistic framework. We pa-
rameterize this base language with a set of abstract base
types, effectful operators over these types, and possible worlds.
Consequently, our theorems hold for a very rich set of possi-
ble effects and effectful computations. In addition, we have
separated our central type-checking rules from the specifics
of the logic of refinements. Our theorems will hold for a
variety of fragments of linear logic and we conjecture that
similar substructural logics can be used in its place with
little or no modification to the core system.

Support for Local Reasoning. To support modular reason-
ing about independent facets of a program it is essential that
it be possible to focus attention on a single facet without ex-
plicit reference to any others. For example, we may wish to
reason about an I/O protocol separately from a locking pro-
tocol or a state protocol. Formalisms based on classical logic
are only sound for global reasoning about the entire state of
a program. Not only is this unworkable as a practical mat-
ter, it is incompatible with modularity, which is essential for
all but the simplest programs.

To support modularity it is necessary to employ a logic
for local reasoning about independent facets of a program’s
state [18, 27, 32]. Classical logic does not permit local rea-
soning, essentially because it validates the structural prin-
ciples of weakening and dereliction. Substructural logics,
such as Linear Logic [14], or Bunched Implications (BI) [26,
18], do not validate these principles, and so are good candi-
dates for a logic supporting local reasoning. We employ a
fragment of linear logic that is adequate for many practical
purposes.

For local reasoning to be sound, the underlying effectful
operators in the language must in fact “act locally.” More
precisely, we have identified a crucial locality condition on ef-
fectful operators that is necessary for soundness in the pres-
ence of local reasoning. We have proven the soundness of
refinement checking in the presence of this locality condi-
tion. The soundness of refinement checking not only pro-
vides a means for checking certain correctness criteria, it
also entails an optimization principle for effectful operators.

A Decidable System of Type Refinements. While we focus
in this paper on a declarative presentation of our system of
type refinements, we have developed a decidable, algorith-
mic refinement-checking system and proven it both sound

and complete. A key aspect of the algorithmic system is
the introduction of refinement annotations to the syntax of
the language. These annotations allow the programmer to
guide the checker so that it may search for type-refinement
derivations in a deterministic fashion.

A Semantics for an Important Fragment of Vault. We
provide a number of examples to demonstrate the expres-
siveness of our system. Based on these examples, our refine-
ments appear to subsume the state-logic used in the Vault
programming language [7] (although our idealized language
does not contain the array of data structures present in
Vault, nor the specialized type-inference techniques). Hence,
our system suggests a semantics for an important fragment
of Vault.

A Simple Example: File Access
Before digging in to the technical details of our framework,
we present a simple example that introduces a number of
important concepts. The example revolves around enforc-
ing a simple resource usage protocol for file access and the
following interface defines the types of each operation over
files.

newFile : unit ⇀ File

open : File ⇀ unit

close : File ⇀ unit

write : (File,Data) ⇀ unit

Informally, the protocol for using these operators requires
that a file must be open before being written or closed, and
should be closed before the program terminates. However,
the interface, as presented, has no way to enforce this pro-
tocol. We demonstrate this point with a short function that
type checks but does not meet the requirements of the in-
terface. The function is written in a syntax similar to that
of Java.

saveToFile(f:File, d:Data) : unit
{

write(f,d); // Error: f not open.
close(f); // Error: f not open.

}

We can specialize the file interface with type refinements
that express the access protocol mentioned above.

newFile : (unit; 1) ⇀ ∃[f : File](Its(f); closed(f))
open : (Its(f); closed(f)) ⇀ (unit; open(f))
close : (Its(f); open(f)) ⇀ (unit; closed(f))
write : (Its(f),Data; open(f)) ⇀ (unit; open(f))

In the refined interface, the function arguments now have
two components. The first component is either a refine-
ment that corresponds to a conventional type or a more
specific singleton type that specifies the exact value of the
argument. The second component is a logical formula that
describes the state of the system. Function results also have
two components, with the added detail that results can be
existentially quantified, as is the case with newFile. Note
that all refinements are implicitly universally quantified over
the free variables in the refinement. For example, open is
implicitly quantified with ∀[f : File].

Two kinds of formulas appear in the example: predicates
and the formula 1. As a precondition, 1 states that the
function requires, and therefore affects, none of the exist-
ing state. As a postcondition it states that the function
produces no state.



We can now explain the refined interface. newFile takes
a unit and requires no existing state. It returns some File
object f and assures that f is initially closed. open takes
a particular f and changes its state from closed to open.
close does the reverse. Finally, write requires that f be
open, but does not change any state relating to f .

Next, we add type refinements to the saveToFile func-
tion, and see how a refinement checker would catch the pro-
tocol violation. On each line, we note the state of the world
after the function call.

saveToFile(f:File, d:Data; closed(f)): (unit; closed(f))
{ // closed(f)

write(f,d); // Error: closed(f) != open(f).
close(f); // Error: closed(f) != open(f).

}

Finally, we present a fixed version of the function:

saveToFile(f:File, d:Data; closed(f)): (unit; closed(f))
{ // closed(f)

open(f); // open(f)
write(f,d); // open(f)
close(f); // closed(f)

}

Our logic of refinements is much richer than the simple
fragment we have used in this example interface as it in-
cludes all of the multiplicative and additive connectives of
linear logic and some restricted uses of the modality “!”. For
some more sophisticated examples, the reader may wish to
skip ahead to section 4.

In the next section, we introduce our parameterized base
language and its conventional type system (Section 2). In
Section 3, we provide the syntax for general first-order re-
finements and provide a semantics for world (state) refine-
ments. Next, we give a declarative account of refinement
checking and discuss how the declarative account is con-
verted to an algorithmic one. Finally, we show that our
refinements are a conservative extension of the underlying
type system, state the main soundness theorems relating to
our system and discuss how refined operators may be opti-
mized. In the last section, we indicate our current research
directions and comment further on related work.

Finally, due to space considerations, we have omitted from
this paper the proofs of our theorems as well as a number
of details that were not critical to the presentation of our
work. Readers are encouraged to see our companion techni-
cal report [20] for complete details.

2. BASE LANGUAGE
We use Moggi’s computational λ-calculus [21] as a ba-

sic linguistic framework, as reformulated by Pfenning and
Davies [29]. The framework is enriched with recursive func-
tions and a base type of booleans. In order to consider a
variety of different sorts of effects, we parameterize the lan-
guage by a collection of abstract types a, constants c with
type a and a set of multi-ary operators o over these abstract
types.

