Submitted to POPL 2011

2-Dimensional Directed Dependent Type Theory

Daniel R. Licata*

Robert Harper *

Carnegie Mellon University
{drl,rwh}@cs.cmu.edu

Abstract

The groupoid interpretation of dependent type theory given by Hofmann
and Streicher associates to each closed type a category whose objects rep-
resent the elements of that type and whose maps represent proofs of equal-
ity of elements. The categorial structure ensures that equality is reflexive
(identity maps) and transitive (closure under composition); the groupoid
structure, which demands that every map be invertible, ensures symmetry.
Families of types are interpreted as functors; the action on maps (equality
proofs) ensures that families respect equality of elements of the index type.
The functorial action of a type family is computationally non-trivial in the
case that the groupoid associated to the index type is non-trivial. For ex-
ample, one may identity elements of a universe of sets up to isomorphism,
in which case the action of a family of types indexed by sets must respect
set isomorphism. The groupoid interpretation is 2-dimensional in that the
coherence requirements on proofs of equality are required to hold “on the
nose”, rather than up to higher dimensional equivalences. Recent work by
Awodey and Lumsdaine, Voevodsky, and others extends the groupoid in-
terpretation to higher dimensions, exposing close correspondences between
type theory, higher-dimensional category theory, and homotopy theory.

In this paper we consider another generalization of the groupoid inter-
pretation that relaxes the symmetry requirement on proofs of “equivalence”
to obtain a directed notion of transformation between elements of a type.
Closed types may then be interpreted as categories, and families as functors
that extend transformations on indices to transformations between families.
Relaxing symmetry requires a reformulation of type theory to make the
variances of type families explicit. The types themselves must be reinter-
preted to take account of variance; for example, a II type is contravariant
in its domain, but covariant in its range. Whereas in symmetric type the-
ory proofs of equivalence can be internalized using the Martin-Lof identity
type, in directed type theory the two-dimensional structure must be made
explicit at the judgemental level. The resulting 2-dimensional directed de-
pendent type theory, or 2DTT, is validated by an interpretation into the strict
2-category C'at of categories, functors, and natural transformations, gener-
alizing the groupoid interpretation. We conjecture that 2DTT can be given
semantics in a broad class of 2-categories, and can be extended to make
the higher dimensional structure explicit. We illustrate the use of 2DTT for
writing dependently typed programs over representations of syntax and log-
ical systems.

* This research was sponsored in part by the National Science Foundation
under grant number CCF-0702381 and by the Pradeep Sindhu Computer
Science Fellowship. The views and conclusions contained in this document
are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution,
the U.S. government or any other entity.

[Copyright notice will appear here once "preprint’” option is removed.]

1. Introduction

A type A is defined by introduction, elimination, and equality
rules. The introduction and elimination rules describe how to con-
struct and use terms M of type A, and the equality rules de-
scribe when two terms are equal. Intensional type theories distin-
guish two different notions of equality: a judgement of definitional
equality (M = N : A), containing the 8- and perhaps some 7-
rules for the various types, and a type of propositional equality
(Ida M N), which allows additional equalities that are justified by
explicit proofs. The type theory ensures that all families of types
z:A F C type respect equality, in the sense that equal terms M
and N determine equal types C[M /z] and C'[N/z]. Definitionally
equal terms give definitionally equal types, whereas propositionally
equal terms induce a coercion between C'[M /z] and C[N/x]:

z:AF Ctype P:lda M N Q:C[M/z]
substc P Q: C[N/z]

The nature of this coercion is explained by the groupoid interpreta-
tion of type theory given by Hofmann and Streicher [17]. A closed
type is interpreted as a groupoid (a category in which all morphisms
are invertible), where the objects of the groupoid are the terms of
the type, and the morphisms are proofs of propositional equality
between terms. Open types and terms are interpreted as functors,
whose object parts are (roughly) the usual types and terms of the
set-theoretic semantics, and whose morphism parts show how those
types and terms preserve propositional equality. An identity type
Ida M N is interpreted using the Hom set of A. Many types, such
as natural numbers, are interpreted by discrete groupoids, where
the only proofs of propositional equality are identities. Such types
satisfy uniqueness of identity proofs (UIP) (see Hofmann and Stre-
icher [17] for an introduction), which states that all terms of type
Ida M N are themselves equal. However, the groupoid interpreta-
tion also permits types of higher dimension that have a non-trivial
notion of propositional equality.

One example of a higher-dimensional type is a universe, set, a
type whose elements are themselves classifiers: associated to each
element S of set, there is a type EI(.S) classifying the elements of
S. The groupoid interpretation permits sets to be considered mod-
ulo isomorphism, by taking the propositional equalities between S
and S> to be invertible functions EI(S1) — EI(S2). Semantically,
set may be interpreted as the category of sets and isomorphisms.
This interpretation of set does not satisfy UIP, as there can be many
different isomorphisms between two sets. Given this definition of
propositional equality, the rule subst states that all type families
respect isomorphism: for any C' : set — set, A = B implies
C[A] = CB]. Computationally, the lifting of the isomorphism is
given by the functorial action of the type family, C.

I'This works if the sets S themselves are discrete; otherwise, set can be
interpreted as the groupoid of small groupoids, which permits non-trivial
maps between elements of sets.

2010/7/19

The groupoid interpretation accounts for types of dimension 2,
but not higher. For example, while the groupoid interpretation per-
mits a universe of sets modulo isomorphism, it does not provide
the appropriate notion of equality for a universe containing a uni-
verse, where equality should be categorical equivalence, which may
be described as “isomorphism-up-to-isomorphism”. Recent work
has generalized this interpretation to higher dimensions, exploiting
connections between type theory and homotopy theory or higher-
dimensional category theory (which, under the homotopy hypoth-
esis [5] are two sides of the same coin). On the categorical side,
Garner [12] generalizes the groupoid interpretation to a class of
2-categories where the 2-cells are invertible. Lumsdaine [19] and
van den Berg and Garner [26] show that the syntax of intensional
type theory forms a weak w-category. On the homotopy-theoretic
side, Awodey and Warren [4] show how to interpret intensional
type theory into abstract homotopy theory (i.e. Quillen model cat-
egories), and Voevodsky’s equivalence axiom [27] equips a type
theory with a notion of homotopy equivalence, which provides the
appropriate notion of equality for types of any dimension.

However, the groupoid interpretation, and all of these general-
izations of it, make essential use of the fact that proofs of equiva-
lence are symmetric, interpreting types as groupoids or homotopy
spaces. For some applications, it would be useful to consider types
with an asymmetric notion of transformation between elements.
For example, functors have proved useful for generic program-
ming, because every functor provides a way for a programmer to
apply a transformation to the components of a data structure. If we
consider a universe setwhose elements are sets .S and whose mor-
phisms are functions f : EI(S1) — EI(S2), then any dependent
type xz:set = C type describes such a functor, and subst can be
used to apply a function f to the components of the data structure
described by C.

Another application concerns programming with abstract syn-
tax and logical derivations. Abstract syntax can be represented in
a dependently typed programming language using well-scoped de
Bruijn indices [3, 7]. For example, formulas in a first-order logic
are represented by a type prop(W : ICtx), where ICtx is a type rep-
resenting the context of individual variables (e.g. a list of sorts), and
prop(¥) is a type representing the formulas with free variables in
. Structural properties, such as weakening, exchange, contraction,
and substitution can be cast as showing that prop(—) is the object
part of a functor from a context category [10, 16]. The context cat-
egory has contexts W as objects, while the choice of morphisms
determines which structural properties are provided: variable-for-
variable substitutions give weakening, exchange, and contraction;
term-for-variable substitutions additionally give substitution. How-
ever, these context morphisms are not in general invertible.

In this paper, we propose a new notion of directed dependent
type theory, which permits an asymmetric notion of transformation
between the elements of a type. The contributions of the paper may
be summarized as follows:

e Directed type theory differs from conventional type theory in
that it must account for variances of families of types. In con-
ventional symmetric type theory there is no need to account for
variance, because the proofs of equivalence of two indices are
invertible. To relax this restriction requires that the syntax dis-
tinguish between co- and contra-variant dependencies. This has
implications for the type structure as well, so that, for example,
dependent function types are contravariant in the domain and
covariant in their range.

Directed type theory exposes higher-dimensional structure at
the judgemental, rather than the propositional level. In particu-
lar the Martin-Lof identity type is no longer available, because
the usual elimination rule implies symmetry, which we explic-

itly wish to relax. Moreover, in the absence of invertibility, the
identity type cannot be formed as a type. We must instead give a
judgemental, rather than propositional, account of transforma-
tions, and make explicit the action of transformations on fami-
lies of types.

