Cartesian Cubical Computational Type Theory
A Constructive Formulation of Two-Level Type Theory

Carlo Angiuli
Computer Science Department
Carnegie Mellon University
cangiuli@cs.cmu.edu

Kuen-Bang Hou (Favonia)
School of Mathematics
Institute for Advanced Study
favonia@math.ias.edu

Robert Harper
Computer Science Department
Carnegie Mellon University
rwh@cs.cmu.edu

Abstract
We present a dependent type theory organized around a Cartesian notion of cubes (with faces, degeneracies, and diagonals), supporting both fibrant and non-fibrant types. The fibrant fragment includes Voevodsky’s univalence axiom and a circle type, while the non-fibrant fragment includes exact (strict) equality types satisfying equality reflection. Our type theory is defined by a semantics in cubical partial equivalence relations, and is the first two-level type theory to satisfy the canonicity property: all closed terms of a fibrant boolean type evaluate to either true or false.

Keywords Homotopy Type Theory, Two-Level Type Theory, Computational Type Theory, Cubical Sets

1 Introduction
Equality in type theory Martin-Löf has proposed two rather different approaches to equality in dependent type theory, in the guise of his extensional [24] and intensional [25] type theories. Extensional type theory, particularly its realization as NuPRL’s computational type theory [2], is justified by meaning explanations in which closed terms are programs given meaning by an operational semantics, and variables are considered to range over closed terms of their given type.

One consequence is that equations hold whenever they are true for all closed terms; for instance,
\[ n : \text{nat}, m : \text{nat} \Rightarrow n + m = m + n \in \text{nat} \]
as a judgmental equality because \( N + M \) and \( M + N \) compute the same natural number for any closed natural numbers \( N, M \).

Another consequence is known as equality reflection: the equality type \( \text{Eq}_A(M, N) \) has at most one element, and is inhabited if and only if \( M \equiv N : \text{A} \) judgmentally.

In contrast, in intensional type theory, judgmental equality is precisely \( \beta \)- (and at certain types, \( \eta \)-) equivalence, and context variables are treated as additional axioms whose form is indeterminate. The identity type \( \text{Id}_A(M, N) \) mediates equality reasoning: in an empty context it is inhabited by a single element if and only if \( M \equiv N : \text{A} \) judgmentally, but in non-empty contexts includes additional equalities such as
\[ n : \text{nat}, m : \text{nat} \vdash P : \text{Id}_{\text{nat}}(n, m, m + n) \]
which does not hold judgmentally for variables \( n, m \).

Traditional type theories, extensional or intensional, are constructive in the sense that they admit an interpretation of proofs as programs, often distilled into the canonicity property that closed elements of type bool evaluate and are judgmentally equal to either true or false. As we will discuss later, this is the very definition of \( M \in \text{bool} \) in computational type theory (see Theorem 5.1), while in intensional type theory, canonicity can be verified by a metatheoretic argument.

Homotopy and two-level type theory Homotopy type theory [29] extends intensional type theory with a number of axioms of identity type, including Voevodsky’s univalence axiom [31] and constructors of higher inductive types [23]. These axioms are justified by mathematical models interpreting types as spaces (e.g., simplicial sets [20] or fibrant objects in a model category [10]), elements of types as points, and identity types as path spaces. In such interpretations, homotopy type theory serves as a framework for synthetic homotopy type theory [29], in which higher inductive types provide concrete homotopy types (e.g., \( n \)-spheres), the rules of the identity type assert that all constructions respect paths, and univalence asserts moreover that all constructions are invariant under homotopy equivalence.

Despite the success of homotopy type theory as a medium for synthetic results in homotopy theory [11, 14, 30], it is believed that certain objects—famously, semi-simplicial types—cannot be constructed without reference to some notion of exact equality stricter than paths [8, 33]. Unlike the types of homotopy type theory, exact equality cannot respect paths (lest it collapse into a type of paths; see Section 4.2). Any theory with both exact equality and paths must therefore stratify types into fibrant types that respect paths, and non-fibrant types that do not. Candidate such two-level type theories include the Homotopy Type System (HTS) of Voevodsky [33] and the two-level type theory of Altenkirch et al. [3].

Critically, homotopy type theory and existing two-level type theories lack the aforementioned canonicity property, because the ordinary judgmental equalities of intensional type theory do not apply to uses of the univalence axiom or paths of higher inductive types. Nor are they known to satisfy the weaker homotopy canonicity property that for any closed \( M : \text{bool} \) there exists a proof \( P : \text{Id}_{\text{bool}}(M, \text{true}) \) or \( P : \text{Id}_{\text{bool}}(M, \text{false}) \) [32].

Contributions We define a two-level computational type theory satisfying the canonicity property, whose fibrant types include a cumulative hierarchy of univalent universes of fibrant types, dependent function, dependent pair, and path types, and whose non-fibrant types include also a cumulative hierarchy of non-fibrant universes of non-fibrant types, and exact equality types with equality reflection.

Our type theory is the first two-level type theory with canonicity, and the second univalent type theory with canonicity, after the cubical type theory of Cohen et al. [17]. Like Cohen et al. [17], our type theory is inspired by a model of homotopy type theory in cubical sets [12], and represents \( n \)-dimensional cubes as terms parametrized by \( n \) variables ranging over a formal interval. However, the fibrant fragment of our type theory differs from Cohen
et al. [17] by endowing the interval with less structure, and defining fibrancy with a substantially different uniform Kan condition. In comparison to existing two-level type theories, we institute a finer-grained stratification of types in which certain exact equality types are fibrant.

In the spirit of Martin-Löf’s meaning explanations [24], we define the judgments of type theory as relations on programs in an untyped programming language. In Section 2, we define a λ-calculus extended by nominal constants representing elements of a formal interval object [26]. In Section 3, we define a cubical generalization of Allen’s partial equivalence relation (PER) semantics of Nuprl [1], sufficient to describe non-fibrant types and their elements at all dimensions. In Section 4, we define fibrant types as non-fibrant types equipped with two Kan operations, called coercion and homogeneous composition. In Sections 5 and 6 we summarize the semantics of each type former, and provide valid rules of inference. We conclude in Section 7 with comparisons to related work.

Full details and proofs for our construction are available in our associated preprint [7]. Our type theory is currently being implemented in the RedPRL proof assistant [28], in which we have already formalized a proof of univalence (https://git.io/0FjUQ).

## 2 Programming language

We begin by defining an untyped cubical programming language, a call-by-name λ-calculus extended by nominal constants [26], whose terms serve as the types and elements of our cubical type theory. Names (or dimensions) \( x, y, \ldots \) represent generic elements of an abstract interval \( I \) with two constant elements (or endpoints) 0, 1.

Given any two finite sets of names \( \Psi, \Psi' \), a dimension substitution \( \psi : \Psi' \to \Psi \) sends each name in \( \Psi \) to 0, 1, or a name in \( \Psi' \). We write \( (r/x) : \Psi \to (\Psi, x) \) for the dimension substitution sending \( x \) to \( r \in (\Psi, 1) \) and constant on \( \Psi \). Given \( \psi : \Psi' \to \Psi \) and a term \( M \) whose free names are contained in \( \Psi \), we write \( M_\psi \) for the term obtained by replacing each \( x \in \Psi \) in \( M \) with \( \psi(x) \).

