
Adaptive Memoization ∗

Umut A. Acar Guy E. Blelloch Robert Harper

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

{umut,blelloch,rwh}@cs.cmu.edu

Abstract

We combine adaptivity and memoization to obtain an incre-
mental computation technique that dramatically improves
performance over adaptivity and memoization alone. The
key contribution is adaptive memoization, which enables re-
sult re-use by matching any subset of the function arguments
to a previous function call and updating the result to satisfy
the unmatched arguments via adaptivity.

We study the technique in the context of a purely func-
tional language, called IFL, and as an ML library. The li-
brary provides an efficient implementation of our techniques
with constant overhead. As examples, we consider Quick-
sort and Insertion Sort. We show that Quicksort handles
insertions or deletions at random positions in the input list
in O(log n) expected time. For insertion sort, we show that
insertions and deletions anywhere in the list take O(n) time.

1 Introduction

Memoization [15, 16, 11, 4] and adaptivity [2, 5] are tech-
niques for making any program incremental. Although each
technique works well for certain classes of applications under
certain input changes, neither works well in general. This
paper combines adaptivity and memoization. The result
is a general technique that significantly improves perfor-
mance over adaptivity and memoization alone. For many
applications, however, an orthogonal combination of mem-
oization and adaptivity does not yield good performance.
We therefore introduce adaptive memoization that enables
memo lookups based on matching any subset of function ar-
guments to a previous function call and updating the re-used
result to satisfy the unmatched arguments via adaptivity.

Memoization [7, 13, 12] is based on the idea of caching
the results of each function call indexed by the arguments
to that call. If a function is called with the same argu-
ments a second time, the result from the cache is re-used
and the call is skipped. Pugh [15], and Pugh and Teitel-
baum [16] were the first to apply memoization or function
caching to incremental computation. They developed tech-
niques for implementing memoization efficiently and studied
incremental algorithms using memoization. They showed
that certain divide-and-conquer algorithms using so-called
stable decompositions can be made incremental efficiently
by using memoization. Liu, Stoller, and Teitelbaum [11]
presented systematic techniques for developing incremental

∗This work was supported in part by the National Science Founda-
tion under the grant CCR-9706572 and also through the Aladdin Cen-
ter (www.aladdin.cs.cmu.edu) under grants CCR-0085982 and CCR-
0122581.

programs using function caching. Their techniques auto-
matically determine what result need to be cached and use
transformations to make a standard program incremental.
In recent work [4] we presented selective memoization tech-
niques to provide control over the performance of memoiza-
tion based on facilities for determining precise input-output
dependences, defining equality, and controlling space usage.

Adaptivity [2] is based on the idea of representing com-
putations with dependence graphs. Dependence graph tech-
niques for incremental computation were first introduced by
Demers, Reps, and Teitelbaum [8, 18] and have been success-
fully applied to many applications [17]. Dependence graphs
represent data dependences in a computation in such a way
that when an input is changed, all data that depends on
that input can be updated by propagating changes through
the graph.

The key difference between adaptivity and the previously
proposed dependence-graph techniques is that in adaptivity
the dependence graphs are dynamic as opposed to static.
With static dependence graphs, change propagation only up-
dates the values of the vertices of the dependence graph leav-
ing the dependence structure unchanged. As Pugh points
out [15] this limits the kinds of applications that can be made
incremental using static dependence graphs. In contrast,
dynamic dependence graphs enable the change propagation
algorithm to update the dependence structure by removing
obsolete dependences and inserting newly created depen-
dences based on execution. Dynamic dependence graphs can
be used to make any purely functional program incremental,
although the effectiveness will depend on the application.

Adaptivity and memoization complement each other in
the way they support result re-use. While adaptivity pin-
points parts of a computation that are affected by some in-
put change, memoization identifies those parts of the compu-
tation that remain the same. As a result, memoization han-
dles well shallow input changes which affect function calls
at the top of the function-call tree, whereas adaptivity han-
dles well deep changes which affect leaves of the function call
tree [4]. When given an input change that affects some call
in the middle, they can both perform poorly.

This paper shows that a combination of adaptivity
and memoization yields powerful techniques for incremen-
tal computing by drawing on the complimentary strengths
of memoization and adaptivity. We present two techniques
to this end: (1) an orthogonal combination that combines
adaptivity and memoization by preserving their semantics,
and (2) a more sophisticated combination based on the no-
tion of adaptive memoization.

Adaptive memoization allows an imprecise lookup of a

memoized function in the function cache by matching just
some of the arguments that the result depends on. Instead of
returning the result, which is in general incorrect, the lookup
returns an “adaptive computation” in the form of a dynamic
dependence graph. The arguments of this computation are
then adjusted to match the arguments of the current call,
and the changes are propagated to update the re-used result.

Adaptive memoization provides for flexible result re-use
by permitting the re-use of the result of a previous function
call in place of a call of that function with somewhat differ-
ent arguments. This flexibility enables us to obtain asymp-
totically efficient incremental algorithms from static algo-
rithms. As examples, we consider Quicksort and Insertion
Sort on a list (Section 5). We show that Quicksort handles
an insertion or deletion at a random position in the input in
expected Θ(log n) time. For insertion sort, we show that an
insertion or deletion anywhere in the input takes expected
Θ(n) time. These results rely heavily on adaptive mem-
oization; with the orthogonal combination the bounds are
Θ(log2 n) for Quicksort and Θ(n2) for Insertion Sort. With
memoization or adaptivity alone, the bounds are Θ(n log n)
for Quicksort, and Θ(n2) for insertion sort.

Challenges to combining adaptivity and memoization
and supporting adaptive memoization stem from complexi-
ties of the interaction between adaptivity and memoization.
One issue is the maintenance of the topological ordering of a
dynamic dependence graph while allowing parts of the graph
to be re-used. We show that the topological ordering can be
maintained with constant overhead by restricting the memo
lookups to the part of the dependence graph being discarded
by change propagation. Another issue is supporting adap-
tive memoization efficiently. Adaptive memoization relies
on encapsulating selected sub-computations as stand alone
adaptive computations. This requires techniques to isolate
and update the inputs of sub-computations efficiently. We
describe a copy-on-read technique for supporting adaptive
memoization with constant overhead.

A key property of our approach is that it accepts a sim-
ple and asymptotically efficient implementation. The imple-
mentation extends our previous implementations for adap-
tivity [2] and selective memoization [4]. The overhead of the
implementation—slowdown caused by our techniques with
respect to a non-incremental semantics—is constant.

2 Overview

We present an overview of previous work on memoization
and adaptivity and describe how they can be combined. Sec-
tion 4 formalizes the techniques presented here. Examples
for motivating the need for combining adaptivity and mem-
oization are given in Section 2.3.