Analogously to the groupoid interpretation of type theory given
by Hofmann and Streicher [17], we consider only the two-
dimensional case of directed dependent type theory, which we
call 2DTT. 2DTT admits a simple interpretation in the cate-
gory Cat of categories, functors, and natural transformations.
Specifically, a closed type denotes a category, whose objects are
the elements of the type, and whose maps are (not necessarily
invertible) transformations between them. The groupoid inter-
pretations of the dependent type constructors, such as II and X2,
can be adapted to the asymmetric case by taking careful account
of variances. The syntax of 2DTT reflects the fact that C'at is
a strict 2-category, in that various associativity, unit, and func-
toriality laws hold definitionally, rather than propositionally. (A
propositional account would require a generalization to higher
dimensions, which we do not consider here.)

A motivating application of 2DTT is programming with depen-
dently typed abstract syntax. The structural properties of vari-
ables (weakening, exchange, contraction, substitution) arise as
transformations between binding contexts. Structurality of rep-
resentations of logics, such as a type nd ¥ A of derivations
of ¥ I A in natural deduction, is represented in 2DTT by
functoriality of nd in its context argument W. The categorical
semantics of 2DTT provides the usual substitution map from
derivations of ¥ + A to derivations of ¥’ A[f], given a
transformation 6 from W to ¥’.

Although it is not necessary for the applications we consider here,
it seems likely that 2DTT could be extended to higher dimensions,
and that more general interpretations of both the two- and higher-
dimensional cases are possible. We leave these as interesting direc-
tions for future work.

2. Syntax

In this section, we give a proof theory for 2DTT. This proof the-
ory has three main judgements, defining contexts I', substitutions
0, and transformations 6. In the semantics given below, these are
interpreted as categories, functors, and natural transformations, re-
spectively. Using the terminology of 2-categories, we will refer to
a context I" as a “0-cell”, a substitution as a “1-cell”, and a transfor-
mation as a “2-cell”. Each of these three levels has a corresponding
contextualized version, which is judged well-formed relative to a
context I'. Contextualized contexts and substitutions are dependent
types A and terms M, while contextualized transformations are an
asymmetric variant of propositional equality proofs.

Because 2-cell structure is not commonly described type-
theoretically, we have chosen to make many rules derivable, rather
than admissible, so that the typing rules give a complete account
of the theory. For example, we make use of explicit substitutions,
which internalize the composition principles of a 2-category, rather
than treating substitution as a meta-level operation. The defin-
ing equations of substitutions are included as definitional equality
rules. However, we leave weakening admissible, as the de Bruijn
form that results from explicit weakening is difficult to read.

In this section, we present a base theory with just enough types
to illustrate the main ideas; we consider extensions below.

2.1 Formation rules

Contexts and types. As discussed above, variables are annotated
with a variance, * or ~, that determines in what positions they may

2010/7/19

All judgements respect equality

Petx I' - Atype TDectx TP - Atype T ctx r=r/ r-J=J T/kt:J
- ctx ', z:A* ctx ', z:A ctx T'°P ctx THt:J
T - Atype
T - Atype T°P - A type
I',z:A* + B type I',z:A” F Btype F-S:set I'FO:A AF Atype
I' X z:A. B type I'F1Iz:A. Btype T Fsettype I FelStype ' - A[0] type

I'D>A I'obF6y:T3 T'1FH6O:T2 ToP ¢ . A°P 'o:A Fl—M:A[Q] 'Fo:A FOPFM:AWOP]
T'kida: A 1 F62[01]: T3 FEOP:A ThF-:- THOM/z:Ax:A* -6, M /x: AN z: A

s A'ET THO:A AFM:A Actx A Ctype I'Fé:01 =02 T FM:C[0]

FkFz:A I = MI0]: Al6] I'Fmapy o6 M:C[02] (rules for sets and elements of sets)
TFMi:A TFMo:B[Mi/x] T pM-SeA B T - M:Sa:A B D oA FM:B T FM IzAB I F My:A
I+ (M;,Mg):X2:A. B HfstM:A T'Fsnd M:B[fst M/z] T'FAXz.M:11z:A.B ' - M; My :B[My/z]

THES:0 =0
TH&1:01=>p02 TFdr:fy=p6; IFE0:0=a0" Tobdo:00=>r0; IPF§:0" % =00 0P

FFideA:0:>A9 FF520§1:01:>A93 FOF(S[(;O]:Q[@O]:}A@/[G(I)} FF(;Op:9:>A9/

F}’(519:>A0/ FFa:(mapA‘AéM):n‘[g/]N F'*610:>A9’ F°pFa:(mapAop‘A(6°p)N):>A[9]M
ko= - 'k (5,0 /x): (0, M*/x) = 5.4+ (0/,N*/x) 'k (6o /x): (0, M /x) =>A 4.4~ (0, N /)

F}—a:M:>AN‘

C'koay: M =>aA My TFoag:My=>p M3 lokdo:00=r6) 'Fa: M=, N
FFidﬁI:M:A M I'Fasoar: My A Ms FoFa[&o] : (mapF_A 50 (M[Q()D) :A[g(l)] N[Q/O}

T,z:(el S)* = M:el S’ T'Fa:M—qg N
TFazM:S=—=stS Thx:M=—qsM TI'F M= N:elS

P zAFa:(Mz)=—p (Nz) 'ta:M=ngzapN T'FB: M =4 N
PkAz.a:M =mga.8N ThkaM; Ny B:mapp 8 (MM1) = pin, /2] (NN1)

T'Fajp:fst M =>4 fst N
Fl—ag:(map}gal(sndM)):>B[fstN/z]sndN F'Fa:M=5,45N I'Fa: M =x,.4.8N

Ik (ag,02): M =x4.4.8N Ikfsta:fst M =>4 fst N T'ksnd o : (mapk (fst a) (snd M)) = Blfst N/z] SNd N

Figure 1. Formation Rules

3 2010/7/19

Congruence map

All judgements have reflexivity, symmetry, transitivity, mapa. ¢ idg M = M
and a compatibility rule for each term constructor. mapa ¢ (62061) M = mapy ¢ 02 (mapa ¢ 61 M)
) - mapa . cig: a0 M = mapas ¢ idg[d] M
’ [B-n for terms and transformations ‘ mapA'C[J M] — M if A#C (includes set)
_ . Mapa g4 g0 M = Az.mapy 4. 4- (6,id) (M (mappep 4 0% z))
S\;?ﬁj\g?ANB - ﬁ/[x[NM/i] mapa x4 50 M = (mapp g dfst M,mapa ,.a+ g (0,idmap s (fst mr)) snd M)
fst (M,N) Y mapa e (s) O M = N[M*/x] if idg[d] = z.N : S[0] =>set S'[0]
snd (M, N) = N
M:¥z:A.B = (fst M,snd M)
(additional rules for elements of sets) ’ h[8] (horizontal composition of morphisms)
(Az.ag) o = oayfid,az”/a] For h € {5,0} :
a:M=n,4N = Xz.a(idg) R[S[67]] = h[o][¢]
fst (ovr, o2) = . R[idia] =t
snd (al ; a?) = 2 idid [5] = 4
a:M=s,4N = (fsta,snda)
a:S =t S = Z.MaPg:Set.ela ('70‘)]: 01 062[53054} = 4z [53] 052[54]
a:M=aqs N = x (id,y9))[0] = ido[idg[8]] foro € {0, M}
{T,0,6}°° “[d0] = -
(6, o /z)[d0] = 9[bo), aldo]"/x
.op = . (6,7 /z)[00] = §[do), 67" /x
T Y ET = Top AT
Ero’pfop = r - (.M)[80] = z.map, o 8o M[8,a*/a]if T, z:el S* - M:el S’ and 8o : = 6/
- *[d0) = x
id°® = idper (Az:A. a)[do] = Az:A]f']. afdp,id/a]
(07 [62])°P = 065" o ag[do] = (ar[do]) (az[do])
(6°P)oP — 2 (ovr, e2)[S0] = (az[do], az[d0,id])
“op — (fst a)[do] = fst af[dg]
(0, M /)P ; 6%, M¥ /o (snd «)[do] = snd a[dyp]
. op . Writing M [6]for id a7 [8]
"j;e o = '6‘1',@"? 5op (0] = 4z
(drod)® = 03708 M[O)[s] = M[idg[s]
(55,0[53&) = 671657 (map, 6 M)[6o] = 7?77
(5°°) =9 (A M)[5] = Xz M[5,id]
' w = (M N)[o] = M3 N
(0,0 fx)® = 0% 0F/z (M, N)[9] = (M]3, N[3))
(fst M)[4] = fst M[d]
(snd M)[o] = snd M)
(additional rules for S[d] for S : set)
id. =
idp .t = idr,z¥/x ’ hoh’ (vertical composition) ‘
!d~ = . (h30h2)0h1 = hgo(hgohl)
idg prt e = idg, idy,+ /x (hoid) = 5
(id o 1) = h