Geometrically, a term \( M \) with free dimension names in \( \Psi \) (henceforth, a \( \Psi \)-dimensional term) represents a \( \Psi \)-dimensional cube—a point (\( |\Psi| = 0 \)), line (\( |\Psi| = 1 \)), square (\( |\Psi| = 2 \)), and so forth. Dimension substitutions are compositions of face maps \( (0/x), (1/x) : \Psi \to (\Psi, x) \), diagonal maps \( (y/x) : (\Psi, y) \to (\Psi, x, y) \), and (silent) degeneracy maps \( (\Psi, y) \to \Psi \), and perform the corresponding geometric operation when applied to a term \( M \). Below, we illustrate the faces of a square \( M \) in dimensions \( \{x, y\} \); note that the bottom endpoint of the left face and the left endpoint of the bottom face are drawn as a single point, because \( (0/x)(1/y) = (1/y)(0/x) \).

\[
\begin{array}{c}
\text{x} \\
\downarrow \\
M(0/x)(0/y) \\
\begin{array}{ccc}
M(0/x) & M(0/y) & M(1/x)(0/y) \\
M(0/x)(1/y) & M(1/y) & M(1/x)(1/y)
\end{array}
\end{array}
\]

This notion of cubes is Cartesian because sets of names and dimension substitutions form a free finite-product category generated by the two endpoint maps \( (0/x), (1/x) : \emptyset \to \{x\} \) [9, 15, 22]. In contrast, Cohen et al. [17] equip the interval with a De Morgan algebra structure containing connections \( (x \land y)/y \), \( (x \lor y)/y \) : \( (\Psi, x, y) \to (\Psi, y) \) and reversals \( ((1 - y)/y) : (\Psi, y) \to (\Psi, y) \). Cartesian cubes are appealing for their ubiquity and simplicity: dimensions behave like structural variables (with exchange, weakening, and contraction), and have a trivial equational theory (as opposed to De Morgan laws).

Following Martin-Löf’s meaning explanations of type theory [24], we only give operational meaning to closed terms, and consider term variables to range over closed terms of their given types. However, we cannot treat dimension names as ranging only over \( \{0, 1\} \)—such a semantics would enforce uniqueness of identity proofs, by equating all lines whose boundaries coincide.

We therefore define a deterministic small-step operational semantics on terms with no free term variables, but any number of free dimension names. We write \( V \) val for values, \( M \rightsquigarrow M' \) when \( M \) takes one step of computation to \( M' \), and \( M \parallel V \) (\( M \) evaluates to \( V \)), when \( M \rightsquigarrow V \) (in zero or more steps) and \( V \) val.

Unfortunately, the operational semantics are not stable under dimension substitution: because face and diagonal maps can expose new simplifications, we have neither (1) if \( V \) val then \( V_\psi \) val, nor (2) if \( M \rightsquigarrow M' \) then \( M_\psi \rightsquigarrow M'_\psi \). Consider the circle (Section 5.2), inductively generated by a base point base and a line loop_\psi. We arrange that the faces of \( \text{loop}_\psi(0/x) = \text{loop}_0 \rightsquigarrow \text{base} \). On the other hand, \( \text{loop}_\psi \) val because it is a constructor, contradicting (1).

Maps out of the circle are determined by a point \( P \) (the image of base) and an abstracted line \( x.L \) (the image of \( \text{loop}_\psi \)). Thus \( S^1_{\text{elim},A}(\text{loop}_\psi; P, x.L) \rightsquigarrow L \) but \( (S^1_{\text{elim},A}(\text{loop}_\psi; P, x.L))(0/x) \)

\[
= S^1_{\text{elim},A}(\text{loop}_0; P(0/x), x.L)
\]

\[
\rightsquigarrow S^1_{\text{elim},A}(\text{base}; P(0/x), x.L)
\]

\[
\rightsquigarrow P(0/x)
\]

where \( L \) and \( P(0/x) \) are a priori unrelated, contradicting (2).

Fortunately, most rules of the operational semantics are in fact cubically stable, or preserved by dimension substitutions: for instance, \( (\text{loop}_\psi)_{\text{base}} = \text{base}_{\Psi} \to \Psi \). We write \( M \rightsquigarrow M' \) when \( M_{\Psi} \rightsquigarrow M_{\Psi}' \) for all \( \psi : \Psi' \to \Psi \), and \( V \) val_{\Psi} when \( V_{\Psi} \) val for all \( \psi : \Psi' \to \Psi \).

We include some operational semantics rules in Fig. 1, but omit the many rules pertaining to the Kan operations (defined in Section 4), as well as rules that evaluate the principal argument of an elimination form (app(M, N) \rightsquigarrow app(M', N) when \( M \rightsquigarrow M' \)). We adopt the convention that \( a, b, c, \ldots \) are term variables, \( x, y, z, \ldots \) are dimension names, and \( r, r', r_i \) are dimension expressions (names \( x \) or constants 0, 1).

## 3 Cubical PER semantics

Type theory is built on the judgments of typehood (and equality of types) and membership in a type (and equality of members in a type). Intensional type theories—including homotopy type theory and the cubical type theory of Cohen et al. [17]—typically define these judgments inductively by a collection of syntactic inference rules. We instead define these judgments semantically as partial equivalence relations (PERs, or symmetric and transitive relations) on terms, whose meaning is given by the operational semantics.
described in Section 2. Such an approach can be seen as a mathematically precise reading of Martin-Löf’s meaning explanations of type theory [24], or as a relational semantics of type theory in the style of Tait [27], and is the approach adopted by Nuprl [2]. The role of inference rules is therefore not definitional, but rather to summarize desirable properties validated by the semantics. We adopt this semantical approach for multiple reasons. By defining types as relations over programs, we ensure the constructive character of the theory; for instance, it will follow from the definitions that elements of booleans type are programs that evaluate to true or false (Theorem 5.1). Moreover, because the meaning of open terms is given by their closed (term) substitution instances, it will naturally follow that judgmental equality is extensional and that the exact equality type satisfies equality reflection.

In Allen’s PER semantics of Nuprl [1], a type A is interpreted as a symmetric and transitive relation \([A]\) on values; the judgment \(M \equiv N \in A\) holds whenever \(M \downarrow M_0, N \downarrow N_0\), and \([A][M_0, N_0]\) (which we henceforth write \([A]^\equiv(M, N)\)), and \(M \in A\) whenever \(M \equiv M \in A\). Thus, ignoring equality, A is defined by its set of values \([V] val \mid [A][V, V]\), and the elements of A are the programs whose values are elements of that set. (We write \(\in\) rather than : to emphasize the semantic character of these judgments.)

We generalize Nuprl’s semantics by instead interpreting types as cubical sets: every type has a PER-\(\Psi\)-dimensional values for every \(\Psi\), and each \(\psi : \Psi \to \Psi\) sends its \(\Psi\)-dimensional values to its \(\Psi'\)-dimensional values. Complications arise when defining the latter functorial action. First, dimension substitutions can engender computation even on values, so the action of \(\psi\) must send \(V\) to the value of the program \(V\psi\). Second, substitution-then-evaluation is not necessarily functorial: if \(V\psi \downarrow V'\), there is in general no relationship between the values of \(V\psi\psi'\) and \(V'\psi\). Third, types are programs themselves because of dependancy, and therefore suffer from the same coherence issues. We solve these issues by interpreting \(\Psi\)-dimensional values as value-coherent \(\Psi\)-PERs on values:

\[\text{Definition 3.1. A } \Psi\text{-relation } \alpha \text{ (on values) is a family of binary relations } \alpha \psi \text{ for every } \Psi \text{ and each } \psi : \Psi \to \Psi, \text{ over } \Psi'\text{-dimensional terms (values). If } \alpha \psi \text{ varies only in the choice of } \Psi' \text{ and not } \psi, \text{ we say } \alpha \text{ is context-indexed and write } \alpha_{\Psi'} \text{ for } \alpha \psi.\]

\[\text{Definition 3.2. For any } \Psi\text{-relation on values } \alpha, \text{ define the } \Psi\text{-relation } \text{TM}(\alpha)(M, N) \text{ to hold when for all } \psi_1 : \Psi_1 \to \Psi \text{ and } \psi_2 : \Psi_2 \to \Psi_4, \alpha \psi_1 \psi_2 \text{ relates } M_1 \psi_1 \psi_2, M_2 \psi_1 \psi_2, N_1 \psi_1 \psi_2, \text{ and } N_2 \psi_1 \psi_2, \text{ where } M_1 \downarrow M_1 \text{ and } N_1 \downarrow N_1.\]

