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What Is a Model of the Lambda Calculus?* 

ALBERT R, MEYER 

Laboratory for Computer Scienee, Massachusetts Institute of Technology, Cambridge, 
Massaehusetts 02139 

An elementary, purely algebraic definition of model for the untyped lambda 
calculus is given. This definition is shown to be equivalent to the natural semantic 
definition based on environments. These definitions of model are consistent with, 
and yield a completeness theorem for, the standard axioms for lambda conver- 
tibility. A simple construction of models for lambda calculus is reviewed. The 
algebraic formulation clarifies the relation between combinators and lambda terms. 

1. INTRODUCTION 

Lambda notation provides a convenient means for writing expressions 
which denote functions. As an informal example, consider the polynomial 
expression x 2 + 7 x -  1. One can construct an expression 2x.  x 2 + 7 x -  1 
called a lambda abstraction denoting the polynomial function whose values 
are given by the polynomial expression. Thus, ,~x. x 2 + 7x - 1 could be read 
as "the function of x whose value is x 2 + 7x - 1," and the defining equation 
p ( x ) = x 2 +  7 x - 1  for the polynomial p could as well be written p =  
)~x. x 2 + 7x - 1. The value o fp  at the argument 3, for example, is obtainable 
by applying the expression 2x.  x 2 + 7x - 1 to 3, which entails substituting 3 
for x to obtain 32 _[_ 7 • 3 - 1 and evaluating the result to obtain 29. This 
process of application and evaluation reflects the computational behavior of 
many modern programming languages--which explains in part the recent 
interest in the lambda calculus among computer scientists (cf. Landin, 1964, 
1965; Plotkin, 1975, 1977; Stoy, 1977; Gordon, 1979). 

Some of the power of the lambda calculus is suggested by the way 
functions of several arguments can be handled. The addition function of two 
variables, for example, whose value is the sum of the values of the variables, 
could be denoted 2x.  2),. x + y. More accurately, the value of / Ix .  ~,y. x + y 
is a functional which, applied, say, to the argument 2, yields the add-two 
function of one variable: )~y. 2 +y .  The add-two function can in turn be 
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applied to the argument 4 to yield the sum 6. So a function of two variables 
can be regarded as a functional of one variable whose value is a function of 
one variable, in this case an "add a constant" function. Thus, in studying 
calculations with lambda notations there is no loss of generality in restricting 
attention to functions---or more precisely functionals--of one argument, and 
we shall do so in what follows. 

A more intriguing example suggesting the importance and special 
character of the lambda calculus is the "triple composition" functional T. 
For any function f of one argument and positive integer n, let f~n) denote 
the composition f o f o  ... o f  of f with itself n times. The functional T 
can be defined by the equation T ( f ) = f  ~3) or equivalently by T =  
2f.  (2x . f ( f ( f (x) ) ) ) .  Thus, T applied to the cubic polynomial-2z, z 3 would 
yield the 27th degree polynomial 2z.  z zT. By the same reasoning, T applied 
to T equals the "compose 27 times" functional because T(T) applied to f 
equals (T(T))(f) = (To To T)(f)  = T(T(T(f))) = T(T(f(3))) = 
T(f(3) oft3) of(3))= T(f~9))=f~zT). 

But although it makes good intuitive sense to define the value of T(T) in 
this way, there are obvious logical difficulties. Applying a function to itself 
violates the rules of ordinary set theory which forbid a function from being 
in its own domain. The violation can quickly lead to contradiction. For 
example, let P be the "paradoxical" functional such that P(f )  is zero if f ( f )  
is not the integer zero, and P(f )  is the integer one otherwise. So by definition 
P ( f ) : / : f ( f )  for all f ;  substituting P for f immediately yields the 
contradiction P(P) ~ P(P). 

The problem we consider is how to give values to such expressions 
involving functionals which may be applied to themselves. The intuitive 
sense of examples like T(T) must be preserved while avoiding contradictions 
from examples like P(P). Such a domain of values would be a model for the 
lambda calculus. 