2.1 Abstract Syntax
The abstract syntax of the language is defined by the fol-

Interface Contents

B Base Types
C Constant Names
O Operator Names
ΣA Constant and Operator Types
P Predicates
Σp Predicate Types
Σφ Constant and Operator Refinements

Implementation Meaning

W Worlds
Per(w) w’s Persistent Facts
Eph(w) w’s Ephemeral Facts
T (o) o’s Behavior

Figure 1: Language Parameters

lowing grammar:

Types A : : = a | Bool | A1 → A2 | A1 ⇀ A2

Var’s X : : = x | y | . . .
Values V : : = X | c | true | false | λ(X).M |

fun X (X1:A1) : A2 is E
Terms M : : = V | if M thenM1 elseM2 | M (M1)
Exp’s E : : = M | o(M1, . . . , Mk) | letX beE1 inE2 end |

app(M, M1) | if M thenE1 elseE2

The binding conventions are as expected; we identify ex-
pressions up to consistent renaming of bound variables. The
type A1 → A2 is the type of “pure” functions, which always
terminate without effect, and the type A1 ⇀ A2 is the type
of “impure” functions, which may not terminate and may
have an effect when applied.

2.2 Abstract Resources
Our language is parameterized by a set of abstract, effect-

ful operators, which manipulate some abstract resource or
set of resources. We may reason about an instance of the
language by specifying an interface for and implementation
of these operators and resources. In the future, we intend to
extend our language with a full-fledged module system and
an internal means of defining new resources.

We summarize the language parameters in Figure 1. An
interface Σ defines a set of abstract types B, a set of con-
stants C, and a set of operators O. The interface also pro-
vides a signature ΣA that gives types to the constants and
operators. When we come to checking refinements, we will
do so with respect to a set of predicates P, an interface Σp

to specify the types of predicate arguments and finally, a
signature Σφ to define the refinements of each constant or
operator.

An implementation M = (W, T ) defines a set W of worlds
w, and a transition function T between these worlds that
specifies the behavior of the operators over constants of the
appropriate types.

A world w is a pair (Per(w), Eph(w)) where Per(w) is a
set of persistent facts and Eph(w) is a multiset of ephemeral

facts. The persistent facts of a world w will remain true
in all worlds that can be reached through a computation



starting with w. The ephemeral facts of a world may or
may not hold in its future worlds.

The notation w1+w2 denotes a world containing the union
of the persistent facts from w1 and w2, and the multi-set
union of ephemeral facts from w1 and w2.

If an operator is given type a1, . . . , an ⇀ a by an interface,
then the transition function T (o) is a total function from a
sequence of constants with types a1, . . . , an and world w to a
constant with type a and world w′. We use the symbol ⇀ to
note that while these operators always terminate, they may
have effects on the world. We require that these functions
act monotonically on the persistent facts in the world. In
other words, if T (o)(c1, . . . , cn, w) = (c, w′) then Per(w) ⊆
Per(w′).

The transition function T (o) must also obey a locality

condition. In general, it may only have an effect on a part
of the world, rather than the entire world. Most operators
that one would like to define obey this locality condition.
However, some useful operators do not. For example, in
our system, programmers may not reason statically about a
function such as gc(roots), which deletes all resources except
the resources referenced from the variable roots. We defer
a formal explanation of this condition to Section 3.5 where
we prove the soundness of refinement checking.

Example: File Access (continued). We now consider pa-
rameterizing the language with the file access primitives
shown earlier in Section 1. We require three base types:
a type for files File, for data Data and the unit type unit.
Our constants include a countable set of file handles and
data (we use metavariables f and d to range over each of
these sets, respectively) and a unit value (). The signature
ΣA provides the types for the operations and constants.

ΣA(()) = unit

ΣA(f) = File

ΣA(d) = Data

ΣA(newFile) = unit ⇀ File

ΣA(open) = File ⇀ unit

ΣA(close) = File ⇀ unit

ΣA(write) = (File,Data) ⇀ unit

The set of predicates P is exactly the predicates closed
and open from our earlier example.

In the implementation component, we must specify the
set of worlds and the behavior of the operators. Notice that
there are no persistent predicates, and so the persistent set
of any world is always empty. However, once a file f is ini-
tialized with a call to newFile, either open(f) or closed(f)
will be in the ephemeral facts any future world. Therefore,
the W of the implementation is the countably infinite set of
worlds w, where Per(w) = ∅ and Eph(w) desribes a set of
files that are all either open or closed, but not both. The
transition function T specifies the dynamic semantics for
each operator and is shown in Figure 2. A key aspect of
this definition is that each of the operators are defined to be
total functions on the entire domain of worlds. If they were
not total functions we would be unable to prove a generic
soundness theorem for our language. Later (see Section 3.7),
we will prove an optimization principle that allows program-
mers to replace these total functions with the appropriate
partial functions when their program has the necessary re-
finement.

2.3 Semantics

T (newFile)((), w) = (f, w′)
where Eph(w′) = Eph(w) + {closed(f)}
and f is fresh

T (open)(f, w) = ((), w′)
if w = w′′ + {closed(f)}
and Eph(w′) = Eph(w′′) + {open(f)}

T (open)(f, w) = ((), w)
if w 6= w′′ + {closed(f)}

T (close)(f, w) = ((), w′)
if w = w′′ + {open(f)}
and Eph(w′) = Eph(w′′) + {closed(f)}

T (close)(f, w) = ((), w)
if w 6= w′′ + {open(f)}

Figure 2: Transition Function of File Operators

Since our base language semantics is almost entirely stan-
dard, we merely state the forms of the various judgments.
Complete details can be found in our companion technical
report [20].

The static semantics is given by the following two judge-
ment forms.

Γ `M M : A Term M has type A in Γ
Γ `E E : A Expression E has type A in Γ

The meta-variable Γ ranges over finite functions from vari-
ables x to types A. We write Γ(x) for the type (if any)
assigned to x by Γ.

The dynamic semantics is given by the following two eval-
uation judgements.

M ⇓ V the term M evaluates to value V
E @ w ⇓ V @ w′ in w the expression E evaluates to V

and changes to w′

The following rule defines evaluation for effectful operators
using the language parameter T .