2.1 Adaptivity and Dynamic Dependence Graphs

Adaptivity [2] is based on the notion of a modifiable refer-
ence or a modifiable for short. Modifiable references hold
values that can change as a result of the user’s revisions to
the input. What distinguishes a modifiable reference from
an ordinary reference is that the system keeps track of the
readers of the modifiable and when the value is changed, all
values that depend on that modifiable can be updated by a
change propagation algorithm.

Language support for adaptivity requires constructs for
creating, reading, and writing modifiables. Each read of a
modifiable specifies a reader function that computes a value
based on the value of the modifiable read, called the source.
Since values that are computed by reading modifiables can

change due to an input change, a reader must write its result
to a modifiable. In this paper, we require that each reader
writes to exactly one modifiable called the target.

As an adaptive program executes, it builds a dynamic
dependence graph or DDG that represents the data and con-
trol dependences in the execution. Creating a modifiable
adds a vertex for that modifiable to the dependence graph.
Reading a modifiable inserts an edge from the source to the
target of the read and tags the edge with the reader function.
Writing a modifiable tags the vertex for that modifiable with
the value written. To represent the control dependences, a
containment hierarchy of reads is maintained. A read r is
contained in some other read r′ if r is created during the
execution of r′. The containment hierarchy represent the
nesting of the reads of a computation. In the implemen-
tation, the containment hierarchy is represented using time
stamps instead of containment edges (see Section 3).

When the input to an adaptive computation is changed,
the output and the dependence graph can be updated
by propagating changes through the dependence graph.
Change propagation maintains a set of affected readers,
readers whose sources have been changed, and re-executes
them in sequential-execution order. Re-executing a reader
re-establishes the relationship between its source and tar-
get by updating the value of the target, which can make
affected the readers of the target. Re-executing a reader
removes the dependences and the modifiables that was cre-
ated by that reader in the previous execution, and inserts
the dependences and modifiables created by re-execution.
Note that due to conditionals, the dependences and size of
the graph can change radically after an input change.

Adaptivity yields efficient incremental or dynamic algo-
rithms for certain classes of algorithms and input changes.
For example, in our original paper, we showed that Quick-
sort on a list updates its output in expected O(log n) time
when its input is changed by inserting or deleting one key
at the end. In recent work, we developed analytical tech-
niques based on trace-stability for measuring the efficiency
of algorithms made incremental using adaptivity [5]. As
an example, we showed that the tree contraction algorithm
of Miller and Reif yields a data structure for the dynamic-
trees problem of Sleator and Tarjan [19]. Our experimental
evaluation of the dynamic-trees data structure obtained by
adaptivity shows that it is efficient in practice [6].

2.2 Memoization

Memoization caches results of all or selected function calls so
that when a call is performed for a second time, the cached
result is re-used instead of executing the call. Although
memoization can improve performance dramatically, obtain-
ing good performance in general requires control over certain
aspects of memoization. These aspects include the type of
equality tests that determine cache hits and the identifica-
tion of precise dependences between input and output.

In his thesis [15], Pugh developed techniques for im-
plementing memoization efficiently and presented tech-
niques for constant-time equality checks and space-
management [14]. Based on static program analysis and
transformations, Liu and Teitelbaum [11] developed tech-
niques for determining what results to cache and how to use
them. Since in general the result of a function call may not
depend on all its arguments, it is important to cache result
based on precise input-output dependences. Abadi, Lamp-
son, and Levy [1], and Heydon, Levin, and Yu [10] investi-
gated techniques for this purpose based on labeled lambda

2

fun map l =

case l of
nil => nil

| cons(h,t) =>
cons(h+5,map t)

fun amap l =
tar = new modifiable
read l with reader (fun vl =

case vl of
nil => write(tar,nil)

| cons(h,t) =>
write(tar,cons(h+5,amap t)))

return tar

Figure 1: The code for standard and adaptive map.

a d

d’ e’

e

a’

b

b’

6 8 9

431

NIL

NIL

Figure 2: DDG of amap on input [1,3,4].

calculus. In recent work, we presented selective memoiza-
tion techniques that provide programmer control over the
issues of precise dependences, equality tests, and some con-
trol over space management [4]. Selective memoization en-
ables performance of memoized applications to be analyzed
using conventional techniques. As an example, we showed
that a memoized version of Quicksort handles an insertion
or deletion anywhere in the list in expected O(n) time.

In the context of incremental computation, memoization
yields efficient incremental algorithms for certain classes of
algorithms and input changes. Pugh [15], and Pugh and
Teitelbaum [16] show that divide-and-conquer algorithms
that are based on the so-called stable decompositions can
be made incremental efficiently using memoization.

2.3 Examples: Map and Insertion Sort.

We apply adaptivity and memoization to “map” and in-
sertion sort and motivate the need for combining adaptiv-
ity and memoization. The insertion sort example motivates
adaptive memoization by showing that an orthogonal com-
bination of memoization and adaptivity does not suffice for
efficient incremental computing in general.

Example I: map. Figure 1 shows the code for a simple
map function (left) that maps a list to another list by adding
five to each element. The pseudo-code for the adaptive ver-
sion amap is shown on the right. Figure 2 shows an example
dynamic dependence graph for amap with input list [1, 3, 4].
The input to amap is a modifiable list, a list where all tails
are inside modifiables, and so is the output. In Figure 2, the
vertices are modifiables, straight edges are reads, and dashed
edges are the containment edges. Values of modifiables are
shown in green (or gray). The value of each modifiable is
either a cons cell or nil. The readers of the edges are all
the same function as shown in the code in Figure 1. Con-
tainment edges originate at a reader and end at the reader
for the caller—containment edges essentially represent the
function call tree of the computation. An edge is contained
in all the edges to its left.

Figure 3 shows an example of how the input to amap can
be changed and the output can be updated. The value two
is inserted to the input by creating a new modifiable c and
changing the modifiable b. Change propagation involves re-
executing the only read of b, which recursively calls amap
on the new modifiable c. The recursive call recomputes the
result for the tail of the input list starting at c. This creates
modifiables c′, f and g and the edges (c, c′), (d, f) and (e, g).

e’b’

b

d’a’

a d e

1 2 3 4

6 7

8 9

9

c

f gc’

NIL

NIL

NIL

Figure 3: Input change and change propagation.

Since the edges (d, d′) and (e, e′) are contained in the re-
executed edge (b, b′) they are removed from the dependence
graph along with vertices d′ and e′. The removed elements
are shown with thinner, dashed lines.

As the example demonstrates, when a new key is in-
serted to the input, the adaptive map function amap will
re-compute the result for the tail of new cons cell. Thus
an insertion at the end of the input list will be handled in
constant time—such an insertion is a deep change, because
it affects a leaf of the call tree. In general amap will take
linear time to update its output.

As an alternative consider a memoized version of map
where each call to map is cached in a memo table. Since
inserting a new key into the input re-creates the prefix of
the input list up to new key, a memo match will not occur
until after the tail of the new key. Thus, an insertion at
the head of the list will be handled in constant time–such
an insertion is a shallow change because it affects the root
of the call tree. In general general memoized map will take
linear time to update its output.