A \(\Psi\)-relation \(\alpha\) can be precomposed with a dimension substitution \(\psi : \Psi' \to \Psi\), yielding a \(\Psi\text{-relation } (\alpha \psi)\psi' : \alpha_{\Psi'}.\)

\[\text{Definition 3.3. A } \Psi\text{-relation on values } \alpha \text{ is value-coherent, or } \text{Coh}(\alpha), \text{ when for all } \psi : \Psi' \to \Psi, \text{ if } \alpha\psi(V, V') \text{ then } \text{TM}(\alpha\psi)(V, V').\]

Definition 3.1 captures the idea that types themselves vary with dimension substitutions (continuing the example from Section 2, the type \(\Sigma^1(-)_{att}(\text{loop}_x : A) : \text{Set}\) under \(\beta(x)\)). Definition 3.2 lifts \(\Psi\)-relations on values to arbitrary terms by substitution-then-evuation, and Definition 3.3 defines functoriality of that lifting.

\[\text{Remark 3.4. Writing } C \text{ for the category of sets of names and dimension substitutions, a value-coherent context-indexed PER determines a functor } C^{\text{op}} \to \text{Set}, \text{ and a value-coherent } \Psi\text{-PER determines a functor } (C/\Psi)^{\text{op}} \to \text{Set}.\]

### 3.1 Judgments

We define the judgments of our type theory relative to a value-coherent context-indexed PER of types, each of which gives rise to another PER. In the style of Allen [1] and recently, Anand and Rahli [4], we present this data in a single relation.

\[\text{Definition 3.5. A cubical type system is a relation } \tau(\Psi, A_0, B_0, \varphi) \text{ over } \Psi\text{-dimensional values } A_0, B_0, \text{ and binary relations } \varphi \text{ over } \Psi\text{-dimensional values, satisfying:}\]

- Functionality: if \(\tau(\Psi, A_0, B_0, \varphi), \tau(\Psi, A_0, B_0, \varphi')\) then \(\varphi = \varphi'\).
- PER-valuation: if \(\tau(\Psi, A_0, B_0, \varphi)\) then \(\varphi\) is a PER.

\[\text{Figure 1. Operational semantics, selected rules.}\]
Symmetry: if \( \tau(\Psi, A, 0, B, 0, \varphi) \) then \( \tau(\Psi, B, 0, A, 0, \varphi) \).

Transitivity: if \( \tau(\Psi, A, 0, B, 0, \varphi) \) and \( \tau(\Psi, B, 0, C, 0, \varphi) \) then also \( \tau(\Psi, A, 0, C, 0, \varphi) \).

Value-coherence: \( \text{Coh}(\{(A, 0, B, 0) \mid \tau(\Psi, A, 0, B, 0, \varphi)\}) \).

The first three components of \( \tau \) define a \( \text{Ψ}-\text{PER} \) for every \( \text{Ψ} \), which we write \( \tau(\text{Ψ}, A, B) \). Then, the fourth component of \( \tau \) assigns a \( \Psi \)-\text{PER} to \( A, B \) sending each \( \psi : \Psi' \to \Psi \) to the relation \( \psi^\Psi \) where \( \psi^\Psi : \Psi(A, B, \psi^\Psi, \phi^\Psi) \). We write this \( \Psi\text{-PER} \{A\} \); it is unique by functionality, and independent of the choice of \( B \) by symmetry and transitivity.

For the remainder of this section, fix a cubical type system \( \tau \). We start by defining the closed judgments relative to \( \tau \): when \( A \) and \( B \) are equal \( \Psi \)-dimensional types, and when \( A \) and \( N \) are equal \( \Psi \)-dimensional elements of \( A \).

**Definition 3.6.** \( A \equiv B \) type \( \text{pre} \{ \Psi \} \) holds when \( \text{TM}(\tau(\Psi, A, B)) \) and \( \text{Coh}(\{A\}) \). We write \( A \text{ type} \{ \Psi \} \) for \( A \equiv A \text{ type} \{ \Psi \} \).

**Definition 3.7.** \( M \equiv N \) in \( A \{ \Psi \} \), presupposing \( A \text{ type} \{ \Psi \} \), when \( \text{TM}(\{A\})(M, N) \). We write \( M \equiv N \) in \( A \{ \Psi \} \) for \( M \equiv M \in A \{ \Psi \} \).

A presupposition is a fact that must be established before a judgment can be sensibly considered. In Definition 3.7, it does not make sense to ask that \( \text{TM}(\{A\})(M, N) \) unless \( A \{ \Psi \} \) is known to exist by \( A \equiv A \) type \{ \Psi \}.

Remark 3.8. Allen’s \( \text{Ψ}-\text{PER} \) semantics are an instance of our semantics, in the case that types are constant presheaves and terms have no free dimension names. If \( M, N, A, B \) have no free dimensions, then \( A \equiv B \) type \( \text{pre} \{ \Psi \} \) if and only if \( \tau(\Psi, A, B, \{A\}_\Psi) \) all \( \Psi' \), and \( M \equiv N \) in \( A \{ \Psi \} \) if and only if \( \{A\}_\Psi \equiv \{N\}_\Psi \{M, N\} \) for all \( \Psi' \).

We extend the closed judgments to open terms by functionality, that is, an open type (resp., element) is a map sending equal elements of the context to equal closed types (resp., elements). The open judgments must be defined simultaneously, by induction on the length of the context.

**Definition 3.9.** \( (a_1: A_1, \ldots, a_n: A_n) \text{ ctx} \{ \Psi \} \) when

\[
\begin{align*}
A_1 & \text{ type} \{ \Psi \}, \\
\end{align*}
\]

and\( a_1: A_1, \ldots, a_{n-1}: A_{n-1} \Rightarrow A_n \text{ type} \{ \Psi \} \).

**Definition 3.10.** \( a_1: A_1, \ldots, a_n: A_n \Rightarrow B \cong B' \) type \( \text{pre} \{ \Psi \} \), presupposing \( (a_1: A_1, \ldots, a_n: A_n) \text{ ctx} \{ \Psi \} \), when for any \( \psi : \Psi' \to \Psi \) and \( N_1 \equiv N_1 \psi \to A_1 \psi \) \( \Psi' \), \( N_2 \equiv N_2 \psi \to A_2 \psi \to A_1 \psi \) \( \Psi' \), and \( N_n \equiv N_n \psi \to A_n \psi \to A_1 \psi \) \( \Psi' \), we have \( B_1 \psi \equiv B_1 \psi \to A_1 \psi \) \( \Psi' \) and \( B_2 \psi \equiv B_2 \psi \to A_2 \psi \to A_1 \psi \) \( \Psi' \) and \( a_1 \equiv a_1 \psi \to A_1 \psi \) \( \Psi' \) type \( \text{pre} \{ \Psi' \} \).

Given the distinct roles of term variables and dimension variables in Definition 3.10, it is natural for our judgments to separate the contexts \( (a_1: A_1, \ldots, a_n: A_n) \) and \( \Psi \). However, in the proof theory of \( \text{Red}_{\text{PRL}} \), we present users with a single mixed context of terms and dimensions, as do Cohen et al. [17].