Mi ⇓ ci (for 1 ≤ i ≤ n) T (o)(c1, . . . , cn, w) = c, w′

o(M1, . . . , Mn) @ w ⇓ c @ w′

(D-E-Op)
Aside from this rule, the dynamic semantics is entirely stan-
dard. The language as a whole satisfies the standard type
safety theorem [20].

3. REFINEMENTS
In order to define and check further, more specific, prop-

erties of values and computations than supported by the
type system alone, we introduce a logic of refinements that
may be layered on top of the computational lambda calculus
described in the previous section.

3.1 Syntax
A term refinement is a predicate over a type, describing a

more specific property of a term than a type alone. A world

refinement is a formula describing the (implicit) state of a
world. An expression refinement is a predicate over both the
type of an expression and the implicit type of the world in
which the expression is executed. The table below describes
the syntax of term, world and expression refinements.



Binding b : : = c:a
Term Refs φ : : = a | Bool | Its(c) | π
Function Refs π : : = φ1 → φ2 | (φ, ψ) ⇀ η | ∀b · π
World Refs ψ : : = p(c1, . . . , cn) |!p(c1, . . . , cn) |

1 | ψ1 ⊗ ψ2 | ψ1 ( ψ2 |
> | ψ1 & ψ2 | 0 | ψ1 ⊕ ψ2

Expr. Refs η : : = ∃[~b](φ, ψ)

Since we are concentrating on properties of effectful com-
putations, we have chosen a minimalist logic of term refine-
ments. There is a refinement that corresponds to each type
in the base language as well as singleton types denoted Its(c).
Partial functions are refined in order to specify a precondi-
tion for the state of the world on input and a postcondition
consisting of an expression refinement. The precondition
for a partial function could also have been an (existentially
quantified) expression refinement, but this extension pro-
vides no gain in expressive power. We allow function re-
finements to be prefixed with first-order universal quantifi-
cation.

The world refinements consist of the multiplicative-additive
fragment of linear logic augmented with intuitionistic pred-
icates !p(c1, . . . , cn). The connectives 1, ⊗ and ( form the
multiplicative fragment of the logic whereas the connectives
>, &, 0, and ⊕ are known as the additives. Both ⊗ and
& are forms of conjunction. Intuitively, a world can be de-
scribed by the formula ψ1 ⊗ ψ2 if it can be split into two
disjoint parts such that one part can be described by ψ1

and the other part can be described by ψ2. On the other
hand, a world satisfies ψ1&ψ2 if it can be described by both
ψ1 and ψ2 simultaneously. The formulas 1 and > are the
identities for ⊗ and & respectively. The formula ⊕ is a
disjunction and 0 is its identity.

When ~b is the empty sequence in some expression refine-

ment ∃[~b](φ, ψ), we often use the abbreviation (φ, ψ). We
use the notation FV(φ) to denote the set of free variables
appearing in the term refinement φ. We use a correspond-
ing notation for world and expression refinements. We use
the notation [c′/b]X to denote capture-avoiding substitution
of c′ for c in term or world refinement X when b = (c:a) and
ΣA(c′) = a. We extend this notation to substitution for a

sequence of bindings as in [c′1, . . . , c
′
n/~b]X or [~b′/~b]X. In ei-

ther case, constants substituted for variables must have the
correct type and the sequences must have the same length
or else the substitution is undefined. We also extend substi-
tution to persistent and ephemeral contexts in the ordinary
way.

Every refinement refines a particular type. To formalize

this relationship, we define two new judgments ~b ` φ v A

and ~b ` η vE A, which indicate that a term or expression

refinement refines the type A given the set of bindings ~b.
Figure 3 defines these relations. Below, we present a lemma
stating that any refinement refines a unique type.

Lemma 1
• If ~b ` φ v A1 and ~b ` φ v A2 then A1 = A2.

• If ~b ` η vE A1 and ~b ` η vE A2 then A1 = A2.

Finally, for every type A, there is a trivial refinement
triv(A) that refines it.

~b ` Bool v Bool ~b ` a v a

ΣA(c) = a or c:a ∈ ~b

~b ` Its(c) v a

~b ` φ1 v A1
~b ` φ2 v A2

~b ` φ1 → φ2 v A1 → A2

~b ` φ1 v A1
~b ` η2 vE A2

~b ` (φ1, ψ1) ⇀ η2 v A1 ⇀ A2

~b,~b′ ` φi v Ai (for 1 ≤ i ≤ n) ~b,~b′ ` η vE A

~b ` ∀~b′ · (φ1, . . . , φn, ψ) ⇀ η v (A1, . . . , An) ⇀ A

~b, c:a ` φ v A

~b ` ∀c:a · φ v A

~b ` φ v A

~b ` (φ, ψ) vE A

~b, c:a ` ∃[~b1](φ, ψ) vE A

~b ` ∃[c:a,~b1](φ, ψ) vE A

Figure 3: A Refinement of a Type

w ² ψ if and only if

• ψ = p(c1, . . . , cn), Eph(w) = {X} and X . p(c1, . . . , cn)

• ψ =!p(c1, . . . , cn), X ∈ Per(w) and X . p(c1, . . . , cn) and
Eph(w) = ∅

• ψ = 1 and Eph(w) = ∅

• ψ = ψ1⊗ψ2 and there exist w1, w2, such that w = w1 +w2

and w1 ² ψ1 and w2 ² ψ2

• ψ = ψ1 ( ψ2 and for all worlds w1 such that w1 ² ψ1,
w1 + w ² ψ2

• ψ = > (and no other conditions need be satisfied)

• ψ = ψ1 & ψ2 and w ² ψ1 and w ² ψ2

• ψ = 0 and false (this refinement can never be satisfied).

• ψ = ψ1 ⊕ ψ2 and either w ² ψ1 or w ² ψ2.

w ² Ω iff Per(w) ⊇ Ω.
w ² · iff Eph(w) = ∅.
w ² ψ1, . . . , ψn iff there exist w1, . . . , wn such that

• w = w1 + · · · + wn and

• w1 ² ψ1, . . . , wn ² ψn.

w ² Ω;∆ iff w ² Ω and w ² ∆.