’ t[0] (horizontal composition of objects) ‘
Lo

(02, 2% /) 0 (81,01 /)

(62 001), (o2 oresp (z.mapp 4 01 z) 1)/

il = el (52, 027/x) 0 (B1,007/x) = (52061), (ers 0 resp (.map gon s 0 7) 2) [
idp[@] = 0 (z.M1)o(z.M2) = :L‘MQ[M]/LE]

.(%90;\4,,/)6 f é@ M{00]*/)(&)\Ox*.ag)o()\z.az) i ;z.a20a1

a M_/g){eg} = 9{98}:1\4%9%;}_/2 (az, o)) [(ar,o)] = (agoa,aloresp (z.mapy 4 (id,as) 7))
Y z:A. B)[6 = X ux:Al0p]. Bl0p,z*/x -

e e

set[6 = set

(el [S())%HO] = el (S[00)) 10, M* /2] = t[0]if A - t:JandT 60 : A

z[00] = 6Op(x) t[d, ot /z] = t[6] similarly

(mapp 6 M)[0o] = mapy ¢ dfidg,] M([00] mapp . ax.c (§,a%/x) M =mapy ¢ § Mif A + Ctype

(similarly for remaining terms M)

Figure 2. Definitional Equality (°° , identity, and composition)

4 2010/7/19

be used. We also require an operation I'°", which flips the variance
of the variables in I'. Contexts then consist of the empty context -,
as well as context extension with a variable of either variance. A
covariant extension I' , z: A* is well-formed if A is well-formed in
T", while a contravariant extension I" , z: A” is well-formed if A is
well-formed in T"°P.

The judgement I' - A type means that A is a type using the
variables in I" with their designated variances. The types consist of
dependent functions (II) and pairs (X), as well as a universe of sets
(set) and elements of them (el S), and explicit substitution A[f)].
Functions are contravariant in their domain type, so in Il z:A. B,
A is type-checked contravariantly, and z is assumed contravariantly
in B. On the other hand, in X z:A. B, z is assumed covariantly in
B. In general, a universe contains terms representing classifiers,
with the type el S representing their elements. Here, set contains
discrete types: types whose elements have no non-identity trans-
formations between them (it is also possible to define other forms
of universes, as we discuss in 6). However, set itself is not a dis-
crete type; it is an example of a base type with a non-trivial notion
of transformation. In particular, we take a transformation from S
to S’ to be a function from el S to el S’. Consequently, any type
s:set C type will admit a lifting of a function from el S to el S’
to a transformation from C[S/s] to C[S’/s]; thus, we recover the
common functor interface used in many programming languages as
a special case. The remaining type former, A[6], represents an ex-
plicit substitution into a type. We use the abbreviation t[N* /z] for
t[id, N* /], for substituting for a single variable in any expression
t of the calculus.

Weakening is admissible for judgements such as I' - A type.
To state weakening, we require a notion of looking up a variable in
a context:

AT el AT el
AT €T, z:A* z:AT €T, y:B* AT € TP

Next, we write I' D I iff for all z:AT € I, z:A* € T. All
judgements of the form I' - J satisfy the following:

LEMMA 2.1. Weakening. IfT' = J andT' D T then T’ I J.

Substitutions and terms. The judgement I" - 6 : A means that 6
is a substitution from I" to A. This judgement is well-formed when
I" ctx and A ctx. Below, we will see that contexts and substitutions
between them form a category, so we have the identity substitution
id and composition of substitutions 6[6’]. The next rule states that
°P has an action on substitutions. To avoid specializing the context
in the conclusion of the rules, we phrase this as an “elimination”
rule, removing °P from the two premise contexts. However, °° is an
involution: we have a definitional equality between (I"°")° and I,
so the following “introduction” rule is derivable:

I'E6: A
TP | §°P : AP

The remaining rules substitute for the empty context, and for co-
and contravariant context extension. A substitution for A, z : A* is
a dependent pair of a substitution 6 and a term of type A[A]. On
the other hand, the term substituted for a contravariant assumption
must be well-formed contravariantly, so we require a substitution
from T"°P to A°P, which is 6°P.

The judgement I' - M : A means that M is a term of type A in
I". The judgement is well-formed when I" ctx and I" I A type. The
formation rule for variables x says that a covariant variable may be
used; contravariant variables are are turned into covariant variables
by I'°P, which allows them to be used in contravariant positions (see
the definitional equality rules below). The explicit substitution rule
is analogous to that for types.

The map rule allows a transformation to be applied to a term;
its type is analogous to the standard subst rule for identity types.

Given a type C' in context A, if M has type C[01], and there is a
transformation from 6; to 62, then the transformation applied to M
has type C'[f2]. The computational action of map is dependent on
the functorial action of each type C. We can define derived forms
for replacing the last variable in the context:

I'z:A* - Btype I'ta: My =4 My '+ M:B[M;"/x]
I' +maph o M:B[My*/z]

Iz:A” - Btype I'Pha:My=, My T+ M:B[M; /z]
I +maph a M:B[M; /z]

are defined by map! ,» , a M = mapp .4+ p id,a* /z M.
Note that we use the corresponding abbreviation ¢{N*/x] for
t[id, N* /] for substituting for a single variable.

The remaining rules are variants of the usual rules for ¥ and II.
In A z. M, z is hypothesized contravariantly, and in an application
the argument is a contravariant position. We give rules for particular
sets and elements below.

Transformations. Transformations between substitutions 6 and
0’ are a variant of propositional equality proofs in intensional type
theory. The judgement I' - « : 61 =a 02 is well-formed when
TPcetxand Actxand T' + 6; A. Substitutions are reflexive
(id) and transitive (d2 o d1) but not necessarily symmetric. For
any given I" and I, the substitutions and transformations between
them form a category (the hom-category between 6 and '), with
these as identity and composition. The operation 6[d'] says that
transformation respects transformation—it allows one formation to
be substituted into another, yielding a transformation between the
substitution instances. This operation corresponds to what is called
horizontal composition of maps in a 2-category, while d; o d2 is
called vertical composition.

Next, °® has an action on transformations, but it interchanges 6
and §’'—it is a contravariant functor on the hom-category. Finally,
we give rules for relating the empty substitution to itself, and con-
text extensions if their components are related. The auxiliary judge-
ment ' F o : M =4 N represents a transformations from the
term M to the term N, both of which have type A. For covari-
ant context extension, M and N have different types—M : A[6]
and N : A[¢’] by the rules for substitution formation—so we can-
not compare them directly. The correct rule is to transform the ap-
plication of § to M into N. The rule for contravariant extension is
similar: we apply 6 to N and transform the result into M.

The judgement I' - o« : My = 4 Mo represents transforma-
tions between terms. It is well-formed when I' ctx and T" F A type
and I' + M, : A. Term transformations also have identity, vertical
composition, and horizontal composition. Horizontal composition
can be used to define the usual resp congruence rule

'ra:M =4 N T'FBtype T',z:A" - F:B
I'kresp Fa: FIM/x] =B F[N/z]

by resp F' o = idp[idig, o /z].

Next, we give introduction and elimination rules for transfor-
mations at the various connectives. Transformation from a set S
to a set S’ is given by a function from el S to el S’, represented as
an open term. The corresponding elimination rule should allow this
function to be applied; map, ..., o, does exactly this. Transforma-
tion of elements of a set is just equality, expressing that sets are dis-
crete. As an elimination, we give an equality reflection rule, which
states that a transformation at el S induces a definitional equality.
Transformation at II types is given by extensionality, and elimi-
nated by application. Transformation at X is given by pairing, and
eliminated by projection. In the type of a, the second component
must be transformed along a1 to make the types line up, as in the
rules for context extension above.

2010/7/19

One issue in syntactic presentations of dependent type theory
is whether the rules presuppose or guarantee that their subjects are
well-formed—e.g. inT" + M : A, is it assumed that T" F Atype, or
doesT" = M : Aimply I Atype? Each of our rules presupposes
that the context I' is well-formed—that I" ctx. Additionally, we em-
ploy a convention that ensures that the subjects of each judgement
are well-formed: the rules have implicit premises stating that each
metavariable occuring free in the rule schema is well-formed, such
that under these additional assumptions the subjects of each judge-
ment are be well-formed. For example, the above snd M rule ab-
breviates the following:

I'-Atype T',z:A*"FBtype '+ M:Xz:A.B
' Fsnd M : B[fst M /x|

Under these assumptions, ¥ z:A. B and Blfst M /x] are well-
formed, as required.

