
Homework 5: Leap of Truncation
15-819 Homotopy Type Theory

Out: 19/Nov/13
Due: 4/Dec/13

1 Blah, Blah, Blah (a.k.a. Introduction)

Alright. So, the goal of this assignment is to show that the universe of
n-types is itself an (n+1)-type. Every task in this assignment is a part of
the proof of this theorem. Let us begin right away with the definition of
universes of n-types:

Definition 1. The universe of n-types is Un :≡
∑
A:U

is-n-type(A).1

To formally talk about the n, the truncation level, let us have a separate
data type, tlevel, which is isomorphic to nat but starts with−2. We write
rectlevel as the recursor, and reuse suc as the successor constructor. For ex-
ample, the (n+1) is really suc(n) in the formal statement, and −1 is really
suc(−2). Anyway, here is the theorem:

Theorem 1.
∏

n:tlevel

is-suc(n)-type(Un).

The key insight is that the type of equivalences between two n-types
is itself an n-type. By univalence, it means that the type of paths between
two n-types is also an n-type. The intuition behind the key insight is that
equivalences are maps with special properties, and the structure of parallel
maps are, to some degree, limited by that of the codomoin in the presence

1Ui is used for the universe level so I have to find another corner. Sorry.

1



of functional extensionality. You will fill in the missing details in your
solution.

As a side note, this theorem is actually tight for n ≥ −1, in the sense
that Un is not a n-type for n ≥ −1.2 We will not cover this result in this
assignment.

CLARIFICATION: The bound was n ≥ 0 but it works for n = −1 too.

To make programming easier, you are allowed to use pattern matching
for Σ types in λ. The dedicated syntax λ〈x, y〉.M means λp.[fst(p), snd(p)/x, y]M
for some fresh variable p /∈M .

2 Cumulativeness

In this section we will show that the truncation hierarchy is cumulative,
along with some other useful lemmas. You may assume the following
lemma that was proved in class.

prop-is-set :
∏
A:U

isProp(A)→ isSet(A)

As usual, you do not have to justify your code.

Task 1. prop-level :
∏
A:U

isProp(A)→ is-(−1)-type(A)

Task 2. contr-is-prop :
∏
A:U

isContr(A)→ isProp(A).

Task 3. raise-level :
∏
(A:U)

∏
(n:tlevel)

is-n-type(A)→ is-suc(n)-type(A)

Task 4. prop-has-level-suc :
∏
(A:U)

∏
(n:tlevel)

isProp(A)→ is-suc(n)-type(A)

2It has been known that U−1 is not a (−1)-type (i.e., not a proposition) and U0 is not a
0-type (i.e. not a set) for a while, and Nicolai Kraus and Christian Sattler generalized this
to n ≥ −1 without using higher inductive types.

2



3 Equivalences

This section is to show the “key insight”, i.e., that the type of equivalences
between n-types is an n-type.∏

(A,B:U)

∏
(n:tlevel)

is-n-type(A)→ is-n-type(B)→ is-n-type(A ' B)

The strategy is to exploit the fact that isEquiv(f) is a proposition. In
general we call

∑
x:AB(x) a subtype of A when

∏
x:A isProp(B(x)). The

idea is that the truncation level of a subtype should be bounded by that
of its original type. This is true except one special case mentioned below.
In the case of equivalences, this means that you can disregard the second
component isEquiv(f) and only focus on the function f . Moreover, we
know the truncation level of the function type is bounded by that of the
codomain, and hence complete the proof. Unfortunately this strategy can
fail when A is contractible, because a subtype of a contractible type might
not be contractible. To address, we will handle the case n = −2 separately.
You may assume these lemmas:

• Some facts derived from the function extensionality. Suppose f, g :∏
x:AB(x) for some A : U and B : A→ U .

funext :

(∏
x:A

f x = g x

)
→ (f = g)

You do not have to write out implicit arguments A, B, f and g.