Figure 4: Semantics of World Refinements

triv(Bool) = Bool

triv(a) = a

triv(A1 → A2) = triv(A1) → triv(A2)
triv(A1 ⇀ A2) = (triv(A1),>) ⇀ (triv(A2),>)

3.2 Semantics of Refinements
We were inspired to define a semantics for our world re-

finements by the work of Ishtiaq and O’Hearn [18]. The
semantics appears in Figure 4. The model (world) w used
in the semantics is that described earlier in section 2.2. The
fragment of the logic without the modality ! is an instance
of Simon Ambler’s resource semantics [1, p. 30-32]. It relies
upon an abstract relation . which defines the relationship
between primitive facts. For example, in a system contain-
ing arithmetic predicates such as less(x,y), the relation would
include less(x, 3) . less(x, 5). In most of our examples, the
relation . will simply be the identity relation. In other
words, our predicates are usually left uninterpreted.

The semantics of world refinements is extended to closed
persistent contexts Ω (lists of predicates p(~c)) and ephemeral
contexts ∆ (lists of world refinements) below. We treat both



kinds of contexts as equivalent up to reordering of their el-
ements.1

We will show later that linear logical entailment is sound
with respect to our semantics. However, as noted by Am-
bler [1, p. 32], there is no sense in which linear logical rea-
soning is complete with respect to this semantics. Despite
this deficiency, linear logic has proven to be very useful for
many applications. We leave definition of a sound and com-
plete logic for our resource semantics to future work.

3.3 Declarative Refinement-Checking
In this section, we give a declarative account of how to

check that a (possibly open) term or expression has a given
refinement. Refinement checking of open terms will occur
within a context of the following form. Whenever we con-
sider the semantics of refinements or refinement checking, we
presuppose that the values, terms and expressions in ques-
tion are well-formed with an appropriate type.

Persistent Ctxt Ω : : = · | Ω, c:a | Ω, x:φ | Ω, p(~c)
Ephemeral Ctxt ∆ : : = · | ∆, ψ

Furthermore, we define a derivative form of context, Ωb

to be a vector, ~b, consisting of all elements in Ω of the form
c:a.

Persistent contexts are constrained so that the variables
c and x appear at most once to the left of any : in the con-
text. When necessary, we will implicitly alpha-vary bound
variables to maintain this invariant. We treat contexts that
differ only in the order of the elements as equivalent and do
not distinguish them (provided both contexts in question
are well formed; in other words, reordering must respect de-
pendencies.). Occasionally, we call the persistent context
unrestricted and the ephemeral context linear. Both con-
traction and weakening hold for the unrestricted context
while neither of these structural properties hold for the lin-
ear context.

Declarative refinement checking is formulated using the
judgment forms in Figure 5. All but the first judgment are
implicitly parameterized by a fixed, well-formed interface Σ.

The first six judgments in the list are relatively standard.
They simply check that each sort of type or context is well-
formed in the context Ω. This check amounts to the fact
that constants and variables that appear in a type or context
appear bound previously in the context or in the signature.
The formal rules appear in the technical report.

The next two judgments form the heart of the system.
They check terms and expressions to ensure that they have
appropriate refinements. The term refinement-checking rules
may be found in Figure 6. We point out a few impor-
tant details. In rule (R-T-Const) constants c are given
very precise singleton types, following work by Xi and Pfen-
ning [40]. Also, rule (R-T-TApp) does not consider the
case that the function in an application has a polymorphic
refinement. This possibility is taken care of by the (R-T-
Sub) rule, which instantiates universal quantifiers implicitly.
Such instantiations can be resolved by standard first-order
unification. Furthermore, rule (R-T-If) does not check that
the first term M has a boolean refinement, because we as-
sume that refinement checking is preceded by ordinary type

1When we extend Ω to open contexts which include constant
declarations, reordering must respect the dependencies in-
troduced by such declarations (see Section 3.3).

` Σ ok Signature Σ is well-formed
` Ω ok Context Ω is well-formed
Ω ` ∆ ok Context ∆ is well-formed in Ω
Ω ` φ ok Refinement φ is well-formed in Ω
Ω ` ψ ok World ref. ψ is well-formed in Ω
Ω ` η ok Expression ref. η is well-formed

in Ω

Ω ÀM M : φ Term M has refinement φ in Ω
Ω;∆ ÀE E : η Expression E has ref. η in Ω;∆

Ω; φ =⇒M φ′ Term refinement φ entails φ′ in Ω
Ω;∆ =⇒W ψ Context ∆ entails ψ in Ω
Ω;∆; η =⇒E η′ Expression ref. η entails η′ in Ω;∆

Ω;∆ Ã (Ωi;∆i)n Context Ω;∆ reduces to the
context list (Ωi;∆i)n in one step

Ω;∆ Ã∗ (Ωi; ∆i)n Context Ω;∆ reduces to the
context list (Ωi;∆i)n in 0 or more steps

Figure 5: Refinement-Checking Judgments

checking.
The expression refinement-checking rules appear in Fig-

ure 7. Rule (R-E-Term) defines the interface between pure
and effectful computations. Pure terms neither require nor
produce state, and are therefore checked in an empty ephemeral
context and given the world refinement 1. We use the (R-E-
Sub) rule (discussed in more detail below) to properly check
terms within a non-empty ephemeral context. The rule for
checking operators requires that we guess a sequence of con-
stants to substitute for the polymorphic parameters in the
operator refinement. Given this substitution, we check that
operator arguments may be given refinements equal to their
corresponding formal parameter.

There are three expression checking rules that are not
syntax-directed. (R-E-Sub) merits special attention as it
is the key to local reasoning. The rule splits the context
into two disjoint parts, ∆1 and ∆2, where ∆1 is used to
check the expression E, and ∆2 passes through unused. As
a result, the computation may be written in ignorance of
the total global state. It need only know how to process
the local state in ∆1. In fact, in the case that ∆1 is empty,
the computation may be completely pure. Additionally, (R-
E-Sub) serves as a conventional subsumption rule in which
we check that one expression refinement entails the other.
(R-E-Cut) is the logical cut rule: If we can prove some
intermediary result (ψ) which in turn makes it possible to
demonstrate our final goal (E : η) then we should be able
to prove our final goal from our original premises. Since ∆
contains linear hypotheses that must not be duplicated, we
split the context into two parts ∆1 and ∆2, one part for
each premise in the rule.