Since adaptivity handles deep changes well and mem-
oization handles shallow changes well, we can expect that
their combination would work well for all changes. Indeed,
consider caching the result of calls for amap based on the in-
put argument. When the input is changed by an insertion,
the reader of the changed modifiable will be re-executed and
the second recursive call that the reader performs will find
its result in the memo. In our example, inserting three will
re-execute the edge (b, b′) and the result will be found in
the memo when amap is called with the modifiable d. Thus
a combination of memoization and adaptivity will yield a
constant time incremental map for insertions or deletions
anywhere in the input list.

Example II: Insertion Sort. As an example where the
orthogonal combination of adaptivity and memoization does
not yield good performance we consider insertion sort. We
show that insertion sort requires worst-case Θ(n2) time for
an insertion in the middle of the list when using the orthog-
onal combination. When using adaptive memoization, we
show that this reduces to O(n).

Figure 4 shows the code for insertion sort that builds
the result by inserting keys to a sorted accumulator list (a).
Suppose we would like to make insertion sort incremental
under a single insertion into the input list (l). Consider
using adaptivity. As with the map example, when a new
key is inserted into the input, the adaptive version will com-
pletely re-sort the tail of the list starting at the new key.
Thus, although an insertion at the very end of the input
will take linear time, an insertion at the head or the middle
of the list will take Θ(n2) time in the worst case. As an
alternative consider the memoized version of insertion sort.
Inserting a key at the head or middle of the list will change

3

fun insert (p,l) =
case l of

nil => cons (p,nil)
| cons(h,t) =>

if (p < h) then cons(p,l)
else cons(h,insert(p,t))

fun iSort (l,a) =
case l of

nil => a
| cons(h,t) => iSort (t,insert(h,a))

Figure 4: Standard insertion sort.

the accumulator for all the following recursive calls, because
they will now contain the new key. Thus no results will be
found in the memo after that point. Therefore with both
memoization and adaptivity insertion at the head or middle
will require Θ(n2) time.1 Combining them will not help.

As a concrete example, Figure 5 shows the the accumula-
tors built by the standard insertion sort algorithm (Figure 4)
with input l = [6, 5, 4, 8, 7, 0] (left) and l′ = [6, 5, 4,9, 8, 7, 0]
(right)—l′ is obtained from l by inserting the key 9. Each
column corresponds to an insertion to the accumulator; the
time advances from left to right. Since each call to insert
re-creates the accumulator list up to the position where the
key is placed and re-uses the tail, some tails are shared—
curved arrows show such sharing. Each computation is di-
vided into two boxes, A, B, and A’, B’, corresponding to
the parts before and after the call to iSort where the newly
inserted key 9 is inserted to the accumulator. In particular,
box B corresponds to the call iSort([8, 7, 0], [4, 5, 6]), and
box B’ corresponds to the call iSort([9, 8, 7, 0], [4, 5, 6]).

4

5

6

8

4

5

6

7

0

NIL

4

5

6

NIL

A B 4

5

6

7

0

NIL

��
��

��
��

�	

�

� �

� �� �

�
�
�
�

�
�
�
�
� �

NIL

4

5

6

4

5

6

8

4

5

6

9

insert 9A’ B’

Figure 5: The accumulators for insertion sort with inputs
[6, 5, 4, 8, 7, 0] and [6, 5, 4,9, 8, 7, 0]

The goal is to create the computation pictured on the
right from the computation on the left. When using the
adaptivity and memoization in combination, the result in
box A will be re-used because of adaptivity, i.e., A’=A. But
box B will not be re-used when constructing box B’, because
the insertion of 9 into the accumulator will create a entirely
new accumulator and no call to iSort will find its results in
the memo. The issue is that memoization permits result re-
use only when the arguments to the function match exactly.

As motivation for an O(n)-time solution note that the
accumulators in boxes B and B’ are very similar—the only
difference is the key 9. Thus, if we encapsulate the compu-
tation pictured in box B as a stand-alone adaptive computa-
tion with accumulator [4, 5, 6] and input list [8, 7, 0] we can
create the computation in box B’ by re-using B, changing
its accumulator to [4, 5, 6,9] and propagating this change.

1The bound is the same for the variant of insertion sort that inserts
on the way up the recursion of isort instead of on the way down.

2.4 Adaptive Memoization.

Continuing on the insertion sort example, suppose that the
results for the function iSort (Figure 4) are memoized based
on just the input list and not on the accumulator. With
this memoization policy, the result will be found in the
memo when the call iSort([8, 7, 0], [4, 5, 6,9]) is performed.
The returned result, [0, 4, 5, 6, 7, 8], however, will be the
result from before the input change, i.e., that of the call
iSort([8, 7, 0], [4, 5, 6]) and will be incorrect. The key idea
is that with adaptivity this is not a problem because the
accumulator can be changed to [4, 5, 6,9] and the result can
be updated with change propagation (see Section 5).

Adaptive memoization enables the result of a function
call to be re-used by matching any subset of the arguments.
When a result is re-used, the non-matched arguments will
be changed and the result will be updated by change propa-
gation. For this to work, the non-matched arguments must
be stored inside modifiables.

Insertion sort demonstrates a general problem: the or-
thogonal adaptivity and memoization combination will gen-
erally be ineffective for algorithms that operate on some core
data structure threaded through the computation. In such
algorithms, an incremental input change can make some
deep but small change to the core data structure forcing
re-execution of a large number operations. In insertion sort,
the core data structure is the accumulator list. Adaptive
memoization will therefore be essential for making many in-
teresting algorithms incremental.

3 Implementation

Building on our implementations of adaptivity [2] and se-
lective memoization [4], we implemented the combination
of adaptivity and memoization. We present an overview of
this implementation and apply it to the map and insertion
sort examples in Section 2. The dynamic semantics given
in Section 4 presents a more precise definition of an imple-
mentation. Section 5 presents a more detailed treatment of
insertion sort and Quicksort.

We study the orthogonal combination and adaptive
memoization separately. To achieve constant-time overhead,
our implementation relies on the representation of contain-
ment hierarchy of dynamic dependence graphs based on
time-stamps, which we review first.

Dynamic dependence graphs and time stamps. To
represent the containment hierarchy and a topological or-
dering of the dependence edges, the implementation uses
time-stamps respecting the sequential execution order. Each
read is assigned the time-interval of its execution and con-
tainment between reads is checked in constant time: a read r
is contained in some other read r′ if the time interval of r is
contained in that of r′.

Since change propagation modifies the dependence struc-
ture of dynamic dependence graphs, the order of time-
stamps must be maintained dynamically. The implemen-
tation therefore maintains the time stamps using the con-
stant time Dietz-Sleator order-maintenance data structure
that supports, creation, deletion, and comparison of time
stamps in constant time [9].