• Some operations of isEquiv(f) so that its implementation becomes
irrelevant. Suppose A,B,C : U .

equiv-inv : A ' B → B ' A

equiv-compose : (B ' C)→ (A ' B)→ (A ' C)

is-equiv-is-prop :
∏

f :A→B

isProp(isEquiv(f))

Note that equiv-compose is in the function composition order, which
can also be written as e1 ◦' e2, mimicking the function composition
f ◦ g. You do not have to write out implicit arguments A, B and C.

3



• Truncation levels are closed under
∏

and
∑

formations. Suppose
A : U , B : A→ U and n : tlevel.

product-level :

(∏
x:A

is-n-type(B(x))

)
→ is-n-type

(∏
x:A

B(x)

)

sigma-level : is-n-type(A)→

(∏
x:A

is-n-type(B(x))

)

→ is-n-type

(∑
x:A

B(x)

)
You do not have to write out implicit arguments A, B and n.

• Finally, you may disregard the second component while handling
paths in subtypes. Suppose A : U and B : A→ U .

subtype-path :

(∏
x:A

isProp(B(x))

)
→

∏
m,n:

∑
x:A B(x)

(fst(m) = fst(n))→ (m = n)

subtype-path-equiv :

(∏
x:A

isProp(B(x))

)
→

∏
m,n:

∑
x:A B(x)

(fst(m) = fst(n)) ' (m = n)

Again, you do not have to write out implicit arguments A and B.

3.1 The Special Case

Let us begin with the special case n = −2.

Task 5. contr-equiv :
∏

A,B:U

isContr(A)→ isContr(B)→ (A ' B)

ERRATUM: There was a typo that B : A→ U . It should be B : U .

Task 6. Implement

equiv-is-contr :
∏

A,B:U

isContr(A)→ isContr(B)→ isContr(A ' B)

Warning: this can be mind-blowing. (Hint) Bob has office hours.

4



3.2 Other Cases

Now let us consider the cases n ≥ −1. The strategy outlined in the begin-
ning of the section critically depends on the following lemma.

Task 7. Implement

subtype-level :
∏
(A:U)

∏
(B:A→U)

∏
(n:tlevel)

is-suc(n)-type(A)→

(∏
x:A

isProp(B(x))

)

→ is-suc(n)-type

(∑
x:A

B(x)

)

Bonus Task 1. Find a counterexample of the above task if is-suc(n)-type was
is-n-type. That is, findA andB such that isContr(A) but¬isContr(

∑
x:AB(x)).

Finally the theorem of this section.

Task 8. Implement

equiv-level :
∏

(A,B:U)

∏
(n:tlevel)

is-n-type(A)→ is-n-type(B)→ is-n-type(A ' B)

4 Universes

We are reaching the ultimate goal. Feel free to use any lemma or task in
previous sections, in addition to these:

• is-n-type(A) is also a proposition.

is-type-is-prop :
∏

(n:tlevel)

∏
(A:U)

isProp(is-n-type(A))

• Some facts derived from the univalence axiom. Suppose A,B : U .

ua : A ' B → A =U B

ua-equiv : (A ' B) ' (A =U B)

As usual, you do not have to write out implicit arguments A and B.

5



4.1 Real Work

Task 9. Everything respects equivalences, thanks to the univalence axiom.

equiv-preserves-level :
∏

(A,B:U)

∏
(n:tlevel)

(A ' B)→ is-n-type(A)→ is-n-type(B)

Task 10. Implement

ntype-path-equiv :
∏

(n:tlevel)

∏
(A,B:Un)

(fst(A) =U fst(B)) ' (A =Un B)

(Hint) The lemma name is suggestive. Maybe too suggestive.

Task 11. Show the ultimate theorem and finish this assignment.

6


	Blah, Blah, Blah (a.k.a. Introduction)
	Cumulativeness
	Equivalences
	The Special Case
	Other Cases

	Universes
	Real Work