3.2 Properties of Judgments
The main result of this paper is the construction of a cubical type system closed under a variety of type formers. However, many global properties of judgments hold in any cubical type system. For instance, the equality judgments are all symmetric, transitive, and closed under dimension substitution (if \( J \{ \Psi \} \) and \( \psi : \Psi \to \Psi' \), then \( J \{ \Psi' \} \)). The open judgments satisfy the hypothesis (if \( J \{ \Psi \} \) and \( A \text{ type} \{ \Psi \} \) then \( a:A \Rightarrow J \{ \Psi \} \)) and weakening rules. Equal types have the same elements (if \( A \equiv B \) type \( \{ \Psi \} \) and \( M \equiv N \in A \{ \Psi \} \) then \( M \equiv N \in B \{ \Psi \} \)).

To prove \( M : A \{ \Psi \} \) in a particular cubical type system, we must compare the evaluation behavior of \( M \) and the definition of \( A \). In Allen’s semantics of Nuprl, to show \( M \in A \{ \Psi \} \) it suffices to check that \( M \downarrow V \) and \( \{A\}_V(V, V) \). In the cubical setting, we must consider instead the evaluation behavior of all dimension substitution instances of \( M \). In the case that all instances of \( M \) begin to evaluate in lockstep, it suffices to consider only \( M \) itself.

Lemma 3.11 (Head expansion). If \( M' : A \{ \Psi \} \) and \( M \Rightarrow M' \in A \{ \Psi \} \), then \( M \equiv M' \in A \{ \Psi \} \).

In the case that \( M \) differs between \( M' \) and \( \psi : \Psi \to \Psi' \), it suffices to show that the substitution instances of \( M \) eventually (under some number of steps) become coherent up to equality at \( A \).

Lemma 3.12. Suppose that \( M \) is a \( \Psi \)-dimensional term, and we have a family of terms \( (M_\psi) \) for each \( \psi : \Psi \to \Psi' \) such that \( M_\psi \Rightarrow M' \psi \).

Once we have established that substitution-then-evaluation of \( M \) is functionally, it follows that the instances of \( M \) are equal to the instances of its value.

Lemma 3.13. If \( M : A \{ \Psi \} \), then \( M \downarrow V \) and \( M \equiv V \in A \{ \Psi \} \).

On the other hand, certain properties typical of intensional type theories are generally not expected to hold in our semantics. To check \( M : A \{ \Psi \} \), one must, at minimum, show that \( M \) terminates; this is clearly undecidable, because \( M \) can be an arbitrary untyped term. Moreover, terms do not have unique types, because the meanings of types need not be disjoint. In fact, modern Nuprl has a “Base” type containing every term [4].

4 Kan and discrete Kan types
The judgmental apparatus described in Section 3 suffices for non-fibrant or pretypes—whose paths are not necessarily composable, invertible, and so forth. Separately, we describe what it means for a type to be fibrant, using the notions of membership and equality defined above. We define non-fibrant types in order to model exact equality types; homotopy type theory and the cubical type theory of Cohen et al. [17] only have fibrant types, but have no (internalized) notion of exact equality.

4.1 Kan types
Fibrant types, henceforth Kan types, are equipped with two Kan operations: coercion (coe) and homogenous composition (hcom). Coercion for a \( (\Psi, x) \)-dimensional type states that elements of \( A(\tau(x)) \) can be coerced to \( A(\tau''(x)) \) for any \( \tau, \tau'' \), and this operation is the identity when \( \tau = \tau'' \). The coercion of \( M \) is written \( \text{coer}_{\tau''}^{\tau}(M) \).
Cartesian Cubical Computational Type Theory

For example, if \( M \in A(0/\chi) \{ 0 \} \), then \( \text{coe}^{0}_{x,x,A}(M) \in A(1/\chi) \{ 0 \} \).
Moreover, \( \text{coe}^{0}_{x,x,A}(M) \in A \{ x \} \) is a line in \( A \) whose \( 0/\chi \) face is \( M \) (because \( 0 = x(0/\chi) \)), and whose \( 1/\chi \) face is \( \text{coe}^{0}_{x,x,A}(1)(M) \).

\[
M \xrightarrow{\text{coe}^{0}_{x,x,A}(M)} \text{coe}^{0}_{x,x,A}(M)
\]

Homogeneous composition is more significantly more complicated, but essentially states that any open box in \( A \) (an \( n \)-cube without an interior or one of its faces) has a composite (the remaining face). For example, given two lines in \( y, N_{0} \in A(0/\chi) \{ y \} \) and \( N_{1} \in A(1/\chi) \{ y \} \), and a line in \( x, M \in A \{ x \} \), that agrees with the \( y \)-lines when \( y = 0 \) (\( M(0/\chi) = N_{e} \in A(\epsilon/\chi) \{ 0 \} \) for \( \epsilon \in \{ 0, 1 \} \)), we can obtain an \( x \)-line that agrees with the \( y \)-lines when \( y = 1 \), written \( \text{hcom}^{0}_{x,A}(M) : x = 0 \leftrightarrow y.N_{0}, x = 1 \leftrightarrow y.N_{1} \).

\[
\text{hcom}^{0}_{x,A}(M) : x = 0 \leftrightarrow y.N_{0}, x = 1 \leftrightarrow y.N_{1}
\]

Moreover, we can obtain the interior of the above square, its filler, by composing by \( y \) rather than 1. The difficulty of homogeneous composition is that we must define arbitrary open boxes, at any dimension, in a manner that commutes with substitution.
In particular, we cannot speak of \( M(0/\chi) \) where \( x \) is an argument of \( \text{hcom} \), because \( x \) can be instantiated, and \( M(0/1) \) is nonsensical. We introduce dimension context restrictions \( \Xi \), or sets of pairs of dimension expressions (suggestively written as equations), to describe the spatial relationship between the faces of an open box.

**Definition 4.1.** A context restriction \( r_{1} = r_{2} \) is valid if either \( r_{1} = r_{2} \) for some \( i \), or \( r_{1} = r_{j} \), \( r_{1} = r_{j} \), and \( r_{1} = r_{j} \) for some \( i, j \).

**Definition 4.2.** A restricted judgment \( J(\Psi \mid 0 \Rightarrow 1) \) holds when \( J(\Psi \mid \Xi) \) holds for every \( \Psi : \Psi \Rightarrow \Psi \) for which \( r_{1} = r_{1} \) for all \( i \).

Restricted judgments behave just as one might expect: \( J(\Psi \mid 0 \Rightarrow 1) \) if and only if \( J(\Psi, \Psi, x = 0 \Rightarrow 1) \) if and only if \( J(0/\chi) \). And \( J(\Psi \mid 0 = 1) \) always. Crucially, they are closed under dimension substitution: if \( J(\Psi \mid \Xi) \) and \( \psi : \Psi \Rightarrow \Psi \), then \( J(\Psi \mid \Xi) \).

**Definition 4.3.** \( B \equiv B' \text{type}_{Kan}(\Psi) \), presupposing \( B \equiv B' \text{type}_{pre}(\Psi) \), when for all \( \psi : \Psi \Rightarrow \Psi \), the rules in Fig. 2 hold, setting \( A := B' \Psi \) and \( A' := B' \Psi \).

Operationally, both \( \text{hcom} \) and \( \text{coe} \) evaluate their type argument and behave according to the outermost type former. For each type former, we will first show that the formation, introduction, elimination, computation, and eta rules hold; then, using those rules, we show that if its component types are Kan, then it is Kan (for example, if \( A \equiv \text{type}_{Kan}(\Psi) \) and \( a : A \Rightarrow B \equiv \text{type}_{Kan}(\Psi) \), then \( (aA) = B \equiv \text{type}_{Kan}(\Psi) \)).