Finally, since proofs in substructural logics require careful
manipulation of the context, we introduce a new rule (R-E-
Context) to control context evolution during type check-
ing. This rule depends upon the judgment Ω; ∆ Ã (Ωi; ∆i)n

which encodes the action of all natural left rules from the
sequent calculus for linear logic. The notation (Ωi; ∆i)n

stands for a list of (possibly zero) contexts (Ω1; ∆1), . . . ,
(Ωn; ∆n). We specifically use the word reduces since every
valid judgment of this form reduces the number of connec-
tives in the context when read from left to right. Most of



Ω, x : φ ÀM x : φ (R-T-Var)

c ∈ Dom(Σφ)

Ω ÀM c : Its(c) (R-T-Const)

Ω ÀM true : Bool (R-T-True)

Ω ÀM false : Bool (R-T-False)

Ωb,~b ` φ1 v A Ω,~b ` φ1 ok

Ω,~b, x:φ1 ÀM M : φ2 (φ = ∀~b · φ1 → φ2)

Ω ÀM λ(x:A).M : φ (R-T-Lam)

Ωb ` φ v A1 ⇀ A Ω ` φ ok

Ω, x:φ,~b, x1:φ1; ψ1 ÀE E : η

(φ = ∀~b · (φ1, ψ1) ⇀ η)

Ω ÀM fun x (x1:A1) : A is E : φ (R-T-Fun)

Ω ÀM M1 : φ Ω ÀM M2 : φ

Ω ÀM if M thenM1 elseM2 : φ (R-T-If)

Ω ÀM M : φ1 → φ2 Ω ÀM M1 : φ1

Ω ÀM M (M1) : φ2 (R-T-TApp)

Ω ÀM M : φ Ω; φ =⇒M φ′

Ω ÀM M : φ′ (R-T-Sub)

Figure 6: Refinement-Checking for Terms

the rules produce one context. However, the rule for dis-
junction produces two contexts (and E must have the same
refinement in both of them) and the rule for falsehood pro-
duces no context (and we can choose any well-formed expres-
sion refinement for E without further checking). We extend
the one-step context reduction judgment to its reflexive and
transitive closure, which we denote Ω; ∆ Ã∗ (Ωi; ∆i)n.

The last five judgments involved in refinement checking
specify the logical component of the system. We have al-
ready discussed the context reduction judgments. This judg-
ment is combined with the right rules from the sequent cal-
culus and the cut rule in the judgment Ω; ∆ =⇒W ψ to
provide a full proof system for our fragment of linear logic.
The judgment Ω; φ =⇒M φ′ is the corresponding proof sys-
tem for term refinements. Notice that these rules do not
depend upon the linear context ∆. Since terms are pure,
their refinements should not depend upon ephemeral state.
Finally, the judgment for expression refinement entailment
Ω;∆; η =⇒E η′ combines the world and term proof systems
with rules for existentials. These judgments are formally
defined in Figures 8, 9, 10 and 11.

3.4 Algorithmic Refinement-Checking
We have developed an algorithmic refinement-checking

system that is both sound and complete with respect to the
system presented above. There is one typing rule for each
expression or term construct and all premises in the rules
are fully determined, except those of the context-reduction
judgment. We developed the system in two steps, outlined

Ω ÀM M : φ

Ω; · ÀE M : (φ,1) (R-E-Term)

Ω ÀM Mi : [~c/~b]φi (for 1 ≤ i ≤ n)

(Σφ(o) = ∀~b · (φ1, . . . , φn, ψ1) ⇀ η)

Ω; [~c/~b]ψ1 ÀE o(M1, . . . , Mn) : [~c/~b]η (R-E-Op)

Ω;∆ ÀE E1 : η1

Ω,~b1, x:φ1; ψ1 ÀE E2 : η2

(~b1 6∈ FV(η2))

Ω;∆ ÀE letxbeE1 inE2 end : η2

(η1 = ∃[~b1](φ1, ψ1))

(R-E-Let)

Ω ÀM M : (φ1, ψ1) ⇀ η Ω ÀM M1 : φ1

Ω; ψ1 ÀE app(M, M1) : η (R-E-PApp)

Ω;∆ ÀE E1 : η Ω;∆ ÀE E2 : η

Ω;∆ ÀE if M thenE1 elseE2 : η (R-E-If)

Ω;∆ Ã∗ (Ωi;∆i)n

Ωi;∆i ÀE E : η (for 1 ≤ i ≤ n)

Ω;∆ ÀE E : η (R-E-Context)

Ω;∆2 =⇒W ψ Ω;∆1, ψ ÀE E : η

Ω;∆1, ∆2 ÀE E : η (R-E-Cut)

Ω;∆1 ÀE E : η Ω;∆2; η =⇒E η′

Ω;∆1, ∆2 ÀE E : η′ (R-E-Sub)

Figure 7: Refinement-Checking for Expressions

below.
The first step is cut elimination. We eliminate the two cut

rules (the cut rule for expression refinement-checking and
the cut rule for linear logic entailment) and show that the
resulting system is sound and complete with respect to the
original refinement-checking specification. We carry out the
proof by modifying and extending the logical cut elimination
proof in earlier work by Pfenning [28].

In the second step we eliminate the subsumption rule
and introduce annotations in order to eliminate two criti-
cal sources of non-determinism present in the previous sys-
tem. The first source is the non-syntax-directedness of the
subsumption rule. We therefore incorporate the subsump-
tion rule into the language in a syntax-directed manner, and
modify the expression rules so that the context-splitting of
the subsumption rule is deterministic.

The second source of non-determinism is the need for the
refinement-checker to “guess” the refinement of a given term
or expression when the refinement cannot be deduced. We
therefore introduce type refinement annotations into the lan-
guage, allowing the programmer to supply the checker with
the missing refinement. In order to reduce the annotation
burden, we have defined a bi-directional refinement checking
algorithm. The essence of this system is the introduction of
two new refinement-checking judgments: one for refinement
inference and one for refinement checking. The former judg-
ment infers a refinement for the given term or expression
and produces it as an output. The latter judgment takes a



Ω; a =⇒M a (L-T-Base)

Ω;Bool =⇒M Bool (L-T-Bool)

Ω; Its(c) =⇒M Its(c) (L-T-Its)

ΣA(c) = a or Ω(c) = a

Ω; Its(c) =⇒M a (L-T-ItsBase)

Ω; φ′
1

=⇒M φ1 Ω; φ2 =⇒M φ′
2

Ω ` φ′
1

ok

Ω; φ1 → φ2 =⇒M φ′
1
→ φ′

2
(L-T-TArr)

Ω; φ′
1

=⇒M φ1 Ω; ψ′
1

=⇒W ψ1 Ω; ·; η =⇒E η′

Ω ` φ′
1

ok Ω ` ψ′
1

ok

Ω; (φ1, ψ1) ⇀ η =⇒M (φ′
1
, ψ′

1
) ⇀ η′

(L-T-PArr)

Ω; [c′/c:a]π =⇒M π′

Ω; ∀c:a · π =⇒M π′ (L-T-AllL)

Ω, c:a; π =⇒M π′

Ω; π =⇒M ∀c:a · π′ (L-T-AllR)

Figure 8: Entailment for Term Refinements

Ω;∆, !p(c1, . . . , cn) Ã Ω, p(c1, . . . , cn);∆ (CR-!)