Figure 6 shows the dynamic dependence graph for adap-
tive map, amap, using time-stamps instead of the explicit
control edges as in Figure 2 (Figure 1 shows the code for
amap). Each read (downward arrows between circular nodes)
is contained in all the reads to its left. Time-intervals of the
reads are shown as pairs. For example, the time-interval of

4

d

d’ e’

e

a’

b

b’

a

<1,8> <2,7> <3,6> <4,5>
1 3 4

6 8 9

NIL

NIL

Figure 6: DDGs of amap with inputs [1, 3, 4].

d

d’ e’

e

a’

b

b’

a c

c’

<2,7><1,8> <2.5,6.5> <3,6> <4,5>
1 2 3 4

976 8

NIL

NIL

Figure 7: DDGs of amap with input [1,2, 3, 4].

the read (b, b′) is 〈2, 7〉 and that of (d, d′) is 〈3, 6〉 and indeed
the interval 〈3, 6〉 is contained in the interval 〈2, 7〉.

3.1 The Orthogonal Combination

To combine adaptivity and memoization, we extend conven-
tional memoization to support re-use of dependence graphs
by remembering the dependence graph of a function call in
addition to the result. We refer to this combination as the
orthogonal combination because it does not change the se-
mantics of memoization or adaptivity.

For correctness, the implementation must ensure that (1)
no dependence graph (or result) is used more than once, and
(2) the containment hierarchy is updated properly when a
dependence graph is re-used. The first restriction is nec-
essary because adaptivity requires that any two calls of a
function have disjoint dynamic dependence graphs.

The implementation satisfies these two properties effi-
ciently by (1) only allowing re-use of result that would oth-
erwise be deleted by change propagation and (2) requiring
that re-used dependence graphs do not conflict with the con-
tainment hierarchy of the current dependence graph. More
concretely, change propagation maintains a re-use interval
(rs, re) that is initialized to the time-interval of the read
currently being re-executed. A dependence graph with time
interval (ds, de) can only be re-used if its interval falls within
the re-use interval, i.e., rs < ds and de < re (a dependence
graph has the given time interval if all of its reads are in
that time interval). When the dependence graph is re-used,
the re-use interval is moved past the dependence graph by
setting rs := de and deleting all reads whose time-intervals
fall within (rs, ds). When re-execution of a read completes,
the remaining reads within the re-use interval are deleted.

The implementation remembers the dependence graph of
a memoized result by storing the time-interval of the depen-
dence graph for that result in the memo table. For example,
the memo table of the computation in Figure 6 maps input a
to the result [6, 8, 9] consisting of the modifiables a′, b′, d′, e′,
and the time interval 〈1, 8〉. The time interval identifies the
sub-graph of the current dynamic dependence graph that
corresponds to the memoized call. Since a result can only
be re-used if it is a subgraph of the dependence graph and if
it falls within the current re-use interval, remembering the
time-interval suffices.

To implement the orthogonal combination efficiently, we
combine the implementations adaptivity [2] and selective
memoization [4] and extend memo tables for storing time-
intervals. Since the memo tables store time-intervals along

mfun m insert (!k, (!h,?t)) =
d = new modifiable
read t with reader (fn vt =>

case vt of
NIL => write (d, CONS (k,emptyModlist))

| CONS(hh,tt) =>
if (k < hh) then write (d,CONS(k,t))
else write (d, CONS(hh,m insert (?k,(!hh,?tt))))

Figure 8: Pseudo code for insert.

with results, a result can be cached multiple times with dif-
ferent intervals. In this paper, we only consider applications
that computes and caches any result no more a constant
times. With this restriction, the overhead of the orthogonal
combination is expected constant.

As an example of how the orthogonal combination works,
execute the call amap([1, 3, 4]) and change the input by in-
serting the new key 2 by changing the modifiable b (the
change is shown in Figure 3). Performing change propaga-
tion with this change on the dependence graph of Figure 6
will build the dependence graph in Figure 7 in expected con-
stant time. Change propagation algorithm will re-execute
the read (b, b′) of Figure 6 after initializing the re-use inter-
val to 〈2, 7〉. Re-execution of this read will recursively call
amap on c. The call will create the modifiable c’, read c,
and call amap on d. The read of c will be time-stamped with
〈2.5, 6.5〉 to fit between the intervals 〈2, 7〉 and 〈3, 6〉. Since
the call amap(d) falls inside the re-use interval, it will be re-
used. Since there are no more changes, change propagation
will terminate updating the result in expected constant time.
Note the only modifiable created during re-execution is c’—
in contrast conventional change propagation re-creates the
whole tail of the result as shown in Figure 3.

3.2 Adaptive Memoization

Adaptive memoization changes the semantics of memoiza-
tion by allowing previous results to be re-used based on
matching any subset of the arguments. For correctness, ar-
guments that are not matched must be modifiables. For
example, calls of the function f(a, b) can be memoized and
re-used when the values of a match regardless of b, as long
as b is a modifiable.

To support adaptive memoization, the implementation
encapsulates dependence graphs as stand-alone adaptive
computations by making a local copy of each unmatched ar-
gument. The local copies of the unmatched arguments are
designated as input to the memoized computation. When
a result is re-used the unmatched arguments are connected
to the corresponding local copies, the values of the local
copies are changed to those of the unmatched arguments
and change propagation is performed to update the re-used
result. To implement adaptive memoization, we extend the
implementation for the orthogonal combination by having
memo tables remember the local copies for the dependence
graphs.

As an example, Figure 8 shows the pseudo-code for the
adaptively memoized version of insert of the insertion sort
example (Figure 4). Function m insert inserts a given key k
to the list t. The argument h is the last inspected key and
used for memoization only. The banged parameters, k,h, are
matched (used for memo lookups), and the argument with
the questions mark, t, is not matched (not used for memo
look ups). Thus the memo table for m insert maps k and h
to a result and an adaptive computation consisting of a time
interval and a local copy of t.

Figure 9 shows the dependence graph for the call

5

a’ b’ c’ d’ e’

ba dc

<12,13><6,15> <9,14>

<1,2> <4,5> <7,8> <10,11>

<3,16>

A B C D

 6

NIL

4 5 8

4 5 6

NIL

4 5 6

NIL

Figure 9: DDGs of m insert (8, [4, 5, 6], 0).

y

a’ b’ c’ d’

<1,2>

t u v z

e’ f’

<4,5> <7,8> <10,11>

<3,16> <6,15> <9,14> <12,13>

<12.2,12.5>

<12.6,12.8>

A B C D E

 6

 6

NIL

 6 6

NIL

NIL

4 5 8

4 5

4 5

 9

 9

Figure 10: DDGs of m insert (8, (0, [4, 5, 6,9])).

minsert(8, (0, [4, 5, 6])) that inserts 8 to [4, 5, 6]. The in-
put consists of the modifiables a,b,c,d. Since memoization
does not match on the input list, the modifiables a,b,c,d
are copied before being read; the modifiables A,B,C,D are
the local copies. The reads between a,b,c,d and A,B,C,D
copy values of the input modifiables to their local copies.
Since m insert reads only the local modifiables its depen-
dence graph can be re-used by linking the unmatched inputs
of the call to the local copies.