These Kan operations are variants of the uniform Kan conditions first proposed by Bezem et al. [12]. In unpublished work in 2014, Licata and Brunerie [22] and Coquand [18] considered uniform Kan operations in Cartesian cubical sets, but did not succeed in defining univalent type theories based on those operations. Our Kan operations introduce two important innovations. First, we allow open boxes with sides attached along diagonals \( x = z \), in addition to faces; this is essential to construct univalent universes (Sections 5.7 and 6). Second, the validity condition requires that any box must contain at least one opposing pair of sides \( x = 0 \) and \( x = 1 \); this sharpens our canonicity results for higher inductive types (Section 5.2). We defer further comparison of Kan operations to Section 7.

**4.2 Discrete Kan types**
Most type formers preserve Kan structure, with the notable exception of exact equality types \( \text{Eq}_{A}(M, N) \), which are inhabited by \( \star \) if and only if \( M \equiv N \in A(\Psi) \) (Section 5.6). To see why, suppose that \( A \equiv \text{type}_{Kan}(\emptyset) \) and \( M \in A(\Psi) \); then \( \star \in \text{Eq}_{A}(M(0/\chi), M(0/\chi)) \{ 0 \} \) and \( \text{Eq}_{A}(M(0/\chi), M(0/\chi)) \{ 1 \} \) both hold. Coercion across the latter type would result in \( \text{coe}^{0}_{x,A}(\Psi, \text{Eq}_{A}(M(0/\chi), M(1/\chi)) \{ 0 \}) \) that is, a proof that the faces of \( M \) are exactly equal, for every \( M \).
In the case that \( \{ A \} \) is a discrete set—that is, all of its lines are degenerate—then \( \text{Eq}_{A}(M, N) \) is in fact Kan. We make this precise by stating that a type is discrete Kan when all parallel dimension substitution instances (for example, \( 0/\chi \) and \( 1/\chi \)) of the type and its elements are equal:

**Definition 4.4.** \( A \equiv B \equiv \text{type}_{disc}(\Psi) \), presupposing \( A \equiv B \equiv \text{type}_{disc}(\Psi) \), when for any \( \psi_{1} : \Psi_{1} \Rightarrow \Psi_{2}, \psi_{2} : \Psi_{2} \Rightarrow \Psi_{1} \),

- \( A \psi_{1} \psi_{2} = B \psi_{1} \psi_{2} \equiv \text{type}_{pre}(\Psi_{2}) \), and
- for any \( M \in A \psi_{1} \{ \Psi_{1} \}, M \psi_{2} \equiv M \psi_{1} \psi_{2} \in A \psi_{1} \{ \Psi_{2} \} .

Examples of discrete Kan types include bool, nat, \( \text{Eq}_{A}(M, N) \) when \( A \equiv \text{type}_{disc}(\Psi) \), and \( (aA) = B \equiv \text{type}_{disc}(\Psi) \) and \( a : A \Rightarrow B \equiv \text{type}_{disc}(\Psi) \). Whenever a type is discrete Kan, its Kan operations are trivial:

**Lemma 4.5.** If \( A \equiv \text{type}_{disc}(\Psi) \), then under the hypotheses of Fig. 2,

- \( \text{hcom}^{r_{1} r'_{1}}(M, x \equiv y) \equiv M \in A(\Psi) \), and
- \( \text{coe}^{r_{1} r'_{1}}(M) \equiv M \in A(\Psi) \).
At every dimension, the only boolean values are true and false:

$$\boxed{\text{bool} \equiv \{ (\text{true}, \text{true}), (\text{false}, \text{false}) \}}$$

This context-indexed PER is clearly value-coherent, as the constructors are unaffected by dimension substitution. The canonicity property follows directly from this definition:

**Theorem 5.1 (Canonicity).** If $M \in \text{bool} [\Psi]$ then $M \Downarrow V$ and $M \equiv V \in \text{bool} [\Psi]$, for $V = \text{true}$ or $V = \text{false}$.

**Proof.** Then $\text{Trm}(\text{bool})(M, M)$, so $M \Downarrow V$ and $\text{bool}(V, V)$. By Lemma 5.13, $M \equiv V \in \text{bool} [\Psi]$, and by the definition of $\text{bool}$, $V = \text{true}$ or $V = \text{false}$. $\square$

Similarly, consistency is automatic: true $\equiv$ false $\in \text{bool} [\Psi]$ implies $\text{bool}[\text{true}(\text{true})$, which is impossible.

The rules in Fig. 3 all hold: true and false are elements, the elimination rule holds essentially by Theorem 5.1, and the computation rules hold by Lemma 3.11. The Kan operations of bool are:

$$\begin{align*}
\text{hcom}_{\text{bool}}^{r \rightarrow r'}(M; r_1 \mapsto y, N_1) & \longrightarrow \lll M \\
\text{coe}_{x, \text{bool}}(M) & \longrightarrow \ggg M
\end{align*}$$

These implementations satisfy the rules in Fig. 2 because every line in bool is degenerate, and bool is therefore discrete Kan.

**5.2 Circle**

It is tempting to define the circle as the least context-indexed PER generated by a base point and a loop: $\mathbb{S}^1_{\Psi}(\text{base}, \text{base})$ and $\mathbb{S}^1_{\Psi}(x, y)(\text{loop}_x, \text{loop}_y)$. However, unlike bool, $\mathbb{S}^1$ has non-degenerate lines, so we must explicitly add composites of open boxes to $\mathbb{S}^1$ if we want it to be Kan. We therefore equip $\mathbb{S}^1$ with the following free Kan structure (writing $\xi$ to abbreviate $r_1 = r'$):

$$\begin{align*}
\text{hcom}_{\mathbb{S}^1}^{\rho \rightarrow r'}(M; \xi \mapsto y, N_1) & \longrightarrow \lll M \\
\text{coe}_{x, \mathbb{S}^1}(M) & \longrightarrow \ggg M
\end{align*}$$

These operational semantics satisfy the equations in Fig. 2: when $r = r'$ in hcom, line (3) applies; when $r_1 = r'_1$ in hcom, line (4) applies; and in every hcom, one of lines (3–5) will apply. Disequality is needed in lines (4–5) to maintain determinacy. To account for value fcoms, we add a third generator to $\mathbb{S}^1_{\Psi}$:

$$\lll \Psi fcom^{r \rightarrow r'}(M; \xi \mapsto y, N_1), fcom^{r \rightarrow r'}(M'; \xi' \mapsto y, N'_1)$$

whenever

- $r \neq r'$ for all i, and $r_1 = r'_1$ is valid,
- $M \equiv M' \in \mathbb{S}^1_{\Psi}$,
- $N_i \equiv N'_j \in \mathbb{S}^1_{\Psi}, y | r_i = r'_i, r_j = r'_j$ for all $i, j$, and
- $N_i(r/y) \equiv M \in \mathbb{S}^1_{\Psi}, r_i = r'_i$ for all $i$.

To prove value-coherence of $\mathbb{S}^1_{\Psi}$, we check that the operational semantics of fcom are coherent, assuming the equations above. By limiting the Kan operations to valid context restrictions, we ensure that $\mathbb{S}^1_{\Psi}$ contains no fcoms—there are no valid restrictions at dimension 0 in which $r_j \neq r'_j$ for all i.

The rules for the circle can be found in Fig. 3, including the eliminator mapping from $\mathbb{S}^1$ into any Kan type with a point $P$ and line $x.L$ satisfying $L(0/x) = L(1/x) \equiv P$. The eliminator sends base to $P$, loop to $L(y/x)$, and fcom to a Kan composition in the target type. (See our preprint [7] for the latter operational semantics step, which requires a derived notion of heterogeneous composition in which the type varies across the open box.) It is therefore essential that the target type is Kan.