Ω;∆,1 Ã Ω;∆ (CR-1)

Ω;∆, ψ1 ⊗ ψ2 Ã Ω;∆, ψ1, ψ2 (CR-MAnd)

Ω;∆1 =⇒W ψ1

Ω;∆1, ∆2, ψ1 ( ψ2 Ã Ω;∆2, ψ2 (CR-Imp)

Ω;∆, ψ1 & ψ2 Ã Ω;∆, ψ1 (CR-And1)

Ω;∆, ψ1 & ψ2 Ã Ω;∆, ψ2 (CR-And2)

Ω;∆,0 Ã (CR-Zero)

Ω;∆, ψ1 ⊕ ψ2 Ã (Ω;∆, ψ1), (Ω;∆, ψ2) (CR-Or)

Ω;∆ Ã∗ Ω;∆ (CR*-Reflex)

Ω;∆ Ã (Ωj ;∆j)m Ωj ; ∆j Ã∗ (Ωjk
;∆jk

)nj
(for 1 ≤ j ≤ m)

Ω;∆ Ã∗ (Ω1k
;∆1k

)n1
, · · · , (Ωmk

;∆mk
)nm

(CR*-Trans)

Figure 9: Context Reduction and Its Closure

Ω; ψ =⇒W ψ (L-E-Hyp)

Ω, p(c1, . . . , cn); · =⇒W !p(c1, . . . , cn) (L-E-!R)

Ω; · =⇒W 1 (L-E-1R)

Ω;∆1 =⇒W ψ1 Ω;∆2 =⇒W ψ2

Ω;∆1, ∆2 =⇒W ψ1 ⊗ ψ2 (L-E-MAndR)

Ω;∆, ψ1 =⇒W ψ2 Ω ` ψ1 ok

Ω;∆ =⇒W ψ1 ( ψ2 (L-E-ImpR)

Ω;∆ =⇒W > (L-E-TR)

Ω;∆ =⇒W ψ1 Ω;∆ =⇒W ψ2

Ω;∆ =⇒W ψ1 & ψ2 (L-E-AndR)

Ω;∆ =⇒W ψ1

Ω;∆ =⇒W ψ1 ⊕ ψ2 (L-E-OrR1)

Ω;∆ =⇒W ψ2

Ω;∆ =⇒W ψ1 ⊕ ψ2 (L-E-OrR2)

Ω;∆ Ã (Ωi;∆i)n

Ωi;∆i =⇒W ψ (for 1 ≤ i ≤ n)

Ω;∆ =⇒W ψ (L-E-Left)

Ω;∆2 =⇒W ψ1 Ω;∆1, ψ1 =⇒W ψ

Ω;∆1, ∆2 =⇒W ψ (L-E-Cut)

Figure 10: Entailment for World Refinements

Ω; φ =⇒M φ′ Ω;∆, ψ =⇒W ψ′

Ω;∆; (φ, ψ) =⇒E (φ′, ψ′) (L-ER-Base)

Ω;∆; η =⇒E [c′/c:a]∃[~b](φ, ψ)

Ω;∆; η =⇒E ∃[c:a,~b](φ, ψ) (L-ER-ExistsR)

Ω, c:a;∆; ∃[~b](φ, ψ) =⇒E η

Ω;∆; ∃[c:a,~b](φ, ψ) =⇒E η (L-ER-ExistsL)

Figure 11: Entailment for Expression Refinements



refinement as input and checks the given term or expression
against the refinement.

Our system also requires a second form of annotation to
guide the use of the context rule in expressions. Essentially,
these annotations specify when the refinement-checker must
use the disjunctive left rule, which, when applied, causes the
annotated expression to be rechecked in two different logical
contexts. Rechecking the program text has the potential to
be very expensive, so we place this facility under the control
of the programmer. For a more detailed explanation of our
type checking algorithm and full proofs of soundness and
completeness with respect to the declarative system, we refer
the reader to our technical report [20].

The algorithmic refinement-checking system is decidable
modulo the three following aspects of the system:

1. Resolution of first-order existential variables.

2. Resource management.

3. Theorem proving in first-order MALL.

These sources of nondeterminism do not cause the system
to be undecidable, as each can be solved independently (and
has in the past). First, resolution of first-order existential
variables can be done via either explicit instantiation or uni-
fication. Second, we must solve the resource, or context,
management problem. This problem includes the issue of
deciding how to split a linear context into parts in multi-
plicative rules such as the ⊗-right rule, (L-E-MAndR), and
(R-E-Sub). There are several known approaches to effi-
cient resource management in linear logic [3]. Third, theo-
rem proving in the multiplicative-additive fragment of lin-
ear logic (MALL) has been proven decidable [19]. However,
while our system is decidable, finding an efficient decision
procedure for all three of the above problems will be chal-
lenging. We believe that further investigation should be
done in the setting of a practical implementation.

3.5 Soundness
The proof of soundness of refinement checking requires the

following soundness condition on the primitive operators.

Condition 2 (Soundness of Primitives)
Suppose

Σφ(o) = ∀~b1 · ((φ1,1, . . . , φ1,n, ψ1) →∃[~b2](φ2, ψ2))

If w ² Ω; [~c1/~b1]ψ1, and for 1 ≤ i ≤ n, Ω ÀM c′i : [~c1/~b1]φ1,i,
and T (o)(c′1, . . . , c

′
n, w + u) = c′, w′ then there exist Ω′ and

~c2 such that

1. w′ = w′′ + u;

2. Ω′ ÀM c′ : [~c2/~b2][~c1/~b1]φ2;

3. w′′ ² Ω′; [~c2/~b2][~c1/~b1]ψ2.