Introduced by (Curry, 1930; Church, 1932/1933), lambda calculus and 
related systems of combinatory logic have been the subject of research by 
logicians for more than fifty years. However, the model theory of the lambda 
calculus is a development primarily of the past decade--largely carried out 
following the lead of Dana Scott. While a host of models and methods for 
model construction are now available, the clear statement of just what in 
general a model of the lambda calculus may be seems not to be well known. 
The purpose of this article, which is largely tutorial, is to review briefly why 
there is an apparent difficulty in defining the notion of model for the lambda 
calculus, and then to show how this difficulty is overcome. 

This question of what a model of the lambda calculus is has bothered me 
for some time. A similar concern is expressed in (Hindley and Longo, 1980) 
who comment that "...there seems to be, firstly an assumption that the 
definition is to obvious to need stating, and secondly a disagreement about 
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what the definition should be." Reading through the l i terature describing the 
various model  construct ions (Plotkin, 1972, 1978; Wadswor th ,  1976; Scott, 
1976, 1980(a), (b); Stoy, 1977; Engeler, 1979), I felt as though I kept  
asking, " W h a t  is a g roup?"  and kept being told "Permuta t ions  on n letters 
are a group,"  or "Z k is a group,"  but was never told that a group is s imply 
an algebraic structure with a b inary  operat ion satisfying the well known 
conditions.  It turns out that  there is a comparab ly  simple definition of  model  
for the l ambda  calculus. We state the definition now just  to verify its 
s implici ty;  the reader  is not supposed to make detailed sense of it yet. The 
remainder  of  this article provides a just i f icat ion for the claim that  the 
following definition is appropriate .  

DEFINITION. A eombinatory algebra is a structure (D, .), where ,  is a 
b inary  operat ion on D, such that  there are elements K, S E D satisfying 

(1.1) ( K .  do) .  d, = d o , 

and 

(1.2) ( ( s .  do). d , ) .  d2 = (do" 4 ) "  (d, • d9  

for all do, d l ,  d 2 (~ D. 

A combinatory model of the l ambda  calculus is a structure ( D , . ,  e), where 
(D, .)  is a combina tory  a lgebra  and E C D satisfies 

(1.3a) (e • do) • d I = d o • d 1, 

(1.3b) if VdED(d  o . d = d  1.d) then e . d  0 = e . d t ,  

for all d 0, d I C D, and 

(1.3c) e • e = e. 1 

Combina to ry  models  serve for what  is known as the f l - lambda calculus. For  
the other main variant,  known as r/-lambda calculus, we simply require that  
the element e be a left identity on D, i.e., e .  d = d  for all d CD. 
Equivalently,  we can simplify condit ion (1.3) to (1.4). 

i If (D, .) is a combinatory algebra and ~ satisfies (1.3a, b), then e - e satisfies (l.3a, b, and 
c); i.e., (D, -, e . c) is a combinatory model, as is easily verified. So in a sense (1.3c) is a 
redundant, normalizing condition. The reason for requiring it is revealed in the Combinatory 
Model Theorem (iii) in Section 4. 
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DEFINITION. An ,extensional combinatory  model  of the lambda calculus 
is a combinatory algebra (D , . )  such that 

(1.4) if V d C  D ( d  o • d =  d 1 • d) then d o = d 1 

for all d o , d I E D. 

The above definitions are not specially new. The definition of combinatory 
algebra is due to Curry. Condition (1.4) is known as extensionali ty,  g and the 
fact that extensional combinatory algebras serve as models for the r/-lambda 
calculus has been observed often (Barendregt, 1977; Hindley and Longo, 
1980; Scott, 1980a). A variant of the definition of combinatory model above 
is mentioned along the way in (Scott, 1980b). Other slightly more complex 
but still simple, purely algebraic formulations appear in (Obtulowicz, 1977; 
Obtulowicz and Wiweger, 1978; Volken, 1978; Aczel, 1980; 1981; Baren- 
dregt and Longo, 1980; Barendregt, 1981). Barendregt (1981, Chap. 5, 
Sect. 4) and Cooperstock (1981) survey many of these. 