**5.3 Dependendent function types**

When $A \in \text{type}_{\text{pre}} [\Psi]$ and $a : A \Rightarrow B \in \text{type}_{\text{pre}} [\Psi]$, $\lll (a:A) \rightarrow B \ggg = \{(\lambda a.N, \lambda a.N') \mid a : A \Rightarrow N \equiv N' \in B[\Psi']\}$. Rules for dependendent function types are listed in Fig. 4, including a judgmental $\eta$ principle. The Kan operations are:

$$\begin{align*}
\text{hcom}_{(a:A) \rightarrow B}^{\rho \rightarrow r'}(M; \xi \mapsto y, N_1) & \longrightarrow \\
\text{coe}_{x, (a:A) \rightarrow B}(M) & \longrightarrow \\
\lambda a.\text{hcom}_{\text{type}}^{\rho \rightarrow r'}(\text{app}(M, a); \xi \mapsto y, \text{app}(N_1, a)) & \longrightarrow \\
\lambda a.\text{coe}_{x, \text{type}}^{\rho \rightarrow r'}(\text{app}(M, a); \xi \mapsto y, \text{app}(N_1, a)) & \longrightarrow
\end{align*}$$

If $A \in \text{type}_{\text{Kan}} [\Psi]$ and $a : A \Rightarrow B \in \text{type}_{\text{Kan}} [\Psi]$, then by the above operational semantics steps, and the introduction, elimination, and eta rules for dependendent functions, $(a:A) \rightarrow B \in \text{type}_{\text{Kan}} [\Psi]$.

**5.4 Dependendent pair types**

Whenever $A \in \text{type}_{\text{pre}} [\Psi]$ and $a : A \Rightarrow B \in \text{type}_{\text{pre}} [\Psi]$, $\lll (a:A) \times B \ggg = \{(\xi(M, N), (M', N')) \mid M \equiv M' \in \text{type}_{\text{pre}} [\Psi'] \land N \equiv N' \in B[\Psi']\}$. Rules for dependendent pair types are listed in Fig. 4, including a judgmental $\eta$ principle. Once again, the Kan operations for $(a:A) \times B$ see [7] reduce to the Kan operations of A and B, and we prove $(a:A) \times B \in \text{type}_{\text{Kan}} [\Psi]$ whenever $A \in \text{type}_{\text{Kan}} [\Psi]$ and $a : A \Rightarrow B \in \text{type}_{\text{Kan}} [\Psi]$.

**5.5 Path types**

Whenever $A \in \text{type}_{\text{pre}} [\Psi, x]$ and $P \equiv P' \in A/x \in \text{type}_{\text{pre}} [\Psi]$ for $x \in (0, 1)$, $\lll \text{Path}_{x}(P, P') \ggg = \{(\xi(x), (x'M', x'N')) \mid M \equiv M' \in \text{type}_{\text{pre}} [\Psi', x'] \land N \equiv N' \in B[\Psi'][x'/x]\}$. That is, elements of path types are abstracted lines with specified endpoints, and dimension abstraction $(\cdot)(x)M$ and application $(M@r)$ shift lines up or down in dimension. Rules for path types are listed in Fig. 5; once again,
true ∈ bool [Ψ]
false ∈ bool [Ψ]

if(M; T, F) = if(M'; T', F') ∈ A[M/b] [Ψ]
if(true; T, F) = T ∈ A [Ψ]
if(false; T, F) = F ∈ A [Ψ]

S^1 type_Kan [Ψ]
base ∈ S^1 [Ψ]
loop_r ∈ S^1 [Ψ]
loop_p ∈ base ∈ S^1 [Ψ]

c : S^1 ⇒ A = A' type_Kan [Ψ]
M = M' ∈ S^1 [Ψ]
P = P' ∈ A [base/c] [Ψ]
L = L' ∈ A [loop_{x/c}] [Ψ, x]
(∀x) L(x/x) = P ∈ A [base/c] [Ψ]

S^1-elim_{c,A}(M; P, x, L) ≃ S^1-elim_{c,A}(M'; P', x, L') ∈ A [M/c] [Ψ]

P ∈ B [Ψ]
L ∈ B [Ψ, x]
(∀x) L(x/x) = P ∈ B (x/x) [Ψ]

S^1-elim_{c,A}(base; P, x, L) = P ∈ B [Ψ]
S^1-elim_{c,A}(loop_{x/c}; P, x, L) = L(r/x) ∈ B (r/x) [Ψ]

Figure 3. Boolean and circle type.

A = A' type_Kan [Ψ] a : A ⇒ B = B' type_Kan [Ψ]

(a:A) → B ≃ (a:A') → B' type_Kan [Ψ]
λa.M = λa.M' ∈ (a:A) → B [Ψ]

M = M' ∈ (a:A) → B [Ψ] N = N' ∈ A [Ψ]
app(M, N) = app(M', N') ∈ B [N/a] [Ψ]

app(λa.M, N) = M[N/a] ∈ B [N/a] [Ψ]

M = M' ∈ (a:A) → B [Ψ]
λa.M = λa.M' ∈ (a:A) → B [Ψ]

M = M' ∈ (a:A) → B [Ψ]
N = N' ∈ B [M/a] [Ψ]
P = P' ∈ (a:A) × B [Ψ]
fst(P) = fst(P') ∈ A [Ψ]

P = P' ∈ (a:A) × B [Ψ]
M = M ∈ A [Ψ]
N = N = M ∈ A [Ψ]

snd(P) = snd(P') ∈ B [fst(P)/a] [Ψ]
fst(M, N) = M ∈ A [Ψ]

snd(M, N) = N ∈ B [Ψ]
P = P' ∈ (a:A) × B [Ψ]

Figure 4. Dependent functions and pairs.

Kan operations (see [7]) ensure that Path_{x,A}(P_0, P_1) type_Kan [Ψ] when A type_Kan [Ψ, x].

Note that, while the identity type is necessary in homotopy type theory to define all path structure, in this setting the path type merely internalizes a preexisting judgmental notion of paths. For Kan types A, the homotopy-type-theoretic elimination principle for Id_A(M, N) is definable, but as in Cohen et al. [17], its computation rule holds only up to a path.

5.6 Exact equality types

Whenever A type_{pre} [Ψ], M ∈ A [Ψ], and N ∈ A [Ψ], we have [[Eq_A(M, N)]_Ψ] = {M=N ∈ A [Ψ]}.
That is, Eq_A(M, N) is (uniquely) inhabited if and only if M = N ∈ A [Ψ], and therefore equality reflection holds. Rules for equality types are listed in Fig. 5.