4. Ω ⊆ Ω′

Informally, this condition states that the operator must be-
have as predicted by its type refinement, and, importantly,
can have no effect on a part of the world that is not specified
in the precondition of its refinement. Above, w satisfies the
precondition of o’s refinement. Consequently, no extension,

u, of the world may be modified during the operation of o
at world w + u.

The following lemma expresses the relationship between
our world semantics and logical judgments, stating that log-
ical deduction respects the semantics of formulas.

Lemma 3 (Soundness of Logical Judgments)
If w ² Ω; ∆ and Ω; ∆ =⇒W ψ then w ² ψ.

Finally, we may state and prove our refinement preserva-
tion theorem.

Theorem 4 (Refinement Preservation)

1. If Ω ÀM M : φ and M ⇓ V then Ω ÀM V : φ.

2. If Ω; ∆ ÀE E : ∃[~b](φ, ψ), w ² Ω; ∆, and E @ w + u ⇓
V ′

@ w′, then there exist Ω′ and ~c such that Ω′ ÀM

V : [~c/~b]φ, w′ = w′′ + u, Ω ⊆ Ω′ and w′′ ² Ω′; [~c/~b]ψ.

The following canonical forms theorem expresses the prop-
erties of values that refinement checking provides.

Theorem 5 (Refinement Canonical Forms)
If · ` V : A and Ω ÀM V : φ (with Ω containing only
bindings and predicates) then one of the following holds:

1. φ = Bool and V = true or V = false;

2. φ = Its(c) and V = c;

3. φ = a, V = c and ΣA(c) = a;

4. φ = ∀~b · φ1 → φ2 and V = λ(x1:A1).M ;

5. φ = ∀~b·(φ1, ψ1) ⇀ η and V = fun x (x1:A1) : A2 is E.

3.6 Conservative Extension
To capture the notion that refinements are a conservative

extension of the type system, we present the theorems below.
The first theorem states that any refinement given to a term
(or expression) in our refinement checking system will always
refine the type given to the term (or expression) in the type
checking system. In this theorem, we define type(Ω) as the
typing context Γ mapping all variables x ∈ Dom(Ω) to the
type refined by their refinement in Ω. That is, if x:φ ∈ Ω
and Ωb ` φ v A then x:A ∈ Γ.

Theorem 6
If Ω ÀM M : φ and type(Ω) `M M : A then Ωb ` φ v A.
Similarly, if Ω; ∆ ÀE E : η and type(Ω) `E E : A then
Ωb ` η v A.

The next theorem states that for any well-typed term, M
(or expression, E), with type A, there exists a refinement-
checking derivation for which M (E) has the trivial type asso-
ciated with A. That is, any well-typed term (expression) can
also be shown to be well-refined. In this theorem, trivΓ(Γ)
is defined as the persistent context mapping elements x ∈ Γ
to the trivial refinement of their type in Γ. Also, trivΣ(ΣA)
is defined as the refinement interface containing the trivial
refinements of the elements of ΣA.

Theorem 7
If Γ `M M : A and Σφ = trivΣ(ΣA) then trivΓ(Γ) ÀM M :
triv(A). Similarly, if Γ `E E : A and Σφ = trivΣ(ΣA) then
trivΓ(Γ);> ÀE E : (triv(A),>).



3.7 Optimization
As well as helping programmers document and check their

programs for additional correctness criteria, refinements pro-
vide language or library implementors with a sound opti-
mization principle. When programs are checked to deter-
mine their refined type, implementors may replace the to-
tal function, T (o), implementing operator o, with a partial

function, T̂ (o), that is only defined on the refined domain
given by the refinement signature Σφ.

To be precise, we define the optimized function T̂ (o) as
follows.

T̂ (o)(c1, . . . , cn, w) = T (o)(c1, . . . , cn, w)

if Σφ(o) = ∀~b · (φ1, . . . , φn, ψ) ⇀ η,

w ² Ω; [~c/~b]ψ

and Ω ÀM ci : [~c/~b]φi for 1 ≤ i ≤ n

T̂ (o)(c1, . . . , cn, w) = undefined otherwise

We use the notation ⇓̂ to denote the optimized evaluation
of expressions with the transition function T replaced by T̂
(that is, all operator implementations replaced by their op-
timized versions). We are able to prove that optimized and
unoptimized evaluation are equivalent and therefore that it
is safe for implementors to replace operator implementations
with their optimized version.

Theorem 8 (Optimization)
If Ω; ∆ ÀE E : η and w ² Ω; ∆ then E @ w ⇓ V @ w′ if and

only if E @ w⇓̂V @ w′.

4. EXAMPLES
In this section, we provide a number of examples that

demonstrate the expressive power of our language. Our
technical report presents several more examples including
recursion counts and safe locking. We omit leading univer-
sal quantifiers in our examples as they may easily be inferred
in a similar manner to the way the Twelf system [30] infers
leading quantifiers.

4.1 Alias Types
Our first example demonstrates how our system of type

refinements is able to capture simple aliasing constraints, as
in previous work on alias types [34, 38]. These constraints
allow us to deallocate memory explicitly, yet safely, using the
free function. The refinement signature for this application
appears below.

() : unit
i : int (for any integer i)
` : int ref (for any location `)
new : (Its(i),1) ⇀ ∃[`:int ref ](Its(`), ctns(`, i))
get : (Its(`), ctns(`, i)) ⇀ (Its(i), ctns(`, i))
set : (Its(`), Its(i), ctns(`, i′)) ⇀ (unit, ctns(`, i))
free : (Its(`), ctns(`, i)) ⇀ (unit,1)

A single predicate ctns(`, i) appears in the signature. It
indicates that the location ` holds the integer i. The new
operation places no requirements on the world in which it
operates and therefore its precondition is simply 1. The
postcondition specifies that exactly one new location has
been allocated. The other three functions require that the

world refinement ctns(`, i) be satisfied before the function is
called.

This example can easily be extended to accommodate
region-based memory management [35]. We would need to
augment the signature with a collection of region constants
r and a pair of predicates, allocreg(r) to indicate that the
region r is allocated, and inreg(`, r) to link the location to
its region. Refinements can then be written for region al-
location, object allocation, get, set and region deallocation
operations.

4.2 Interrupt Levels
For their study of Windows device drivers, DeLine and

Fahndrich extend Vault with a special mechanism for spec-
ifying “capability states” which are arranged in a partial
order [7]. They use the partial order and bounded quantifi-
cation to specify preconditions on kernel functions. Here we
give an alternate encoding and reason logically about the
same kernel functions and their preconditions.