Adaptive memoization allows results re-use based on
the content or the structure of the input rather than
its identity. As an example of how this is useful con-
sider performing the call m insert (8, (0, [4, 5, 6,9])) after
the call m insert (8, (0, [4, 5, 6])). Although the inputs
[4, 5, 6] and [4, 5, 6,9] are structurally similar, they may con-
sist of different modifiables deeming conventional memo-
ization ineffective—indeed this is the problem with inser-
tion sort described in Section 2. Adaptive memoization
can exploit the similarity between the two inputs by re-
using a large part of the dependence graph for the call
m insert (8, (0, [4, 5, 6])) as shown in Figure 10.

To see how adaptive memoization works, suppose the
changed input consists of the new modifiables t, u, v, y, z
as shown in Figure 10. Since the result for the call
m insert (8, (0, [4, 5, 6,9])) is memoized based only on
(8, 0) it will be found in the memo. The dependence graph
with interval 〈3, 16〉 will be re-used and t will be copied to A,
creating a dependence from t to A. Copying will change the
value of A (its tail now points to u instead of b) and the read
(A, a′) will be re-executed. The result will again be found in
the memo and u will be copied to B and so on until the call
with z, whose result will not be found in the memo because
the key 9 has never been seen before. Thus a local copy
for z will be created. The update will take linear time and
will synchronize the old and the new computation so that
the results are identical except for the newly inserted key.
In the context of the insertion sort, this will suffice for syn-
chronizing the computations before and after an insertion
and updating the result in expected O(n) time.

4 An Incremental Functional Language

We present a purely functional language, called IFL, that
combines adaptivity and memoization. The language ex-
tends a product of the AFL language for adaptivity [2] and
the MFL language for memoization [4] with support for
adaptive memoization.

Our implementation of the IFL language closely follows
the dynamic semantics of IFL. The main difference is that
instead of using traces, like the dynamic semantics does, the
implementation uses dynamic dependence graphs and memo
tables. This is purely for efficiency reasons.

Selective memoization [4] enables the programmer to ex-
press the precise input-output dependences of a memoized
function. To support adaptive memoization, we extend se-
lective memoization with constructs that deem an input un-
matched. An unmatched input is an input that is not used
when performing a memo lookup. The IFL language sup-
ports introduction and elimination forms for unmatched in-
put using question types.

The static semantics of IFL is a combination of the static
semantics AFL and MFL extended with question types.

The dynamic semantics combines those of MFL and AFL

and extends it to support adaptive memoization. The dy-
namic semantics of AFL is preserved but the semantics of
MFL has been extended to support adaptive memoization
and the limited form of memoization allowed here. One
critical change is the omission of memo-tables. Instead, we
extend the AFL traces with memoized computations. Dur-
ing change propagation, memo lookups inspect the trace of
the currently re-executed read for a possible match.

4.1 Abstract Syntax.

The abstract syntax of IFL is given in Figure 11. Meta-
variables x, y, z and their variants range over an unspecified
set of variables, Meta-variables a, b, c and variants range over
an unspecified set of resources. Meta variable l and vari-
ants range over a unspecified set of locations. Meta variable
m ranges over a unspecified set of memo-function identi-
fiers. Variables, resources, locations, memo-function identi-
fiers are mutually disjoint. The syntax of IFL is restricted to
“2/3-cps” or “named form” to streamline the presentation
of the dynamic semantics.

The types of IFL includes the base type int, sums τ1 +τ2

and products τ1 × τ2, bang ! τ and question ? τ types, the

stable function types, τ1
s

→ τ2, changeable function types

τ1
c

→ τ2, memoized-stable function types τ1
ms

→ τ2 , and

memoized-changeable function types τ1
mc

→ τ2. Extending
IFL with recursive or polymorphic types presents no funda-
mental difficulties but omitted here for the sake of brevity.

The underlying type of a bang type ! τ is required to be
an indexable type. An indexable type accepts an injective
index function into integers [4]. Operationally, the index
function is used to determine equality. Any type can be
made indexable by supplying an index function based on
boxing or tagging [4]. Since this is completely standard and
well understood, we do not have a separate category for
indexable types to keep the language simple.

The abstract syntax is structured into terms and expres-
sion, which in turn are partitioned into changeable and sta-
ble. Terms evaluate independent of their contexts, as in ordi-
nary functional programming, whereas expression are eval-
uated with respect to a memo table. Terms and expression
divided into two categories, the stable and the changeable.
The value of a stable expression or term is not sensitive to

6

Types τ : : = int | ! τ | ? τ |
τ mod | τ1 × τ2 | τ1 + τ2 |

τ1
s

→ τ2 | τ1
c

→ τ2 | τ1
ms

→ τ2 | τ1
mc

→ τ2

Values v : : = n | x | a | l | m | ! v | ? v | (v1,v2) |
inlτ1+τ2

v | inrτ1+τ2
v |

s fun f(x : τ1) : τ2 is ts end |
c fun (x : τ1) : τ2 is tc end |
ms funm f(a:τ1):τ2 is es end

mc funm f(a:τ1):τ2 is ec end

Operators o : : = + | - | = | < | . . .

St. Expr es : : = return(ts) |
let a:τ be ts in es end |
let !x:τ be v in es end |
let ?x:τ be v in es end |
let a1:τ1×a2:τ2 be v in es end |
mcase v of inl (a1:τ1) ⇒ es

| inr (a2:τ2) ⇒ es

Ch. Expr ec : : = return(tc) |
let a:τ be ts in ec end |
let !x:τ be v in ec end |
let ?x:τ be v in ec end |
let a1:τ1×a2:τ2 be v in ec end |
mcase v of inl (a1:τ1) ⇒ ec

| inr (a2:τ2) ⇒ e′c

St. Terms ts : : = v | o(v1, . . . , vn) |
ms fun f (a:τ1):τ2 is es end |
mc fun f (a:τ1):τ2 is ec end |
s app(v1, v2) | ms app(v1, v2) |
let x be ts in t′s end | modτ tc |
mcase v of inl (x1:τ1) ⇒ ts

| inr (x2:τ2) ⇒ t′s

Ch. Terms tc : : = write(v) |
c app(v1, v2) | mc app(v1, v2) |
let x be ts in tc end |
read v as x in tc end |
mcase v of inl (x1:τ1) ⇒ tc

| inr (x2:τ2) ⇒ t′c

Figure 11: The abstract syntax of IFL.

the modifications to the input, whereas the the value of a
changeable expression or term may be affected by them.