Unlike dependent function, pair, and path types, which send pretypes to pretypes, Kan types to Kan types, and discrete Kan types to discrete Kan types, Eq_A(M, N) is not Kan when A is Kan, for the reasons discussed in Section 4.2. However, Eq_A(M, N) is Kan (in fact, discrete Kan) in the case that A type_{disc} [Ψ], given:

\[ hconveq_{Eq_A(E_0, E_1)}(M; \xi_0 \rightarrow \eta_0, \eta_1) \rightarrow \Psi \star \]

\[ \text{coe}^{\text{eq}}_{x, Eq_A(E_0, E_1)}(M) \rightarrow \Psi \star \]

5.7 Univalence

Voevodsky’s univalence axiom [31] concerns a notion of type equivalence Equiv(A, B) which we render as follows:

\[ \text{isContr}(C) := C \times ((c:C) \rightarrow (c':C) \rightarrow \text{Path}_{-_C}(c, c')) \]

\[ \text{Equiv}(A, B) := (f:A \rightarrow B) \times ((b:B) \rightarrow \text{isContr}((a:A) \times \text{Path}_{-_B}(app(f, a), b))) \]

Essentially, Equiv(A, B) is if there is a map A → B such that the (homotopy) preimage in A of any point in B is contractible (has exactly one point up to homotopy). In homotopy type theory, univalence states that idtoequiv : Id_{eq}(A, B) → Equiv(A, B) (definable in intensional type theory) is itself an equivalence. By a theorem of Licata [21], univalence is equivalent to the existence of a map \( \text{ua}_{\Psi} : \text{Equiv}(A, B) \rightarrow \text{Id}_{eq}(A, B) \) and a homotopy \( \text{ua}_{\Psi}(E) \) between the functions underlying the equivalences \( E \) and idtoequiv(\( \text{ua}_{\Psi}(E) \)).
We achieve both conditions by defining a new type former "\( \kappa \)".

\[
A \equiv A' \text{ type}_{\kappa}(\Psi, x) \quad \text{and} \quad M \equiv M' \in A(\Psi, x)
\]

\[
\text{Path}_{A}(P_0, P_1) \equiv \text{Path}_{A'}(P'_0, P'_1) \text{ type}_{\kappa}(\Psi)
\]

\[
M \equiv M' \in \text{Path}_{A}(P_0, P_1)(\Psi)
\]

\[
M \equiv M' \in \text{Path}_{A}(P_0, P_1)(\Psi)
\]

\[
M @ r \equiv M' @ r \in A(\psi, x)(\Psi)
\]

\[
M @ r \equiv M' @ r \in A(\psi, x)(\Psi)
\]

\[
A \equiv A' \text{ type}_{\kappa}(\Psi)
\]

\[
M \equiv M' \in A(\Psi, x)
\]

\[
\text{Eq}_{A}(M, N) \equiv \text{Eq}_{A'}(M', N') \text{ type}_{\kappa}(\Psi)
\]

\[
\star \equiv \text{Eq}_{A}(M, N)(\Psi)
\]

\[
\star \equiv \text{Eq}_{A}(M, N)(\Psi)
\]

\[
M \equiv N \in A(\Psi, x)
\]

\[
E \equiv E' \in \text{Eq}_{A}(M, N)(\Psi)
\]

\[
M \equiv N \in A(\Psi, x)
\]

\[
E \equiv E' \in \text{Eq}_{A}(M, N)(\Psi)
\]

\[
M \equiv N \in A(\Psi, x)
\]

\[
E \equiv E' \in \text{Eq}_{A}(M, N)(\Psi)
\]

\[
\kappa \in \{ \text{pre, disc} \}
\]

\[
A \equiv A' \text{ type}_{\kappa}(\Psi)
\]

\[
B \equiv B' \text{ type}_{\kappa}(\Psi)
\]

\[
E \equiv E' \in \text{Eq}_{A}(M, N)(\Psi)
\]

\[
E \equiv E' \in \text{Eq}_{A}(M, N)(\Psi)
\]

\[
E \equiv E' \in \text{Eq}_{A}(M, N)(\Psi)
\]

\[
\text{Figure 5. Paths and exact equalities.}
\]

\[
\text{Figure 6. Univalence, selected rules.}
\]

In order for our type theory to be a suitable setting for synthetic homotopy theory, it is essential that \( \mathcal{U}^\text{Kan} \) itself be Kan; this is needed, for example, to define maps \( S^1 \to \mathcal{U}^\text{Kan} \) used in the construction of the fundamental group of the circle [29]. However, as with \( S^1 \), \( \mathcal{U}^\text{Kan} \) is not automatically Kan, and must be equipped with a free Kan structure of flocms. (On the other hand, as with boof, \( \mathcal{U}^\text{disc} \) is automatically discrete Kan because all of its lines are degenerate.)

### 6 Universes

Finally, we define three cumulative hierarchies of universes, \( \mathcal{U}^\text{pre} \), \( \mathcal{U}^\text{Kan} \) and \( \mathcal{U}^\text{disc} \), respectively classifying pretypes, Kan types, and discrete Kan types, each closed under the appropriate type formers, and satisfying:

\[
\begin{align*}
\mathcal{U}^\text{pre}_k \text{ type}_{\kappa}(\Psi) & \quad \text{and} \quad A \equiv A' \in \mathcal{U}^\text{pre}_k(\Psi) \\
\mathcal{U}^\text{Kan}_k \text{ type}_{\kappa}(\Psi) & \quad \text{and} \quad A \equiv A' \in \mathcal{U}^\text{Kan}_k(\Psi) \\
\mathcal{U}^\text{disc}_{k+1} \text{ type}_{\kappa}(\Psi) & \quad \text{and} \quad A \equiv A' \in \mathcal{U}^\text{disc}_{k+1}(\Psi)
\end{align*}
\]

\[
\begin{align*}
A \equiv A' \in \mathcal{U}^\text{Kan}_k(\Psi) & \quad \text{and} \quad A \equiv A' \in \mathcal{U}^\text{Kan}_k(\Psi) \\
A \equiv A' \in \mathcal{U}^\text{disc}_k(\Psi) & \quad \text{and} \quad A \equiv A' \in \mathcal{U}^\text{disc}_k(\Psi)
\end{align*}
\]

### Free Kan compositions as Kan types

The difficulty is that elements of \( \mathcal{U}^\text{Kan}_j \) should themselves be Kan types, so we must define \( \text{fcom}^\text{Kan}_j(A; \xi_i \leftrightarrow y.B_i) \) (for Kan types \( A, B_i \) satisfying the appropriate equations) and furthermore, equip fcom with Kan operations. The basic idea is that the elements of an fcom are themselves open boxes consisting of an element \( M \in A(\Psi) \), and a family of elements \( N_i \in B_i(\psi/y)(\Psi | \xi_i) \) such that \( \text{fcom}^\text{Kan} = M \in A(\Psi) \). The diagram below illustrates an
element of \(\text{fcom}^{0\text{ax}}(A; x = 0 \iff y.B_0, x = 1 \iff y.B_1)\).

\[
\begin{align*}
\text{co}^{1\text{ax}}(y.B_0(N_0)) & \quad M \quad \text{co}^{1\text{ax}}(y.B_1(N_1)) \\
\text{box}^{0\text{ax}}(M; N_0, N_1) & \quad \in \quad B_0 \quad \text{fcom} \quad B_1
\end{align*}
\]

When \(r = r'\), \(\text{fcom} \equiv A\) and \(\text{box} \equiv M\). When \(\xi_i\) holds, \(\text{fcom} \equiv B_i\)\((r/y)\) and \(\text{box} \equiv N_i\). Importantly, these conditions are coherent when both \(r = r'\) and \(\xi_i\), assuming \(A, B_i\) are Kan: \(A \equiv B_i\((r/y)\) \equiv B_i\((r'/y)\)\) and \(M \equiv \text{co}^{r''\text{ax}'}(N_i) \equiv N_i\). If \(A, B_i\) are merely pretypes, this definition is not value-coherent; as a result, our \(\mathcal{U}^\text{pre}_f\) are not fibrant.

For the complete definition of \(\text{fcom}\) types and their Kan operations, see our preprint [7]. Coercion in \(\text{fcom}\) types requires heterogeneous compositions that may not be valid in the sense of Definition 4.1, but which are nevertheless definable in our setting. (Such compositions are closely related to the \(\text{Vi}, \phi\) operation of Cohen et al. [17].) Finally, to ensure that the Kan operations of \(\text{fcom}^{r''\text{ax}'}(A, \xi_i) \iff y.B_i\) agree with those of \(A\) when \(r = r'\), we once again make essential use of open boxes with diagonal sides.