2.2 Equality Rules

Next, we present the equality rules. In addition to the familiar 57)-
rules for terms, we give an equational behavior to identity, composi-
tion, and °P, as well as 8n-rules for transformations. Our semantics
below interprets the calculus into Cat, a strict 2-category, which
means that the associativity and unit laws for composition hold up
to equality, not up to higher-dimensional morphisms. Correspond-
ingly, we give definitional equality rules for associativity and unit
of composition, functoriality of map , and so on.

We define one definitional equality judgement corresponding
to each of the six judgements above. To improve readability, we
elide the formation premises which ensure that both subjects of the
equation are well-formed. We also write A?* for either A* or A7,
with AT standing for the opposite.

Bn The Sn-rules for terms are standard. The rules for transforma-
tions for IT and ¥ are analogous to the rules for terms. For set, we
give an n-rule that expands any transformation into a map . The
only elimination form for transformations at setis map , so the -
like rule will be discussed with it below. For el S, we give an n-rule
that expands any transformation into x; this is well-typed because
of the equality-reflection elimination rule for el S.

Op (°°) Next, we give rules that define °°, by giving its action on
each T, 6, and §. These rules state that: (1) °° flips the variance
bits on context extensions. (2) °P is an involution. (3) °® is an
functor which is covariant on 1-cells and contravariant on 2-cells: it
preserves identities and compositions, flipping & o &’ (the technical
term for this is that °P is a 2-functor from the 2-category Catto its
two-cell dual C'at®).

Identity (id) The rules for identity expand substitutions and trans-
formations at the empty context and context extensions. The fol-
lowing rules for expanding identities at terms are derivable, using
the rules below for horizontal composition with the identity:

ids* = z.2

ide' S = %

idy, v = Az.idy
idM N = i‘fiM id.N
idar,yy = (id s, idy)
idfst M = fst IdM
idgng 7 = sndidy,

Substitution t[0), i.e. horizontal composition of objects. The
rules for horizontal composition ¢[0], for ¢ in {M, A,0} define
substitution in a fairly standard manner. The first three rules state
that substitution is associative and unital. The remaining rules push
the substitution into the remaining terms (the case of 6°Pis covered
by the functoriality rule for °® above). There are two subtleties:

first, in contravariant positions, we substitute by 8°°. Second, in the
rule for map , we need to recursively substitute into 6. However,
pushing a substitution into a transformation with 4[6] can be de-
fined to mean pushing the identity transformation on 6, idg, into d,
so we may use the judgement §[do], defined below.

Map (map) The first two rules for map express that it preserves
identities and vertical compositions. The remaining rules imple-
ment the functorial action of each type constructor. The first rule
says that the map of a type defined by composition C[0]is given
by reassociating, mapping C' over the composition of 6 and §. The
next rules says that the action of a constant type is the identity. The
rules for ¥ n-expands the term and push the transformation inside.
When transforming at BB, we must extend the transformation, but
because we have assumed z : A* covariantly, the required transfor-
mation is the identity at map ¢ (fst M). The rule for IT is similar:
for § : @ = €', it precomposes the given function with the
transformation applied contravariantly to z : A[#’], and then post-
composes with the transformation at B. For the latter, we assume
z : A" contravariantly, so that we may extend the transformation by
the identity at map 6°° z’. Finally, the rule for el S uses the compo-
sition ids[d] to compute an open term, and plugs M into the result.

Substitution of transformations into transformations (h[d)), i.e.
horizontal composition of morphisms The first three rules state
that horizontal composition is associative and unital, with I"
idig : id = id as the unit; we do not give a rule for substituting
into idgfor other 6, as such transformations can be expanded using
the identity rules. The next rule states the middle-four interchange
law for interchanging horizontal and vertical composition. The
next rule pushes a horizontal composition into the identity on a
horizontal composition. Together with the interchange law, this rule
forms the Godement calculus of natural transformations [14]. The
next two rules state that substitution for canonical transformations
proceeds compositionally.

Next, we give rules for substituting into a transformation be-
tween terms «. For substituting do : # = 6’ into a transformation
x.M, we apply M at 0, z* /x, and then use map to transform by do.
For the remaining canonical transformations, substitution proceeds
compositionally.

The interesting case is I' = idf;[6] : M[0] ==map; 4 6 M
M 16'], which we will abbreviate as M [4]. In the semantics, this is
interpreted using the action on morphisms of a term M. For a vari-
able x, we look the appropriate transformation up in §. For com-
position, we can reassociate. For the remaining terms, substitution
proceeds compositionally. Below, we give rules for each particular
set S, which implement the functorial action of each type construc-
tor. The case of M :el S is covered by the n-rule for transforma-
tions of this type.

Vertical composition (hiohs) The first three rules state that § o4’
and cvoq are associative and unital. Unlike horizontal composition,
the unit of § o § is idgfor an arbitrary € (not just idig). On transfor-
mations §, vertical composition proceeds componentwise, though
it is necessary to “adjust” the second components of transforma-
tions between contexts and Y-types by the first components—in
the semantics, this is explained by the definition of composition
for the total category of the Grothendieck construction. The re-
maining rules define composition for canonical transformations be-
tween terms, stating in each case that composition commutes with
the transformation constructor.

2.3 Sets

In Figure 3, we give typing and equality rules for II, 3, and
empty (0), unit (1), and boolean (2) sets. Modulo contravariance,
the typing and Bn-rules are standard. Contravariance shows up in
the formation rules for Il and A, as above, and additionally in the

2010/7/19

T°P | S; :set ' S;:set

T',z:elS;™ F Sp:set T',z:elS;* - Sp:set
I'FIT1z:S;.85%:set I'FX2z:57.82 :set I'-0,1,2:set
M1:e|S
Mg :el S'[M;/z] M:elSz:S. 8 M:elXz:5.8'

(My,Mp) :elEz:5.5' fst M :el S snd M :el S’[fst M /z]

D'k M;:elllz:S.8" T - My:el S
T "M] Mg:e|S/[Mg/l’]

zel S F M:el S’
Az. M:elllz:S. S’

'+ +M:0
():1 true,false:2 T FabortM:C

I+ FM:2 T + M; : Cltrue/z]
,z:2% - Ctype T F Mp: Clfalse/z]

I Fifa(M, My, Ms): C[M/z]

(Az. M) N = M[N/z]
M:elllz:S. 5’ = Az.Mz

fst (M, N) = M

snd (M, N) = N
M:el¥z:5.5' = (fst M,snd M)
M:ell = ()
if(true,M1,M2) = M;

if (false, My, M2) = Mo

0,1,2[d] = z.x

(ITz:S.8)[6: 0 = 0] =
frel(ITz:S[0]. 8’0, 2™ /z]).
A z:el S[0]. mapg o/ (3,id) (f (mapg g 6°° z))
(Zz:5.8)6:0 = 0]=
prel (2 z:5[0]. 8’10, 2% /z]).(mapg ¢ 6 fst p, mapg g/ (8,id) snd p)

Figure 3. Sets

elimination rules for 0 and 2. For example, the rule for if allows
the principal premise to be well-formed either in T" or in T'°" (we
abbreviate this choice by I'*), with the motive of the eliminator,
C, well-formed under the appropriate variance extension. This is
definable because 2 is discrete. The rule for abort is similar.

When we introduce a set, we must give [n-rules for its ele-
ments, and horizontal composition rules that define its functorial
action. In the figure, we give Sn-rules for II, X, 1 and S-rules for
0, 2. We also define the functorial action of each type constructor
in the expected manner.

3. Semantics

In this section, we give a semantics in Cat, the 2-category of
categories, functors, and natural transformations. For notational
convenience, we write [I'], [6], etc., but formally the semantics
is defined on typing derivations, not raw terms.

The intuition for this interpretation is that a context, or a closed
type, is interpreted as a category, whose objects are the members
of the type, and whose morphisms are the transformations between
members. Thus, a substitution (an “open object”) is interpreted as
a functor—a family of objects that preserves transformations. A
transformation (an “open morphism”) is interpreted as a natural
transformation—a family of morphisms that respects substitution.
More formally, judgements are interpreted as follows:

e [I'] is a category
o [I'F0: Aisafunctor [0] : [I] — [A]

e [I'F§:60; = 05] is anatural transformation
[0] : [6:] == [62] : [I] — [A]

We summarize the interpretation with the following theorem:
THEOREM 3.1. Soundness

e There are total functions [—] that for each derivation D :: J
yield a semantic entity of type [J].
.IfDi skt JandD EtQZthen[[Dl]]ZIIDQ]].