Nevertheless, it still seems worthwhile to emphasize again here that the 
general definition of lambda calculus model can be formulated in this 
elementary way without any of the algebraic baggage--very useful for other 
purposes----of lattices, continuity, or categories, and also without any of the 
syntactic baggage of lambda calculus terms. Although the results described 
are known in one form or another to a number of researchers, I have not 
seen the story told in quite so elementary a way as attempted below. 3 

To keep this article self-contained, we review in the next section the basic 
definitions of the syntactic properties of what is known as the untyped 

lambda calculus. It will turn out that most of the standard syntactic results 
about reductions, normal forms, and Church-Rosser properties will not be 
needed in our development. The main syntactic notion required is merely 
that of a lambda theory, namely, a system of equations between lambda 
terms closed under the standard inference rules. (See (Hindley et al., (1972) 
for a more complete treatment of the syntactic theory and (Barendregt, 
1981) as a comprehensive reference.) 

Section 3 introduces env i ronment  models.  We develop enough of their 
properties to explain the view that environment models are the natural, most 

z Scott (1980a, b) argues persuasively that "extensionality" should more soundly be 
reserved to refer to the weaker condition (~) given in Section 2, but I fear that familiar usage 
is already too deeply ingrained to adopt Scott's terminology. 

3 (Cooperstock, 1981) is a study similar to this one in which Barendregt's structures, 
environment models, Aczel structures, Obtulowicz structures, and variations of combinatory 
models and Scott models (of. Note 8) are compared. Cooperstock also presents a thoughtful 
discussion of the sense in which all the structures provide equivalent mechanisms for inter- 
preting lambda terms. 

Barendregt (1981) gives a comprehensive treatment of combinatory algebras, lambda 
models and lambda algebras (cf. Sects. 6, 7). 
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general formulation of what might be meant by mathematical models for the 
untyped lambda calculus. In particular, the axioms and rules of inference of 
lambda calculus are sound when interpreted by environment models; every 
environment model thus yields an associated lambda theory. The consistency 
of lambda calculus--a  purely syntactic notion commonly proved by 
syntactic (Church-Rosser) properties--is shown to follow from the existence 
of nontrivial environment models. The central result is a completeness 
theorem demonstrating that every lambda theory is the theory associated 
with some environment model. 

The drawback of environment models is that they define purely algebraic 
conditions by induction on the syntactic structure of lambda terms. In 
Section 4 we demonstrate the equivalence between the combinatory models 
defined above and environment models, thereby revealing how to formulate 
the algebraic conditions needed for models without reference to syntax. 

As an easy application of the notion of combinatory model, we will see in 
Section 5 that the construction of a lambda calculus model in (Engeler, 
1979) follows for simpler, more general reasons than was demonstrated 
there. This completes the main part of the story. 

In Sections 6 and 7 we indulge in an algebraic excursion in which several 
structures akin to combinatory algebras are defined and compared. In 
Section 6 lambda models are introduced; they provide a technically useful 
variation of combinatory models. In Section 7 the connection between 
lambda terms and combinatory terms given in Sections 4 and 6 leads to the 
formulation of lambda algebras, which are not equivalent either to 
combinatory algebras or lambda models, but retain the best features of both. 
In the final section we cite some additional results connecting the model 
theory and proof theory of lambda calculus. An Appendix contains many of 
the longer proofs whose presence in the main text would have been a 
distraction. 

2. SYNTAX AND LAMBDA THEORIES 

We let x, y ,  z denote variables chosen from some fixed infinite set of 
variables, d denote a constant, and u, v, w denote lambda terms defined 
inductively as follows. A lambda term is either a variable, a constant, an 
application of the form (uv), or an abstraction of the form (2x u). For 
readability the notation 2 x . u  is usually used for abstractions, and 
parentheses are omitted in applications with association to the left being 
understood. Thus, uvw abbreviates ((uv)w).  Occurrences of variables in 
terms are said to be bound or free following the usual rules as though 2x was 
a quantifier such as ~ x. Finally, ~X1X2...x n. u abbreviates 
~.x 1 . 2x 2 . . . .  )~xn. u. For every set C of constants, we let A(C)  denote the 
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l ambda  terms whose constants are chosen solely from C; so A(#) denotes the 
constant-free or pure  terms. 

Let u[v/x]  denote the result of  substituting the term v for f r e e  occurrences 
of  x in u subject to the usual provisos about renaming bound variables in u 
to avoid capture of  free variables in v. Two basic axiom schemes (a)  and (fl), 
and an optional third axiom scheme (r/), reflect the intuition behind 
abstraction and application. 