First, we assume a signature with abstract constants that
correspond to each interrupt level and also a predicate L
over these levels. If L(c) is true at a particular program
point then the program executes at interrupt level c at that
point.

pass : level Passive Level
apc : level APC Level
dis : level Dispatch Level
dirql : level DIRQL Level
L : level → prop Level Predicate

Next we consider a variety of kernel functions and their
type refinements. First, the KeSetPriorityThread function
requires that the program be at Passive Level when it is
called and also returns in Passive Level. The function takes
arguments with type thread and pr, which we assume are
defined in the current signature.

KeSetPriorityThread :
(thread,pr, L(pass)) ⇀ (pr, L(pass))

Function KeReleaseSemaphore is somewhat more complex
since it may be called in Passive, APC or Dispatch level
and it preserves its level across the call. We let less(dis)
abbreviate the formula L(pass) ⊕ L(apc) ⊕ L(dis).

KeReleaseSemaphore :
(sem,pr, long, L(l) ⊗ (L(l) ( less(dis))) ⇀ (pr, L(l))

Finally, KeAcquireSpinLock also must be called in one of
three states. However, it returns in the Dispatch state and
also returns an object representing the initial state (l) that
the function was called in.

KeAcquireSpinLock :
(sem,pr, long, L(l) ⊗ (L(l) ( less(dis))) ⇀ (Its(l), L(dis))

5. DISCUSSION

5.1 Related Work
A number of researchers have recently proposed strate-

gies for checking that programs satisfy sophisticated safety
properties. Each system brings some strengths and some



weaknesses when compared with our own. Here are some of
the most closely related systems.

Refinement Types. Our initial inspiration for this project
was derived from work on refinement types by Davies and
Pfenning[6] and Denney [8] and the practical dependent
types proposed by Xi and Pfenning [39, 40]. Each of these
authors proposed to sophisticated type systems that are able
to specify many program properties well beyond the range
of conventional type systems such as those for Java or ML.
However, none of these groups considered the ephemeral
properties that we are able to specify and check.

Safe Languages. CCured [24], CQual [13], Cyclone [16],
ESC [9, 12], and Vault [7, 10] are all languages designed
to verify particular safety properties. CCured concentrates
on showing the safety of mostly unannotated C programs;
Cyclone allows programmers to specify safe stack and re-
gion memory allocation; ESC facilitates program debugging
by allowing programmers to state invariants of various sorts
and uses theorem proving technology to check them; and
Vault and CQual make it possible to check resource usage
protocols. Vault has been applied to verification of safety
conditions in device drivers and CQual has been applied to
find locking bugs in the Linux kernel. One significant dif-
ference between our work and the others is that we have
chosen to use a general substructural logic to encode pro-
gram properties. Vault is the most similar since its type
system is derived from the capability calculus [37] and alias
types [34, 38], which is also an inspiration for this work.
However, the capability logic is somewhat ad hoc whereas
we base our type system directly on linear logic. As far as
we are aware, the semantics of vault has not geen fully for-
malized. We hope this work is an effective starting point in
that endeavour.

One other piece of work in this vein is Igarashi and Kobayashi’s
resource usage analysis [17]. They define a complex type sys-
tem that keeps track of the “uses” of resources. They have
a general trace-based semantics as opposed to our possible
worlds-style resource semantics. It is difficult to compare
the expressive power of our two proposals precisely as the
set of formulas involved is quite different. They have some
interesting modal operators and a recursion operator, but
their logic is propositional whereas ours is first-order.

Proof-Carrying Type Systems. Shao et al. [33] and Crary
and Vanderwaart [4] have both developed powerful type lan-
guages that include a fully general logical framework within
the type structure. Both languages were inspired by Nec-
ula and Lee’s work on proof carrying code [23, 22] and are
designed as a very general framework for coupling low-level
programs with their proofs of safety. In contrast, our lan-
guage is intended to be a high-level language for program-
mers. Hence, the design space is quite different. Our spec-
ification language is less general than either of these, but
it does not require programmers to write explicit proofs
that their programs satisfy the safety properties in question.
Moreover, neither of these logics contain the full complement
of linear logic’s left-asynchronous connectives (1, ⊗, 0, ⊕,
∃), which we find the most useful in our resource-centric
applications.

Hoare Logic. Recent efforts by Ishtiaq, O’Hearn and Reynolds
on the reasoning about pointers in Hoare logic [18, 31] pro-
vided guidance in construction of our semantic model of re-
finements. However, they use bunched logic in their work
whereas we use a subset of linear logic. One important dif-

ference between the logics is that linear logic contains the
modality !, which we use to reason about persistent facts.
A notion of persistence seems essential to allow one to rea-
son about values, which, by their nature, remain unchanged
throughout the computation. Also, since our work is based
on type theory, it naturally applies to higher-order pro-
grams, which is not the case for Hoare logic. Moreover, pro-
grammers who use Hoare logic have no automated support
whereas our system has a decidable type checking algorithm.

5.2 Future Work
There are many directions for future work. We have begun

to investigate the following three further issues. Our most
immediate concern is the development of an implementa-
tion of the ideas presented in this paper. One of the authors
(Mandelbaum) has developed a preliminary implementation
for small core subset of Java. The current implementation
is built using Polyglot [25], an extensible compiler infras-
tructure for Java, and allows programmers to reason with
a minimalist subset of the logic that includes 1, ⊗ and >.
We are currently developing an improved surface language,
also based on Java, that incorporates all of the features pre-
sented in this paper – appropriately adapted to Java – as
well as some of the more advanced features of Java such as
exception handling.

The next item of interest to us in the encoding of type-
and-effect systems in our language. We believe that our
language provides a general framework in which to encode
many type-and-effect systems. We have devised a transla-
tion from a variant of a well-known type-and-effect system
concerning lock types for static enforcement of mutual ex-
clusion [11], into our language (extended with second-order
quantification). We thereby show that our refinements are
at least as powerful. Our translation also helps us under-
stand the connection between types and effects and recent
research on sophisticated substructural type systems such
as the one implemented in Vault [7].

Finally, our language is parameterized by a single inter-
face and implementation that enables us to consider reason-
ing about a variety of different sorts of effects. The next step
in the development of this project is to extend the language
with an advanced module system that allows programmers
to define their own logical safety policies and to reason com-
positionally about their programs.
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