3.1 Interpretation of Formation Judgements

In this section, we describe the interpretation of contexts, substitu-
tions, and transformations. This requires specifying the interpreta-
tions of types, terms, and term transformations. We also give the
semantics of the judgemental rules for types, terms, and transfor-
mations (composition, identity, map). We discuss discuss the se-
mantics of particular types below.

3.1.1 Contexts and types

Semantic Types Before giving the interpretation of contexts, we
must state the specification for the interpretation of types. The
judgement I' - A type represents an open type. Correspondingly,
it should be interpreted as a functor that assigns a closed type to
each object of I', preserving transformations. Since closed types are
represented by categories, this is modeled by a functor into Cat:

[l F Atype] is a functor [A] : [I'] — Cat

In general, we will use the same letter for a piece of syntax and
for the semantic concept it is interpreted as; e.g. we will sometimes
write T" for a category, 0 for a functor, A for a functor into Cat,
etc. Further, we use the same notation for °® and composition in the
semantics, writing e.g. 6[0'] for composition of functors, 6[4'] for
horizontal composition of natural transformations, and § o §’ for
vertical composition. Additionally, we abbreviate ' — Cat by
Ty .

Interpretation of Contexts
[=1
[r] = [r]»
[[F s x:A*]] = f[[r]] [[A]]
[T, 2:A7 = (Jpen [AD

The empty context is interpreted as the one-object category 1.
Opposite contexts are interpreted as the opposite category.

To interpret context extension, we use the total category given
by the Grothendieck construction (see Hofmann and Streicher [17]
for an introduction), a categorical analogue of X-types. Given a
category I' and a functor A : I' — Cat, the Grothendieck
construction constructs a fibration, i.e. a total category fr A along
with a functor p from the total category to the indexing category I'
(p: fr A—T):

Contexts are interpreted as follows:

e an object of [A is a pair (0,m) where 0 € Ob T, and
m € Ob A(o).

¢ a morphism from (o, m) to (¢/,m’) is a pair (c,a) where
c:o0—r o’ anda: A(e)m — 4y m'.

Identity and composition are defined component-wise, with id (5,) =
(ido, idy,) (note that this is well-typed because A(id) = id), and
(c,a) o (c';a’) = (coc,ao A(c)a") (which is well-typed be-
cause A preserves compositions). We will refer to the fibration
p: fr A — Tas a weakening map; it is defined by first project on
objects and morphisms.

For a covariant context extension I' , z: A*, we have that [I']
is a category and [A] : [I'] — Cat. Thus, we can interpret
the extended context as the total category construction of [A].
The weakening map p interprets a substitution given by weakening
(which is tacit in the syntax) I' , z: A" id : T.

2010/7/19

For a contravariant context extension I' , z: A", we have that
[T] is a category and [A] : [I']°®* — Cat. Thus, we can form
[r]er [A]. In the syntax, we have weakening for a contravariant
context extension as well, so we require a functor [I' , z: 4] —
[T']. However, p : |, []or [A] — [L]°" faces in the wrong direc-
tion. Thus, we interpret I' , z: A™ as (| []or [A])°. For any functor
F : C — D, there is a functor F°° : C°° — D°P given by the
same data, so p® : (| []or [A])°®® — [I] provides the required
weakening map.

Judgemental rules for types The only judgemental rule for
types is substitution, which is represented by functor composition:

[A[0]] = [A][[e]]-
3.1.2 Substitutions

Semantic Terms One possibility is to identity aterm I' - M : A
with a one-element substitution I + id, M*/x : T, z: A*. Thus,
we would interpret I' = M : A as a functor M : T' — [] [A]
such that the I' part of the functor is the identity—which we can
formalize by saying that M is a section of p: po M = id. However,
following Hofmann and Streicher [17], it is more convenient to give
the following equivalent definition:

DEFINITION 3.2. For a category I and a functor A : I' — Clat,
the set of terms over I of type A, written Tm I" A, consists of pairs
(Mo, M) such that

e Forallo € ObT', M,(o) € Ob (A(0))

e Forall c : 01 —r 02, Ma(c) : A(c)(Mo(01)) — A(os)
M, (0o2). Moreover, M, (id) = id and My (c20c1) = My (c2)o
A(e)(Ma(cr)).

A Tm T Ais a “dependently typed functor.” When A is a constant
functor, the definition reduces to that of a functor M : I' — A.
However, in general, the type of the object that M, returns depends
on its argument, and the action on morphisms relates M,(o2)
to (Mo(o1)) “adjusted” by applying the functor A(c). As with
functors, we elide the projections from M, writing M (o) and
M (c).

As Hofmann and Streicher [17] discusses, there is a bijection
between functors § : T — [, A and pairs (61, M) where
01 :T — Aand M : Tm I" A[6)], given by pairing and projection
at the meta-level: the above functor p projects the first component,
v:Tm ([, A) (Alp]) projects the second, and we write (61, M)
for the reverse direction.

Now, the rules for substitutions are interpreted as follows:

[id] = p*

[0:02]] = [0:][[62]]

[6°°] = [o1*®
J =!
[0, M* /] = ([6], [M])
[0, M~ /«] = ([6]%, [M])*

The syntactic identity function builds in weakening, so it is inter-
preted as an appropriate composition of weakening maps p. Sub-
stitution is interpreted as composition of functors. §°Pis interpreted
as the action of 0°n the semantics of 6, which simply “retypes” a
functor C — D to a functor C°®* — D°P. Covariant substitution
extension is interpreted using the pairing map discussed above for
functors into || [l [A]. Contravariant extension uses pairing as well,

inserting °’s to make the types work out.
Judgemental rules for terms To interpret explicit substitution
M 6], observe that a term Tm A A can be composed with a functor
0:T — Atogivea TmT A[6]:

(M[6])(0) = M(6(a))
(M0])(c) = M(6(c))

Variables z are interpreted using the v and p projections from
the total category: [z] is v composed with enough projections p to
weaken past the remainder of the context.

To interpret map, given a type C': Ty I, a natural transforma-
tiond : 0 = ¢ : T' — A,and aterm M : Tm I" C[f)], we
define aterm Tm I’ C[¢’] as follows:

(mapg 0 M)(o) = C(5)(M(o))
(mapg 6 M)(c: 01 —1 02) = C(doy) (M(c))

The action on morphisms has the appropriate type because of
the naturality square for d(c): the domain of C'(d,,)(M/(c)) is

C(0'(c))(C(94,)(e(01))), whichequals C(6(35,))(C(8(c)) (e(o1)))

by naturality of § and functoriality of C'.

3.1.3 Transformations

Semantic Term Transformations We now define the semantic
counterpart of I' - « : M =4 N. We characterized terms M as
one-element substitutions, or sections of weakening. Similarly, we
can define a transformation between M and N to be a transforma-
tion (id, M) = (id, N): I' — [, A that projects to the identity
transformation on id. However, it is more convenient to work with
the following equivalent definition:

DEFINITION 3.3. GivenacategoryI', A: Ty I',and M, N : Tm I" A,

a dependent natural transformation o: M =—> N consists of a
family of maps o, such that

e forcd € ObT', ay : M(0) —> a(s) N(o)
e forc: o1 —r 02, N(¢) 0 A(c)(Qoy) = ey © M(c)

Using this definition, we interpret transformations as follows:

[id] = id

[61 0 62] = [61] o [02]
[01[02]] = [0:][[02]]
(5] = [o]"

[1=id

[0, 0" /] = [4], [a]

[6,a7 /2] = [4], [e]
Identity, vertical, and horizontal composition are interpreted as
their categorical analogues, which we write with the corresponding
notation. The family of maps §, comprising a natural formation
from F to G also defines a transformation from F°P to G°?, and we
write §°P for this “retyping” in the interpretation of °®. To interpret
covariant transformation extension, we observe that, because of
the interpretation of map, and the interpretation of § and «, we
can define a natural transformation of the appropriate type by
(6,a)e = (45, v), and that the commutativity condition follows
from commutativity for § and «. The natural transformation for
contravariant context extension is similarly defined by (§, @) =
(0o, o).