**Universes via fixed points** Intuitively, each universe \([\mathcal{U}_f]\) is defined as the least context-indexed PER closed under all type formers yielding \(\kappa\)-types, that are present in a type theory with \(j\) universes. (For instance, \(\mathcal{U}^\text{pre}_f\) should include all exact equality types, while \(\mathcal{U}_f^\text{can}\) should only include exact equality types of discrete Kan types.) Of course, typehood and membership are mutually defined (Eq\(_A(M, N)\) type\(_{\text{pre}}\)(\(\Psi\)) when \(M, N \in A\(\Psi\))\), so the values of each universe depend on both the names and semantics of types.

Following Allen [1], we make this construction precise by introducing candidate cubical type systems, relations \(\tau(\Psi, A_0, A_0, \varphi, \varphi)\) as in Definition 3.5 without any conditions of functionality, symmetry, and so forth. Candidate cubical type systems form a complete lattice when ordered by inclusion, so we define each universe as the least fixed point of a monotone operator (guaranteed to exist by the Knaster–Tarski fixed point theorem).

For each \(\kappa\), we define an operator \(\tau^\kappa(x^u, r^\text{pre}, r^\text{Kan}, r^\text{disc})\) whose arguments are candidate cubical type systems defining (1) all smaller universes, (2) pretype formers, (3) Kan type formers, and (4) discrete Kan type formers, following the meanings given in Section 5. These operators are monotone because \(\text{Trn}(\cdot)\) is monotone, and hence the judgments defined in Section 3 are monotone in \(\tau\).

Then construct the simultaneous least fixed points

\(\tau^\kappa_i = \tau^\kappa(x^u, r^\text{pre}_i, r^\text{Kan}_i, r^\text{disc}_i)\)

for each \(i \geq 0\), where \(\tau^\kappa_i\) defines each \([\mathcal{U}^\kappa_i]\) (for \(j < i\)) as the typehood relation of \(\tau^\kappa_j\):

\(\tau^\kappa_j(\Psi, \mathcal{U}_j^\kappa, \mathcal{U}_i^\kappa, (A_0, B_0) \mid \tau^\kappa_j(\Psi, A_0, B_0, \_\_))\) for \(j < i\)

We establish by induction that each \(\tau^\kappa\) is in fact a cubical type system in the sense of Definition 3.5, and each is closed under the appropriate type formers. We take the “outermost” cubical type system \(\tau^\kappa_0\) (containing universes for all \(j\)) as our model, validating every rule presented in this paper.

This construction requires no classical reasoning, and in fact Anand and Rahli [4] carry out Allen’s original Nuprl semantics inside the Coq proof assistant using inductive types rather than fixed points.

### 7 Conclusion and Related Work

We have constructed a two-level type theory with fibrant, univalent universes closed under dependent function, dependent pair, and path types. The non-fibrant (pretype) level includes these type formers as well as exact (strict) equality types with equality reflection. Following the tradition of the Nuprl computational type theory [2] and Martin-Löf’s meaning explanations, our types are relations over untyped programs equipped with an operational semantics, and thereby satisfy canonicity (Theorem 5.1) by construction.

Full details and proofs of our construction are available in our associated preprint [7]. An early version of our cubical PER semantics appeared in Angiuli et al. [6], but for a type theory including neither univalence, nor universes, nor exact equality, and equipped with less expressive Kan operations.

We are currently implementing the RedPRL [28] proof assistant based on this type theory. RedPRL implements a proof refinement sequent calculus in the style of Nuprl, rather than the natural deduction rules presented in this paper; we view it as the extension of core Nuprl to a higher-dimensional notion of program.

Cavallo and Harper [16] define a schema of higher inductive types that can be constructed in the semantic framework we describe. Their indexed fiber family type validates the rules of the homotopy-type-theoretic identity type (strictly, unlike path types). Our type theory, extended with fiber family types, constitutes a fully computational model of univalent intensional type theory.

**Two-level type theories** Voevodsky’s HTS [33] extends homotopy type theory with exact equality types satisfying equality reflection. Our semantics validate most rules of HTS, excepting resizing rules and the fibrancy of the universe of pretypes. More recently, Altenkirch et al. [3] have proposed a two-level type theory with two intensional identity types: one to internalize paths, and the other satisfying uniqueness of identity proofs and function extensionality, but not equality reflection. Both theories consider all strict equality types non-fibrant, and neither theory satisfies canonicity, because univalence (and in the latter, uniqueness of identity proofs and function extensionality) are added as axioms that do not compute.

Our contributions to two-level type theory are twofold: (1) we define the first two-level type theory satisfying the canonicity property, and (2) by introducing the notion of discrete Kan types, we obtain a type theory in which some exact equality types are fibrant.

**Cubical type theories** Our use of cubical structure and uniform Kan conditions traces back to the Bezem et al. [12] cubical set model of type theory, which has only face and degeneracy maps. The cubical type theory of Cohen et al. [17] uses a De Morgan algebra of cubes containing only face, diagonal, and degeneracy maps, but also connection and reversal maps.

From a proof-theoretic perspective, our semantics can be seen as cubical logical relations suitable for proving canonicity (and consistency) for a set of inference rules. In fact, Huber’s canonicity argument [19] for Cohen et al. [17] resembles our PER semantics in various ways, most notably his “expansion lemma,” which is closely related to Lemma 3.12.

The fibrant fragment of our system constitutes the second univalent type theory with canonicity—after the cubical type theory...
of Cohen et al. [17]—and the first to employ Cartesion cubical structure. Licata and Brunerie [22] and Coquand [18] previously considered Cartesian cubes, but did not succeed in defining univalent universes. However, neither considered Kan operations with diagonal sides $x = z$, which figure prominently in our constructions of both univalence and fibrant universes. Diagonal sides also permit us to define connections in Kan types, although we remain unable to define an involutive reversal operation, as in Cohen et al. [17].

In ongoing work with Brunerie, Coquand, and Licata [5], we are investigating proof-theoretic and category-theoretic aspects of “diagonal” Kan composition. That project includes an Agda formalization of the Kan operations of various type formers, including a variant of the “glue” types employed by Cohen et al. [17] to obtain both univalence and fibrancy of the universe. Here we decompose glue types into $V$ and $fcom$, which simplifies the definition of $ua_\psi$.

Unlike prior Kan conditions, we restrict to open boxes containing a pair of sides $x = 0$, $x = 1$ (Definition 4.1), in order to trivialize all Kan compositions at dimension zero. Thus we obtain a stronger canonicity result for higher inductive types than do Cohen et al. [17]; if $M \in \mathbb{S}^n$ [8] then $M \sqcup 1$ base. We believe this property to be valuable for programming applications of cubical type theory, by allowing higher inductive types to function as observables at dimension zero. The tradeoff is that we must develop additional machinery to define coercion in $fcom$ types, essentially because the $V \varphi$ operation of Cohen et al. [17] does not preserve box validity.

Acknowledgments

We are greatly indebted to Steve Awodey, Marc Bezem, Evan Cavallo, Daniel Gratzer, Simon Huber, Dan Licata, Ed Morehouse, Anders Mørtberg, Jonathan Sterling, and Todd Wilson for their contributions and advice. The authors gratefully acknowledge the support of the Air Force Office of Scientific Research through MURI grant FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the AFOSR. The second author would also like to thank the Isaac Newton Institute for Mathematical Sciences for its support and hospitality during the program “Big Proof” when part of work on this paper was undertaken. The program was supported by EPSRC grant number EP/K032208/1.

References