Stable and Changeable Terms. Familiar mechanism of
functional programming are embedded in IFL in the form
of stable terms. Ordinary functions arise in IFL as stable
functions. The body of a stable function must be a stable
term; the application of a stable function is correspondingly
stable. The stable term modτ tc allocates a new modifiable
reference whose value is determined by the changeable term
tc. Note that the modifiable itself is stable, even though its
contents is subject to change.

Changeable terms are written in destination-passing
style with an implicit target. The changeable term write(v)
writes the value v into the target. The changeable term
read v as x in tc end binds the contents of the modifiable
v to the variable x, then continues evaluation of tc. A read
is considered changeable because the contents of the modifi-
able on which it depends is subject to change. A changeable

function itself is stable, but its body is changeable; corre-
spondingly, the application of a changeable function is a
changeable term. The sequential let construct allows for the
inclusion of stable sub-computations in changeable mode.
Case expressions with changeable branches are changeable.

Memoized stable and changeable functions are function
whose bodies are stable or changeable expressions. As with
stable and changeable functions, memoized functions are
stable terms. Applications of memoized stable functions are
stable and applications of memoized changeable functions
are changeable.

Stable and Changeable Expression. Expression are
evaluated in the context of a memo table and are divided
into stable and changeable. Stable and changeable expres-
sions are symmetric except for the body of the return con-
struct. Stable terms are included in stable expressions, and
changeable terms are included in changeable expressions via
a return. The constructs except for return inspect the ar-
guments of a function and express precise dependences be-
tween the input and the output of the function. The return
returns a value based on the those parts of the argument
that have been made available by the preceding constructs.

4.2 Static Semantics

The static semantics of the language combines the static
semantics of AFL and MFL and extends them with question
types. The extensions are relatively straightforward. In
particular, the question types are symmetric to bang types of
selective memoization [4]. The full type system is provided
in the companion tech-report [3].

4.3 Dynamic Semantics

The dynamic semantics consists of four separate evaluation
judgments corresponding to stable and changeable terms
and stable and changeable expressions. All evaluation judg-
ments take place with respect to a state σ = (α, µ, χ, T)
consisting of a location store α, a memoized-function identi-
fier store µ, a set of changed locations χ, and a re-use trace
T. The location store is where modifiables are allocated, the
memoized-function identifier store dispenses unique identi-
fiers for memoized functions that are used for memo lookups.
The set of changed location contains the locations that has
been changed since the previous execution. The re-use trace
is the trace available for re-use by the memo functions.

The term evaluation judgments consists of changeable
and stable evaluation forms. The judgment σ, ts ⇓s v, σ′, Ts

states that evaluation of the stable term ts with respect to
the state σ yields value v, state σ′, and the trace Ts. The
judgment σ, l ← tc ⇓c σ′, Tc states that evaluation of the
changeable term tc with respect to the state σ writes to
destination l and yields the state σ′, and the trace Tc.

The expression evaluation judgments consists of change-
able and stable evaluation forms. The judgment
σ, m:β, es

V

s σ′, v, Ts states that the evaluation of the sta-
ble expression with respect to state σ, branch β, and memo
identifier m yields the state σ′, the value v and the trace Ts.
The judgment σ, m:β, l ← ec

V

c σ′, T states that the eval-
uation of the changeable expression with respect to state
σ, branch β, and memo identifier m writes to target l and
yields the state σ′ and the trace T.

Evaluation of a term or an expression records its activity
in a trace. Traces are divided into stable and changeable.
The abstract syntax of traces is given by the following gram-
mar, where T stands for a trace, Ts stands for a stable trace
and Tc stands for a changeable trace.

7

(v1 = ms funm f(a:τ1):τ2 is es end)
σ, m:ε, [v1/f, v2/a] es

V

s v, σ′, Ts

σ, ms app(v1, v2) ⇓s v, σ′, Ts

(st. memo apply)

(v1 = mc funm f(a:τ2):τ is ec end)
σ, m:! l, l ← [v1/f, v2/a] ec

V

c σ′, T

σ, l ← mc app(v1, v2) ⇓c σ′, T
(ch. memo apply)

Figure 12: Stable and changeable memoized applications.

T : : = Ts | Tc

Ts : : = ε | 〈Tc〉l:τ | Ts ; Ts | { Ts }
m:β

(v,(l1,...,ln))

Tc : : = Wτ | Rx.t
l (Tc) | Ts ; Tc | { Tc }

m:β

(l1,...,ln)

When writing traces, we adopt the convention that “;” is
right-associative.

A stable trace records the sequence of allocations of mod-
ifiables that arise during the evaluation of a stable term or
expression. The trace 〈Tc〉l:τ records the allocation of the
modifiable, l, its type, τ , and the trace of the initializa-
tion code for l. The trace Ts ; T′s results from evaluation
of a let expression in stable mode, the first trace resulting
from the bound expression, the second from its body. The
trace { Ts }

m:β

(v,(l1,...,ln))
arises from the evaluation of a stable

memoized function application; m is the identifier, β is the
branch expressing the input-output dependences, the value
v is the result of the evaluation, l1 . . . ln are the unmatched
modifiables, and Ts is the trace of the body of the function.

A changeable trace has one of four forms. A write, Wτ ,
records the storage of a value of type τ in the target. A
sequence Ts ; Tc records the evaluation of a let expression
in changeable mode, with Ts corresponding to the bound
stable expression, and Tc corresponding to its body. A read
Rx.t

l (Tc) trace specifies the location read, l, the context of
use of its value, x.e, and the trace, Tc, of the remainder of
evaluation with the scope of that read. This records the
dependency of the target on the value of the location read.
The memoized changeable trace { Tc }

m:β

(l1,...,ln)
arises from

the evaluation of a changeable memoized function; m is the
identifier, β is the branch expressing the input-output de-
pendences, l1 . . . ln are the unmatched modifiables, and Tc is
the trace of the body of the function. Since changeable func-
tion write their result to the store, the trace has no result
value.

The dynamic dependency graph and the memo table de-
scribed in Section 3 may be seen as an efficient represen-
tation of traces. Time stamps may be assigned to each
read and write operation in the trace in left-to-right order.
These correspond to the time stamps in the dynamic depen-
dence representation. The containment hierarchy is directly
represented by the structure of the trace. Specifically, the
trace Tc (and any read in Tc) is contained within the read
trace Rx.t

l (Tc). Memo tables represent the traces of the form

{ Ts }
m:β

(v,(l1,...,ln))
and { Tc }

m:β

(l1,...,ln)
. The identifier m iden-

tifies a memo table, the branch β is the lookup key, v is
the result being stored if any, and the trace Tc or Ts along
with the unmatched modifiables l1, . . . , ln is an encapsulated
adaptive computation with inputs l1, . . . , ln. An explicit re-

sult is not stored for memoized changeable functions because
they write to their target which must match for the memo
to be re-used.