Judgemental rules for term transformations We define semantic
identity, vertical, and horizontal composition as follows:

(idar)o = idas(o)
(OZQ o Ofl)o‘ =025, 001,

(ald])e = N(ds) 0 A(c)((6(0)))

Identity id: M = M is the pointwise identity; naturality
holds by the unit laws. Vertical composition of ag : My =— M3
and a; : M; = M3 is given pointwise as well; naturality holds
using naturality for the components and functoriality. For horizon-
tal composition of a: M = N and §: 0 = ¢’, naturality again
holds by naturality of the components and functoriality.

Then we interpret [idas] = idpas, [8 0] = [6] o [a], and
[[5]] = [a]([6]].

2010/7/19

3.14 Types, Terms, and Transformations

Next, we discuss the interpretation of each type constructor, its
terms, and its transformations.

IT II-types are defined as in Hofmann and Streicher [17]: we
follow their construction, checking that everywhere they depend on
symmetry of equality, we have inserted the appropriate °P’s. For a
category I' and a A : Ty I"°P, we abbreviate semantic contravariant
context extension (.., A)*® by .A". Givena B: Ty I".A” and an
object o € Ob I, we define B, : Ty A(o) by

(Bo)(0") = M(0,0")
(Bo)(¢) = M(ids, c)

For any T" and A, the Tm I' A are the objects of a category
with morphisms given by term transformations «. Thus, we de-
fine (Il A B), to be the category Tm A(c) B,. Functoriality
is given as in [17], where the contravariance of A replaces the
use of inverses. A and application are interpreted by giving a bi-
jection between Tm I''A™ B and Tm I' ITAB. The transforma-
tion rules express a bijection between M = N:I' — [IAB
and M v= Nv:I.A" — B. The proof follows Hofmann and
Streicher [17], Section 5.3, which observes that the groupoid inter-
pretation justifies functional extensionality. The equality rules, vali-
dated below, show that this construction gives a dependent product.

3 Because both subcomponents of ¥ z:A. B are covariant, the
interpretation given in Hofmann and Streicher [17] adapts to our
setting unchanged. We define ([X z:A. B]). to be fA(U) B, with
functoriality defined componentwise. Pairing and projection, and
pairing and projection for transformations, following from the def-
inition of the Grothendieck construction.

set [set] is the constant functor returning Sets, the category of
sets and functions. Because the action on morphisms of the constant
functor is the identity, Tm I" setis bijective with I' — Sets. The
particular sets defined above are interpreted as the corresponding
constructions in sets, equipped with their usual functorial action:

[k=0,1,2] = const(k)
[Mz:5.57 = T[S][9]
[Za:5. 5] S[S119]
where semantic II and X are defined as follows:
(258)(0) = Zpes@S(o,m)
(S8 e) = (mym') = (S(c)(m),S(e,id)(m))
(HSS/)(U) = HmES(U)S/(Uvm)}
(IS S)(e) = [(z= S(cid)(f(S(c)(2))))

To interpret the transformation rule, we must define a transfor-

mation M/: S = S’ : T’ — Sets givena M : Tm ([}.(el S)) (el ”):

(M)(0) =z — M (0,)

For a map c, naturality is given by = — M (¢, ids).

It is also possible to define a universe types of non-discrete
types, interpreted as a category of small categories. However, in
this case,a M : Tm ([A) B does not induce a transformation be-
tween A and B. The reason is that the action on morphisms of M
gives a natural transformation between the two sides of the required
naturality square, whereas the naturality condition requires equal-
ity of these compositions. We conjecture that a higher-dimensional
universe can be handled better by a higher-dimensional generaliza-
tion of our theory, where these naturality conditions would be up to
higher-dimensional structure.

elS [I' F S:set] amounts to a functor ' — Sets, and there
is a functor discrete : Sets — Cat that takes each set to the
discrete category on that set, and a morphism f between sets to
the functor between discrete categories whose action on objects is
given by f (the action on morphisms is a just the fact that f takes
equals to equals). Thus we define:

[el S] = discrete o [S]

As usual, we overload notation and write el S for discrete o S.

On objects, terms Az. M, M; My , (M, N), fst M, snd M,
(), true, and false are interpreted as the corresponding set-theoretic
concepts. In each case, the action on maps is just a proof that action
on objects respects equality. Because case and abort eliminate
towards an arbitrary type, we check them in more detail. For the
covariant if (M : Tm I" 2), we proceed as follows:

(if (M, My, M5))(0) = Mi(o)if M(0)
(if (M, My, M2))(o) M5 (o) otherwise

(!f(M,M],MQ))(CtO’l —>O‘2) Ml(c) 1fM(0'1)
(if (M, M, M2))(c: 01 —> 02) = Ma2(c) otherwise

The action on morphisms is well-typed because M (c) shows that
M (o1) = M(o2). The contravariant if is defined similarly, as 2 is
discrete and therefore symmetric. The semantic version of abort is
defined by elimination on the empty set.

The transformation rules are justified as follows: (x) is just
the identity transformation; in this case, each component is just
reflexivity of equality. To interpret equality reflection, observe that
(1) by proof-irrelevance, two Tm I" el S are determined entirely
by their action on objects, as the action on morphisms produces a
proof of equality and (2) the interpretation of the premise says that
[M](c) = [N](o) for all o.

3.2 Interpretation of Equality Rules

We validate the equality rules as follows: The congruence rules
hold because the interpretation is defined compositionally, and
meta-level equality is a congruence. The Sn-rules for terms are
validated as in Hofmann and Streicher [17]. The $n-rules for trans-
formations at II and X hold because the hom-sets for these con-
nectives are meta-level functions and pairs. The rule for setis an
n-like rule, and follows from n for functions and pairs at the meta-
level. The rule for el S follows from uniqueness of equality proofs
at the meta-level. It is simple to verify that °® is an involution,
and that it interacts with f as the rules describe. The identity and
composition rules for °° are validated by the fact that it is a 2-
functor from the 2-category Catto its two-cell dual Cat®, so it
preserves identities and compositions. The identity expansion rules
are the definition of identity for 1 and J. For horizontal compo-
sition, the first three rules express associativity and unit laws for
functor composition. The rules commuting substitution with each
term constructor also follow from associativity of functor compo-
sition, as the type-theoretic term formers build in a composition.
Functoriality of map holds because map is interpreted using the
action on morphisms of the functor C. The remaining rules fol-
low from the action on morphisms of the interpretation of each
type constructor. The first three rules for horizontal composition of
morphisms are validated by associativity and unit of this operation.
The next two are the rules of the Godement calculus [14]. The re-
maining compatibility rules are validated by simple calculations.
The rules for M [6] follow from the action on morphisms of [M].
The vertical composition rules follow from associativity and unit,
and the meaning of composition for the semantics of the types.
The rules for weakening follow from the definition of p, which is
inserted in the interpretation of terms that are constant with respect
to a variable (the interpretation of these rules requires an inductive

2010/7/19

argument, as weakening is inserted only at the leaves of the typing
derivation).

3.3 Identity types

In the symmetric case, given I', A: Ty I', and M, N:Tm " A,
one can define a I' + Ida M N type by (Ida M N)(o) =
discrete(Hom a(o)(M(0), N(0))). However, this family of cat-
egories is not functorial in I' in the asymmetric setting. Consider
Idsets S R, and note that Homgeis (A, B) is just A — B. The
functoriality condition requires us to produce a a function S(r) —
R(r) given f : S(s) — R(s), M(c) : S(s) — S(r), and
N(c) : R(s) — R(r).In the groupoid model, we can take the
required map to be N. o f o M. ', but in the absence of symme-
try it is not clear how to proceed. This motivates the judgemental
approach to transformations that we take in this paper. It may be
possible to consider a directed H om-type, whose first argument is
a contravariant position, though the syntactic rules for such a type
require further study.

4. Application: Abstract Syntax

In this section, we illustrate the use of directed type theory for
programming with abstract syntax and logical derivations. First,
we illustrate the main ideas with a standard example of natural
deduction derivations. Below, we sketch an application of 2DTT
to mixed-variance syntax [18].