(a) ( 2 x u ) =  ( 2 y u [ y / x ] )  for y not free in u (the names of bound 
variables do not matter),  

(fl) ((2x u ) v ) =  u[v/x]  (application can be computed by substitution), 

(~/) (2y (uy))  = u for y not free in u (every object is a function). 

With these axiom schemes we take the usual inference rules for a congruence 
relation, namely, three rules of inference, 

(transitivity and symmetry)  u = v, u = v '  ~ v = v ' ,  

(congruence) u = u',  v = v '  ~ (uv) = (u ' v ' ) ,  

(~) u = v ~- (~x  u)  = ( , tx v) .  

We would also insist on the additional axiom 

(reflexivity) u = u, 

except that it happens to follow already from (fl) and (transitivity and 
symmetry)  as the reader may  check. 

Terms which are provably equal by these from instances of (a), (fl) (and 
(r/)), are said to (tl-)convert to one another. Note that convertibility is an 
equivalence relation on te rms-- t rans i t iv i ty  and symmetry  follow immediately 
from the corresponding inference rule once reflexivity is proved. 

Axioms and inference rules lead directly to the notion of a theory. 

DEFINITION. A Iambda theory g- over a set C of constants is a set of  
equations between terms in A (C) containing all instances of  (a) and (fl), and 
closed under the rules (transitivity and symmetry) ,  (congruence), and (¢). 
The notation ~-~-u = v means that the equation "u = v" is in gr. The theory 
is extensional  if it also contains all instances of  (r/). 

Clearly, if u converts to v, then ~-~u = v for all l ambda  theories gr. 
As with convertibility, equality in any lamhda theory g- defines an 

equivalence relation on lambda terms. The g '-equivalence class of  u is 
denoted [[u]]~-. Namely,  

[[ul]~- = {vl  ~ u  = v}. 
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It is not hard to show that simultaneous substitution preserves equations. 
That is, 

if b-~-u i = v i for i = 0 ..... n, 

then b-~-Uo[Ul/X 1 ..... u , / x , ]  = Vo[Vl/X 1 ..... v f f x , ] ,  

where Uo[Ul/X 1 ..... un ix , ]  denotes the result of  s imul taneously  substituting 
u 1 ..... un for free occurrences of  x I ..... x n in u o. (We require of course that the 
variables xl .... , x ,  be distinct and, as in the case of  (fl), that bound variables 
of u0 are renamed to avoid capture of  free variables in ul ..... un.) 

This is all we need in the way of  syntactic notions about lambda calculus. 

3. VALUES OF TERMS AND ENVIRONMENT MODELS 

The simplest first notion of  lambda calculus model might be any set D of  
values together with a mapping from any lambda term u to a value 
[[u]] E D such that convertible terms are assigned the same value. Clearly it 
is a minimal requirement of  any notion of  model that convertible terms 
receive the same value in the model. This ought not be the  sole requirement 
of  models, however, because it does not guarantee the condition that the 
value of  a term determines its behavior with respect to the values of  other 
terms. Specifically, we expect the inference rules to be sound,  which leads to 
the following 

DEFINITION. A (n extensional)  value model  of the lambda calculus over a 
set C of  constants consists of a set D whose elements are called values, and a 
mapping [[.]]  from A ( C )  onto D such that 

[[(2x u)]] = [[(2y u[y/x])]] for y not free in u, 

u) v)l] = [[u[v/x] ]1, 

([[2y (uy))]] = [[u]] for y not free in u), 

and 

if [[u]] = [[vl] and [[u']] = [[v'l], then 

[[(uu')]] = [[(vv')l ] and [[(~,x u)]l = [[(Xx v)]]. 

Clearly, value models are a mere reformulation of lambda theories. 
Namely, if g- is a lambda theory, then mapping a term to its g--equivalence 
class yields a value model. Conversely, if [[.]] is the mapping of  a value 
model, then the set of equations "u = v" such that [[u]] = [Iv]] is the lambda 
theory which yields the value model. 

643/52/1-7 



94 ALBERT R. MEYER 

So although the notion of value model is simple and natural given the 
axioms and rules for lambda calculus, it remains an essentially syntactic 
notion which hardly serves to justify belief or interest in the axioms. That is, 
value models fail to capture the intuitive idea of lambda terms as 
descriptions of functions. (It is like saying that a model of group theory is 
any assignment of truth values to formulas such that provably equivalent 
formulas about groups receive the same truth value. The central model- 
theoretic notion which justifies the rules of proof, namely, the notion of how 
an algebraic structure satisfies a formula, has been left out.) 