Due to space restrictions the complete dynamic seman-
tics is provided in the companion tech-report [3]. In the
rest of the section, we briefly walk through some the more
interesting rules.

Term evaluation. Figure 12 shows the memoized stable
and changeable function applications. Memoized change-
able and stable applications evaluate some expression in the
context of an identifier m and a branch β. As in selective
memoization, the branch collects the precise dependencies
between the input and the output. For stable applications
the branch starts out empty (ε). For changeable applica-
tions it is initialized to the target—since a changeable ex-
pressions writes to its target, the target must be identical
for the “result” to be re-used.

Expression Evaluation. Expression evaluation takes
place in the context of a re-use trace. The incremental evalu-
ation constructs (let!, let?, etc.) create a branch, denoted
β. The branch and the identifier m is used by the return
construct to lookup the re-use trace for a match. If a match
is found, the result is returned and the body of return is
skipped. Otherwise, the body of the return is executed.

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

find (m:β′, T) = NONE

α′ = α[l′1 7→ α[l1], . . . , l′n 7→ α[ln]],

where l′1 6∈ dom(α), . . . , l′n 6∈ dom(α), l′i 6= l′j

σ′ = (α′, µ, χ, T)

σ′, [l′1/l1, . . . l′n/ln]ts ⇓s v, σ′′, Ts

T′s = 〈Rx.write(x)

l1
Wτ1

〉l′
1
:τ1

. . . 〈Rx.write(x)

ln
Wτn

〉l′
n
:τn

σ, m:β, return(ts)

V

s v, σ′′,

(

T′s ; { Ts }
m:β

(v,(l′
1
,...,l′

n
))

)
(×)

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

find (m:β′, T) = SOME({ Ts }
m:β′

(v,(l′
1
,...l′

n
))

, T′)

α′ = α[l′1 7→ α[l1], . . . , l′n 7→ α[ln]]

T′s = 〈Rx.write(x)

l1
Wτ1

〉l′
1
:τ1

. . . 〈Rx.write(x)

ln
Wτn

〉l′
n
:τn

(χ′ = χ ∪ {l′1, . . . , l′n})

σ′ = (α′, µ, χ′, T′)

σ, m:β, return(ts)

V

s v, σ′,

(

T′s ; { Ts }
m:β

(v,(l′
1
,...,l′

n
))

)
(X)

σ, m:! v · β, [v/x]es

V

s v′, σ′, Ts

σ, m:β, let !x : τ be ! v in es end

V

s v′, σ′, Ts

(let!)

σ, m:?v · β, [v/x]es

V

s v′, σ′, Ts

σ, m:β, let ?x : τ be ? v in es end

V

s v′, σ′, Ts

(let?)

Figure 13: Sample stable-expression evaluation.

Figure 13 shows some sample stable expression evalua-
tion rules. Changeable expressions are evaluated similarly
except that a target is threaded through the changeable ex-
pressions. The evaluation σ, m:β, es

V

s v, σ′, Ts states that

8

the evaluation of stable expressions es in the context of the
state σ, with memo function identifier m and branch β yields
the value v, the state σ′ and the trace Ts.

Adaptive memoization permits result re-use based on a
subset of the values that the result of a function depends for.
The unmatched dependences are expressed by the let? con-
struct which adds them to the branch as such. The type sys-
tem ensures that all unmatched arguments are modifiables.
During a memo lookup, unmatched modifiables are sepa-
rated from other dependences by the split (·) that splits
a branch into a list of the unmatched modifiables and a
branch β′. In Figure 13 the top two rules are the memo
lookups. Unmatched modifiables are denoted as li’s. The
find (m:β′, T) performs the memo lookup with the filtered
branch β′ and the identifier m in the re-use trace T. If a
match is not found find returns NONE, otherwise it returns
the trace of the memoized function and the tail of the re-
use trace following the match. If no results are found (the
top rule), then the body of the return is evaluated after
substituting unmatched modifiables with fresh modifiables.
The trace returned by the evaluation is encapsulated by the
branch, the identifier, the result, and returned along with
a copy trace for copying the unmatched modifiables. If the
result is found in the memo (the second rule from the top),
the body of return is skipped and the found trace is re-used
after copying the unmatched modifiables to the local copies.

5 Applications

We describe how to make Insertion Sort and Quick Sort
incremental under insertions and deletions to the input. We
prove strong performance bounds. For insertion sort, we
show that an insertion or deletion is handled in expected-
case Θ(n) time with adaptive memoization. For Quicksort,
we consider insertions and deletions at random locations and
show an expected Θ(log2 n) bound by using the orthogonal
combination. We improve this to expected Θ(log n) by using
adaptive memoization. The expectations are over internal
randomness for hashing used in memo tables. For Quicksort
the expectation is also over all permutations of the input,
as usual.

We present the code for the applications by using an ex-
tended version of the IFL language that support lists. For
brevity, we also use pattern matching on the bang and ques-
tion mark types, and do not apply the named-form restric-
tion.

Both algorithms operate on modifiable lists defined as

datatype ’a mlist = NIL | CONS (’a * (’a mlist) mod)
type ’a modlist = (’a mlist) mod.

Due to space restrictions the proofs of the theorems in
this section are provided in the companion tech-report [3].

5.1 Incremental Insertion Sort

Figure 14 shows the code for incremental insertion sort. The
function iSort inserts the keys in the input list l into an
initially empty accumulator a. As indicated by the ! and ?,
the result is memoized based on the input list and adaptively
memoized on the accumulator. This means that a result
will be found in the memo when the input lists are identical
even though the accumulators are not. The function insert
inserts a given key i into the list t. It is memoized based
on i and the previously inspected key h, and adaptively
memoized with respect to t. This ensures that the same
result will be returned as long as the content of the lists
(t’s) are the same even if they contain different cons cells.

insert: (!int * (!int*?int modlist))->int modlist
ms fun insert (!i,(!h,?t)) =

return mod (
read t as vt in

case vt of
NIL => CONS (i,t)

| CONS(hh,tt) =>
if (i < hh) then

CONS(i,t)
else

CONS(hh, ms app(insert, (!i,(!hh,?tt))))
end)

mc fun iSort (!l:int modlist,?a:int modlist) =
return

read l as vl in
case vl of

NIL => write a
| CONS(h,t) =>

let aa = ms app (insert (!h, (!h,?a))) in
mc app(iSort, (!t, ?aa))

end
end

s fun insSort (l:int modlist):(int modlist) mod =
mod (mc app(iSort,(!l,?(mod (write NIL)))))

Figure 14: Insertion sort with adaptive memoization.

As discussed in Section 2 without using adaptive mem-
oization, insertion takes Θ(n2) time even with the orthogo-
nal combination of adaptivity and memoization. Adaptive
memoization improves performance to expected Θ(n) time.

Theorem 1
Insertion sort (shown in Figure 14) updates its result in
expected Θ(n) time when its input is changed by an insertion
or deletion anywhere in the list.