Representing syntax To illustrate the main ideas, we represent a
very small first-order logic, defined at the top of Figure 4. Contexts
W represent the free individual variables of the logic. Contexts are
natural numbers, written with zero as € and successor as , i—the ap-
proach readily generalizes to sorted syntax. The type of variables,
represented as well-scoped de Bruijn indices [3, 7], is indexed by a
context W, and represents a pointer into W. To illustrate the binding
structure of the language, we require one proposition that binds a
variable (V) and one that allows a variable to be used (an atomic
proposition b). For concision, we inline the scoping rules into the
grammar, annotating each meta-variable with the context in which
it occurs. A renaming r : ¥ — ¥’ is a function that maps variables
nY to variables n”’. This notion of map gives the structural proper-
ties of weakening, exchange, and contraction (mapping variables in
W instead to terms in U’ would give substitution as well). The iden-
tity function is a renaming id : ¥ — W, and we can pair a renam-
ing U — U with a variable ¥ to make a renaming (¥, i) — ¥’
which on z gives n and on s(k) gives r(k) (i.e. we treat the con-
texts as coproducts [10]). A renaming induces a meta-operation on
propositions: given ¢¥ and a renaming ~ : ¥ — ¥’, we construct
(qﬁ{r})‘l’/ by traversing the syntax and applying r to each variable.
We give inference rules for V introduction and elimination; the lat-
ter uses renaming. There is a renaming operation on derivations as
well: if D:: Uk ¢andr : U — U then D{r} :: ¥ F ¢{r}—the
renaming of the derivation proves the renaming of the proposition.

To represent this syntax in directed type theory, we first define
a type Ctx, whose terms are contexts U and whose transformations
are renamings r. After set, this is our second example of a non-
discrete base-type. Second, we define a set var(¥) representing
variables. Variables are functorial in ¥, with the action on mor-
phisms given by looking the variable up in the renaming. Third, we
define a set prop(¥) representing propositions. It too is functorial
in U, with the action on morphisms given by the renaming oper-
ation on propositions. Finally, we define a set nd ¥ ¢. The action
on morphisms of nd gives the renaming principle described above.
We elide the el around sets in the rules in Figure 4.

The types and terms are as discussed above. We represent re-
namings with three constructors € (the map out of the empty con-
text), pairing (the map out of a coproduct), and an explicit shift 1.

Contexts v = €] Wi
Variables n¥ u= 2 (s(n‘l’ Y
Propositions ¢¥ = V(¢¥) | b(nY) |
Uik v =Y
ibe , _2EY — VE
TF Ve Uk p{id,n?}
I' F¥:Ctx

I' FCtxtype TI'Fe:Ctx T F W,i:Ctx

FFa: V=,V T Fn:var(¥)
Lk (a,n): U, i =>cp W/

Fke:e=c ¥/

Tha: ¥ =cy ¥V
T a: ¥ =cy U, i

I - W:Cix I'Fnzvar(¥)
I' Fvar(¥):set T' bz:var(¥,i) T Fs(n):var(?,i)

’ Propositions and Derivations ‘

I - ¥:Ctx I Fn:var(¥) I F ¢:prop(¥,i)
' - prop(¥):set T' Fb(n):prop(¥) I FVe¢:prop(¥)

PFv:Ctx Tk ¢:prop(¥)
I'Fnd¥o¢:set

T+ D:nd(%,i)é
T FV/(D):nd ¥V

T'HFD:nd?¥ (V¢) T F n:var(¥)
I' FVE(D,n): maplw‘var(‘p) (id,n) ¢

Equality rules

€[d]

(¥

€o €

(a,n)oa’ = (o d, map\ll,'vadq/) o' n)

Te=e

T (e, n) = (T a,5(n))

map}I,Avar(ql) (a,m)z=n

map\IJAvar(‘Il) (a,n) S(k‘) = map}I!Avar(‘Il) ak

MAaPA . prop(¥) 6 (b(n)) = b(mapAAvar(kI/) 4 n)

mapA.prop(\D) g (qu) = v(mapA.prop(\I/,i) g d))

MapA ng v (vg) 0 (V1D) = Vr(mapa nd(w,i)¢ 0 D)

MaPA nd ¥ mapzp.var(\p) (id,n) ¢ 6 (VE(D7 ’I’L)) =
VE(MaPA ndwve 0 D, MaPA var(w) 0 1)

€

0)06] = (+ v[8],2)

Figure 4. Representation of the logic

When we introduce a new non-discrete type, we must give 87 rules
for its types and terms, and define horizontal and vertical compo-
sition for its canonical elements. Horizontal composition into the
empty context still relates the empty context to itself. Horizontal
composition into W, i gives the familiar parallel extension of a re-
naming r : ¥[0] — ¥[0'] to a renaming (¥,i)[0] — (,i)[0]
that leaves the last variable unchanged. This is defined using the
shift 1. The next two rules define vertical composition, and the fol-
lowing rules define the action of shift on canonical transformations.

2010/7/19

When we introduce a new set, we must say how map acts on it.
Variables are transformed by looking them up in the renaming (by
the rule for map (¢ - it is enough to consider the case where the
type is -, ¥:Ctx*.var(W)). Propositions are transformed recursively.
In the V case, the definition of (¥, i)[d] accomplishes the parallel
extension of the renaming that is necessary when descending under
a binder. Derivations are transformed recursively as well. In the Vg
case, associativity of composition is used to show that the right-
hand side has the required type. The definition of transformation for
prop and nd could alternatively be given using the elimination rules
described below, rather than by giving a clause for each constructor.

Now, we observe that map gives the appropriate renaming prin-
ciple for the indexed type nd:

Na: V=,V T +D:ndV¥o
T+ (map'z]p,a.ndwa (a,id) D) :nd W'(mapfb'var(w) a @)

Thus, 2DTT provides the appropriate vocabulary to describe struc-
tural properties for dependently typed abstract syntax.

Extending the language with types prop, nd, etc. amounts to im-
plementing renaming for these types explicitly: the clauses defining
them are added to the equality rules. However, these clauses are de-
termined entirely by the types of the constructors of prop and nd,
so we conjecture that it would be possible to generate them auto-
matically from a schema for these inductive types.

Elimination rules Directed type theory provides some insight
into what elimination rules we can have for these types while
respecting the structural properties. For example, we cannot add
the usual recursor for Ctx, as this would permit functions that do
not respect renaming, such as:

¥ Cix' F tail(P) : Cix
tail(e) = ¢
tail (¥, i) = W

tail term would not respect transformation, in that if ¥ = ¥’
there is not necessarily a transformation tail(¥) = tail(¥’). To
see this, take ¥’ = (e,i) and ¥ = (¢,i,i), and let the original
renaming map both variables in ¥ to the one variable in ¥’. There
is no renaming i = ¢, so this renaming cannot be preserved by
tail. Because the functoriality component of a terms requires it to
respect transformation, tail cannot have this type.

However, certain functions on contexts do respect transforma-
tion. For example, we can define context concatenation Wy, U5 that
interacts with € and ,i in the expected ways. This respects trans-
formation because every variable in W1, W5 is in ¥, U5 if every
variable in ¥, is in W,

What are we to make of this situation? At a first cut, having a
restricted set of elimination rules for contexts may be sufficient for
programming with variable binding—for example, the Beluga sys-
tem [22] provides only context nil, cons, and append, all of which
preserve transformations. More generally, we may consider allow-
ing the programmer to define any function that respects renaming:
by analogy with quotient types, one should be able to define a func-
tion on a higher-dimensional type by defining a function on the raw
terms and proving separately that it respects transformation.

For similar reasons, we cannot give the standard case-analysis
principle for variables var(¥), giving a case for z and a case for s.
The reason is that functoriality imposes a coherence constraint be-
tween the transformation of the result of the zero case and the result
of the successor case. However, we can show that it is possible to
define an equality test for variables:

z:var(¥), y:var(¥) Feqry:2

(and more informatively-typed variants), which is all one typically
uses in recurring over abstract syntax. The type var is an example

of a general class of inductive families indexed non-uniformly by
higher-dimensional types, which require further study.

On the other hand, prop and nd can be given their usual elim-
ination principles, as their higher-dimensional index ¥ is uniform
(always fully general in the conclusion of a constructor).

Mixed variance syntax Languages such as Twelf, Delphin, and
Beluga [21, 22, 23] distinguish a logical framework (LF) from a
meta-language in which LF terms are treated as inductively defined
data. Moreover, they do not allow meta-language types, such as
functions, to be used in abstract syntax or derivations (though they
do allow framework functions, which are used to represent bind-
ing). This stratified approach corresponds to allowing indexed in-
ductive definitions that are constructed recursively from X-types,
de Bruijn indices (corresponding to LF variables), and recursive in-
stances in extended U’s (corresponding to LF functions). In previ-
ous work [18], we explored extending such schemas to additionally
allow meta-level functions (—-types) in a simply-typed setting.