What sort of structure allows interpretation of lambda terms? It would be 
easiest if we could appeal to the standard inductive definition of the value of 
a term over an ordinary algebraic structure--for example, a structure 

= (D, .), where • is a binary operation on the set D. It will be helpful to 
review how values are determined in this standard case. 

We define the set of ~-terms to be constructed from constants in D, 
variables, parentheses, and a symbol for the binary operation • on D. 
Actually for reasons which will appear below, it will be convenient to omit 
the symbol for • and write (uv) instead of (u • v), so that cg-terms become 
the special case of lambda terms in which lambda abstractions do not occur. 

Each c~-term has a value in D which is determined as soon as an 
assignment of values to the free variables in the term is given. That is, the 
term is thought of as defining a function on D of as many arguments as there 
are free variables. It turns out to be simpler technically to regard terms as 
defining functions of all the variables, even though the value will actually 
depend only on the values of the free variables in the term. In the context of 
lambda calculus, assignments of values to variables are usually referred to as 
environments. 

Formally, an environment p is any map from the set of all variables into 
D. The valuation mapping ~'~ defines for each c~-term u, a function 7~'~[u] 
from environments to D. The value of u in the environment p is written as 
7~'[u] p. (We omit the subscript cg whenever it is clear from context.) 

The value of a term consisting of a single constant is simply the value of 
the constant. 

(3.1) ~"[d]p=d for dCD. 

The value of a term consisting of a single variable is the value assigned the 
variable by an environment. 

(3.2) ~ [x I p = p(x). 

Finally, the value in ~ of a term of the form (uv) is simply the result of 
applying the binary operation • to the values of u and v. 

(3.3) ~'~e[(uv)] p = (7~'~e[u] p ) .  (~'~e[v] p). 
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DEFINITION. An equation u = v between c~-terms is defined to be valid in 
c~, written C ~ u _ _ v ,  iff the values of  u and v are the same in all 
environments. Namely,  

~ u = v iff ~P~e[u] = ~ e [ v ] .  

The difficulty in extending these familiar definitions to lambda terms is 
that lambda abstractions are meant to denote functions, so their values 
would not, like ordinary terms, be expected to be elements of the structure 
but rather to be functions on it. Of  course, once we allow functions as values, 
a lambda term might be applied to a lambda term whose value was deter- 
mined to be a function, so we must then admit that the value of  a term could 
also be a functional on functions on the structure. Things get even messier if 
we think of  applying a term to itself, for, as we noted in the introduction, this 
violates the rules of  set theory which forbid a function from being in its own 
domain. 

The way out of  this potential paradox is quite straightforward (and 
familiar in recursion theory). Namely,  we regard each element over the 
structure as denoting a function on the structure (much as an integer denotes 
a partial recursive function via a Godel numbering). So we first require of  a 
model that it consist of  a nonempty set D whose elements will be the values 
of  terms, together with a map q~ from D onto a set D ~ D  of certain 
functions from D to D. We will also want to represent each function in 
D ~ D as an element of  D, so we require an inverse map 7 t from D ~ D into 
D (much like a mapping from a recursive function to its least Godel 
number). That is, 

q) 

D W : ~ ( D ~ D ) ,  
~p 

(3.4) f =  ~(ku( f ) )  for all fED--*D.  

We shall call the structure ~" = (D, qs, ~ )  a functional domain. Note that 
since q~ maps D onto D ~ D, it follows from Cantor 's  cardinality theorems 
that D ~ D cannot equal the set of all functions from D to D (except in the 
trivial case that D has exactly one element). However, we will shortly require 
that D ~ D have enough closure properties to mimic the behavior of  the set 
of  all functions from D to D, which is why the suggestive notation D ~ D is 
used. 

Now the intended interpretation of an application (uv) is that u denotes a 
function applied to the argument v. So the value over a functional domain ~e 
of the application is gotten by interpreting the value of u as a function and 
applying that function to the value of v. 