5.2 Incremental Quicksort

We consider two versions of Quicksort using the orthogonal
combination and adaptive memoization. The table below
compares their performance for a single insertion or deletion
at the beginning, at the end, and at a random location in the
list to the performance with memoization or adaptivity only.
All bounds are expected case with expectations taken over
all possible permutations of the input; for random insertions,
expectations are taken over all possible locations in the input
with uniform probability.

beginning end random

Adaptive Memo Θ(n) Θ(log n) Θ(log n)

Orthogonal Θ(n log n) Θ(log n) Θ(log2 n)

Memoized Θ(n) Θ(n log n) Θ(n log n)

Adaptive Θ(n log n) Θ(log n) Θ(n log n)

Quicksort with Orthogonal Combination. Figure 15
shows the code for incremental Quicksort using the orthog-
onal combination. The code avoids appends by using an
accumulator and is very similar to the adaptive Quicksort
analyzed in previous work [2]. The only difference is that
the filter function fil is memoized based on the pivot, the
function for filtering, and the input list.

Theorem 2
The Quicksort with the orthogonal combination takes ex-
pected Θ(n log n) time for insertions at the head of the in-
put, expected Θ(log n) time for insertions at the end of the

9

fil:(!int*!(int*int->bool)*!int modlist)->int modlist
ms fun fil (!p, !f, !l) =

return mod (
read l as ll in

case ll of
NIL => write NIL
CONS(h,t) =>
if (f h) then

write CONS(h,ms app(fil, (!p,!f,!t)))
else

read (ms app(fil, (!p,!f,!t))) as tt in
write tt

end
end)

c fun qs(l:int modlist, rest:int mlist) =
read l as vl in

case vl of
NIL => write rest

| CONS(h,t) =>
let

val g = ms app(fil, (!h, !(fn x => x > h),!t))
val gs = mod (c app (qs, (g,rest)))
val s = ms app(fil, (!h, !(fn x => x < h),!t))

in
c app (qs, (s,CONS(h,gs)))

end
end

s fun qsort (l:int modlist):int modlist =
mod (c app (qs, (l,NIL)))

Figure 15: Quicksort with the orthogonal combination.

fil:(!int*!(int*int->bool)*!int modlist)->int modlist
ms fun fil (!p,!f,(!h,?t)) =

return mod (
read t as vt in

case vt of
NIL => write NIL
CONS(hh,tt) =>
if (f hh) then

write CONS(hh,ms app(fil, (!p,!f,(!hh,!tt))))
else

read (ms app(fil, (!p,!f,(!hh,!tt)))) as vtt in
write vtt

end
end)

c fun qs(l:int modlist,rest:int mlist) = ...

Figure 16: Quicksort with adaptive memoization.

input, and expected Θ(log2 n) time for insertions at a (uni-
formly) randomly chosen position. Expectations are over all
permutations of the input list. The same bounds apply to
deletions.

Quicksort with Adaptive Memoization. Figure 16
shows the code for Quicksort with adaptive memoization.
The difference between this version and the version using
orthogonal combination is that fil is not memoized based
on the input list. It now takes a separate head and tail and
is memoized based only on the head. This ensures that fil
generates the same output when its input consists of keys
that are a subset of the previous input—even if the new
input consists of different cons cells.

Theorem 3
The adaptively memoized Quicksort takes expected Θ(n)
time for insertions at the head of the input, expected
Θ(log n) time for insertions at the end of the input, and ex-
pected Θ(log n) time for insertions at a uniformly randomly
chosen position. The expectations are over permutations of
the input list. The same bounds apply to deletions.

References

[1] Martin Abadi, Butler W. Lampson, and Jean-Jacques Levy.
Analysis and caching of dependencies. In International Con-
ference on Functional Programming, pages 83–91, 1996.

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adap-
tive functional programming. In Proceedings of the 29th An-
nual ACM Symposium on Principles of Programming Lan-
guages, pages 247–259, 2002.

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adap-
tive memoization. Technical report, Department of Com-
puter Science, Carnegie Mellon University, 2003. Available
at http://www.cs.cmu.edu/˜umut/research/amemo.pdf.

[4] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selec-
tive memoization. In Proceedings of the 30th Annual ACM
Symposium on Principles of Programming Languages, 2003.

[5] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L.
Vittes, and Maverick Woo. Dynamizing static algorithms
with applications to dynamic trees and history indepen-
dence. In To Appear in ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004.

[6] Umut A. Acar, Guy E. Blelloch, and Jorge L. Vittes. Sep-
arating structure from data in dynamic trees. Technical
Report CMU-CS-03-189, Department of Computer Science,
Carnegie Mellon University, 2003.

[7] Richard Bellman. Dynamic Programming. Princeton Uni-
versity Press, 1957.

[8] Alan Demers, Thomas Reps, and Tim Teitelbaum. Incre-
mental evaluation of attribute grammars with application
to syntax directed editors. In Proceedings of the 8th Annual
ACM Symposium on Principles of Programming Languages,
pages 105–116, 1981.

[9] P. F. Dietz and D. D. Sleator. Two algorithms for main-
taining order in a list. In Proceedings of the 19th ACM
Symposium on Theory of Computing, pages 365–372, 1987.

[10] Allan Heydon, Roy Levin, and Yuan Yu. Caching function
calls using precise dependencies. ACM SIGPLAN Notices,
35(5):311–320, 2000.

[11] Yanhong A. Liu, Scott Stoller, and Tim Teitelbaum. Static
caching for incremental computation. ACM Transactions on
Programming Languages and Systems, 20(3):546–585, 1998.

[12] John McCarthy. A Basis for a Mathematical Theory of
Computation. In P. Braffort and D. Hirschberg, editors,
Computer Programming and Formal Systems, pages 33–70.
North-Holland, Amsterdam, 1963.

[13] D. Michie. ’memo’ functions and machine learning. Nature,
218:19–22, 1968.

[14] William Pugh. An improved replacement strategy for func-
tion caching. In Proceedings of the 1988 ACM conference
on LISP and functional programming, pages 269–276. ACM
Press, 1988.

[15] William Pugh. Incremental computation via function
caching. PhD thesis, Department of Computer Science, Cor-
nell University, August 1988.

[16] William Pugh and Tim Teitelbaum. Incremental computa-
tion via function caching. In Proceedings of the 16th Annual
ACM Symposium on Principles of Programming Languages,
pages 315–328, 1989.

[17] G. Ramalingam and T. Reps. A categorized bibliography
on incremental computation. In Conference Record of the
20th Annual ACM Symposium on POPL, pages 502–510,
January 1993.

[18] Thomas Reps. Generating Language-Based Environments.
PhD thesis, Department of Computer Science, Cornell Uni-
versity, August 1982.

[19] Daniel D. Sleator and Robert Endre Tarjan. A data struc-
ture for dynamic trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983.

10