Because of contravariance, not all such definitions are functorial—

i.e. the structural properties do not always hold. However, we did
analyze certain circumstances under which functoriality holds. In
light of the present work, we can recast this analysis as investigat-
ing functors from different context categories to Sets. For example,
all schemas generate types that admit exchange: all schemas gen-
erate types that are functorial in the category Ctx™ of contexts and
bijections between them. Second, all schemas generating a type
A admit weakening and strengthening of variables whose types
are insubordinate to A, where subordination tracks when one type
can appear in the values of another type: all A are functorial in
Ctx=*, the category of contexts that differ only by types that are
insubordinate to A. Third, variables are functorial in renamings,
and terms are additionally functorial in renamings and substitu-
tions if each of their constructors are. These constraints can be
composed. For example, a schema with positive and negative oc-
currences of the context (see the arith example [18]) is functorial
in renamings, which additionally only weaken or contract variables
in subordinate to its contravariant types. This can be represented as
a category of contexts that has projections to both Ctx and Ctx=*.
2DTT is a natural setting to explore this hierarchy of contexts, and
to generalize our previous work to the dependently typed case. We
anticipate giving schemas for indexed inductive definitions such as
nd, where the functoriality of the types generated by these schemas
automatically equips the type with the desired structural properties.

5. Related Work

Of the many categorical accounts of Martin-Lof type theory Hof-
mann [15], our approach to the semantics of 2DTT most closely
follows the groupoid interpretation [17]. Recent work connect-
ing (symmetric) type theory with homotopy theory and higher-
dimensional category theory [4, 11, 12, 19, 26, 27, 28] will be
useful in generalizing 2DTT to additional models and higher-
dimensions.

Another application of functors in dependent type theory is
indexed containers [2?], a mechanism for specifying inductive
families. Whereas we associate a functorial action with every type
constructor, containers are deliberately restricted to strictly positive
functors, which is necessary to use them to specify datatypes. Also,
2DTT is compatible with types indexed by an arbitrary category,
but a container denotes a type indexed by a set.

Many systems support programming with dependently typed
abstract syntax [3, 21, 22, 23]; 2DTT will enable us to go beyond
this previous work by generating the structural properties automat-
ically for mixed-variance definitions.

The following additional sources have informed our work: An
early connection between A-calculus and 2-categories was made by

2010/7/19

Seely [24], who shows that simply-typed A-calculus forms a (non-
groupoidal) 2-category, with terms as 1-cells and reductions as
2-cells. Variance annotations on variables are common in simply-
typed subtyping systems [8, 9, 25]. In the dependently typed
case, variance annotations have been used to support termination-
checking using sized types, as in MiniAgda [1].

6. Conclusion and Future Work

We introduce directed type theory, which gives an account of types
with an asymmetric notion of transformation between their ele-
ments. Examples include a universe of sets with functions between
them, and a type of variable contexts with renamings or substitu-
tions between them. We show that the groupoid interpretation of
type theory generalizes to the directed case, giving our language a
semantics in Cat.

Numerous generalizations and applications of directed depen-
dent type theory are possible. On the semantic side, we may con-
sider semantics in 2-categories other than C'at. On the syntactic
side, we may explore additional type constructors: Defining type
families such as nd internally to the theory requires schemas for
indexed inductive definitions. Defining 2-dimensional types such
as Ctx requires an analogue of quotient types, as discussed above.
A directed hom-type would provide a generic first-class notion of
transformation. We may also recover undirected type theory as a
special case of directed type theory, so that current dependently
typed programming practices can be imported. Semantically, ev-
ery groupoid is a category, so it is possible to isolate a universe of
symmetric types, but we have not yet explored how to make this
universe available syntactically. Of course, the generalization to di-
mensions beyond 2 is another important direction for future work,
as it will expose connections with weak w-categories and directed
homotopy theory. Higher dimensions may provide a guide in ob-
taining a theory with a decidable notion of definitional equality, as
many of the equations that are definitional in 2DTT will hold only
up to higher structure.

Finally, we speculate on some additional applications of our the-
ory. First, we may be able to recover existing examples of directed
phenomena in dependent type systems, such variance annotations
for sized types [1], implicit coercions [6], and coercive subtyp-
ing [20]. For example, we may consider a translation of coercive
subtyping into our system, using functoriality to model the lifting
of a coercion by the subtyping rules. Because uses of map are ex-
plicit, our approach additionally supports non-coherent systems of
coercions, and it will be interesting to explore applications of this
generality; but the coherent case may provide a guide as to when
instances of map can be inferred. Second, directed type theory may
be useful as a meta-language for formalizing directed concepts,
such as reduction [24], or category theory itself. Third, directed
type theory may be useful for reasoning about effectful programs
or interactive systems, which evolve in a directed manner (Gaucher
[13] connects homotopy theory and concurrency). For example, we
could define a type of interactive processes with transformations
given by their operational semantics, or a type of processes with
the transformations given by simulation.

Acknowledgements We thank Steve Awodey and Peter Lums-
daine for helpful conversations about this work.

References

[1] A. Abel. Miniagda: Integrating sized and dependent types. In A. Bove,
E. Komendantskaya, and M. Niqui, editors, Workshop on Partiality
And Recursion in Interative Theorem Provers, 2010.

[2] T. Altenkirch and P. Morris. Indexed containers. In IEEE Symposium
on Logic in Computer Science, pages 277-285, Washington, DC,
USA, 2009. IEEE Computer Society.

[3] T. Altenkirch and B. Reus. Monadic presentations of lambda terms
using generalized inductive types. In CSL 1999: Computer Science
Logic. LNCS, Springer-Verlag, 1999.

[4] S. Awodey and M. Warren. Homotopy theoretic models of identity
types. Mathematical Proceedings of the Cambridge Philosophical
Society, 2009.

[5] J. C. Baez and M. Shulman. Lectures on n-categories and cohomology.
Available from http://arxiv.org/abs/math/0608420v2, 2007.

[6] G. Barthe. Implicit coercions in type systems. In International
Workshop on Types for Proofs and Programs, pages 1-15, London,
UK, 1996. Springer-Verlag.

[7]1 R. S. Bird and R. Paterson. De Bruijn notation as a nested datatype.
Journal of Functional Programming, 9(1):77-91, 1999.

[8] L. Cardelli. Notes about F'Z,. Unpublished., 1990.

[9] D. Duggan and A. Compagnoni. Subtyping for object type construc-
tors. In Workshop On Foundations Of Object-Oriented Languages,
1999.

[10] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable
binding. In IEEE Symposium on Logic in Computer Science, 1999.

[11] N. Gambino and R. Garner. The identity type weak factorisation
system. Theoretical Computer Science, 409(3):94-109, 2008.

[12] R. Garner. Two-dimensional models of type theory. Mathematical.
Structures in Computer Science, 19(4):687-736, 2009.

[13] P. Gaucher. A model category for the homotopy theory of concurrency.
Homology, Homotopy, and Applications, 5(1):549-599, 2003.

[14] R. Godement. Théorie des faisceaux. Hermann, Paris, 1958.

[15] M. Hofmann. Syntax and semantics of dependent types. In Semantics
and Logics of Computation, pages 79—130. Cambridge University
Press, 1997.

[16] M. Hofmann. Semantical analysis of higher-order abstract syntax. In
IEEE Symposium on Logic in Computer Science, 1999.

[17] M. Hofmann and T. Streicher. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory. Oxford Uni-
versity Press, 1998.

[18] D. R. Licata and R. Harper. A universe of binding and computation.
In ACM SIGPLAN International Conference on Functional Program-
ming, 2009.

[19] P. L. Lumsdaine. Weak w-categories from intensional type theory. In
International Conference on Typed Lambda Calculi and Applications,
20009.

[20] Z. Luo. Coercive subtyping. Journal of Logic and Computatio, 9(1),
1999.

[21] F. Pfenning and C. Schiirmann. System description: Twelf - a meta-
logical framework for deductive systems. In H. Ganzinger, editor,
International Conference on Automated Deduction, pages 202-200,
1999.

[22] B. Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
371-382, 2008.

[23] A.Poswolsky and C. Schiirmann. Practical programming with higher-
order encodings and dependent types. In European Symposium on
Programming, 2008.

[24] R. Seely. Modeling computations: a 2-categorical framework. In IEEE
Symposium on Logic in Computer Science, pages 65-71, 1987.

[25] M. Steffen. Polarized Higher-Order Subtyping. PhD thesis, Universi-
taet Erlangen-Nuernberg, 1998.

[26] B. van den Berg and R. Garner Types
are weak w-groupoids. Available from
http://www.dpmms.cam.ac.uk/ rhgg2/Typesom/Typesom.html,
2010.

[27] V. Voevodsky. The equivalence axiom and uni-
valent models of type theory. Available from

http://www.math.ias.edu/"vladimir/Site3/home_files/CMU_talk.pdf,

2010.

[28] M. A. Warren. Homotopy theoretic aspects of constructive type theory.
PhD thesis, Carnegie Mellon University, 2008.

2010/7/19