(3.5) 7~}[(uv)] p = f ( ~ [ v ]  p), where f =  q~(~'~[u] p). 
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Finally, we must assign values to lambda abstractions of the form ~,x. u. The 
intended interpretation here is that u is an expression which can be evaluated 
for any given value of x, and 2x.  u denotes the funct ionfwhose  va luer (d)  is 
obtained from the evaluation of u when x is assigned the value d ~ D. 
However, since we want values of terms to be elements rather than functions, 
we define the value of the abstraction to be the element ku( f )E  D which 
represents the function f .  To describe the assignment of d to x, let p{d/x} 
denote an environment which agrees with p at all variables other than x and 
which assigns x the value d. 

(3.6) ~[)~x.u]p= 7~(f), where f :D~ Disthefunctionsuchthat 

f (d) = .~[u ](p{d/x} ). 

The only possible catch in clause (3.6) is that the function f may not be in 
the set D-+ D, in which case ~u(f) is undefined. We take the denial of this 
possibility as our fundamental definition of model. 

DEFINITION. An environment mode l  4 of the lambda calculus is any 
functional domain such that if values are assigned to lambda terms 
according to (3.1), (3.2), (3.5), and (3.6) above, the functions f=)~dC 
D.T/~[u](p{d/x}) arising in (3.6) are all in O ~ D. 

An equation u = v between lambda terms is defined to be valid in an 
environment model g~, written g~ ~ u = v, iff the values of u and v are the 
same in all enVironments. Namely, 

g ~ u = v  iff ~ g [ u ] = ~ g [ v ] .  

4 The technical setup here is very close to that of (Wadsworth, 1976), except that I have 
dropped any requirement of a lattice structure on D as well as the requirement that the maps 
q~ and W be (continuous) isomorphisms. In fact (Obtulowicz, 1977; Obtulowicz and Wiweger, 
1978) give essentially this definition which they credit as implicit in (Wadsworth, 1976). 
Precisely the definition of environment model is also given in (Cooperstock, 1981), where it is 
credited as jointly proposed by Cooperstock and C. Rackoff based on the preceding earlier 
references. 

Barendregt (1977) defines valuations over a more general class of structures resembling 
functional domains using essentially the same rules (3.1-2), (3.5-6), but valuations over these 
more general structures suffer the flaw that the (~) rule is not sound. More recently Berry 
(1980) has offered a definition which is a combination of Barendregt's notion and value 
models. 

The pathologies of Barendregt's structures are lucidly analyzed by Hindley and Longo 
(1978) who essentially identify the structures as combinatory algebras and lambda algebras 
(considered in Section 7). Hindley and Longo also arrive at a definition equivalent to 
environment models (which they call 2-structures) by adding to Barendregt's formulation the 
requirement that the (~) rule be sound. They note by the way that their formulation was 
obtained independently of Barendregt's, and I note that my definitions were formulated 
independently of all the papers subsequent to (Wadsworth, 1976). 
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To illustrate this definition, consider the term ~.XlX 2 .X  1 which intuitively 
denotes the first projection function of two variables. Let Pl be the value of 
)~x l x2 . x  1 in some environment p. For d l , d 2 E D ,  let dad 2 abbreviate 
(q~(dl))(d2), and let d i d  2 ... d,  be read as associated to the left, i.e., as 
(...((dld2) dg)...dn). Then we expect Pl to have the property that p~ d 1 d 2 = d 1 
for all all, d 2 ~ D. 

To verify this, observe that p l d l  = ( ~ [ 2 x  2 . Xl])(P{dl/Xl} ) by (3.6). Then 
p ld ld2  = 7~'[xl]((P {dl/Xl }){dz/x2 }) by (3.6) again, and the righthand side of 
this equation equals da by (3.2). 

A more general technical justification of the reasonableness of the 
definition of environment model comes from the fact that the axioms and 
rules of lambda calculus already follow from the definition. To show this, we 
begin by observing, following (Wadsworth, 1976), that our use of 
environments propertly reflects the properties of substitution in formulas. 
First, the value of a term depends only on the values of its free variables. 

FREE VARIABLE LEMMA. ~ ' [U]  p = ~'[u] (p{d /y} )  f o r  y not f ree  in u. 

More generally, we have the 

SUBSTITUTION LEMMA.  [u[v/xl] p = ~ [ u ] ( p { d / x } ) f o r  d = ~ ' [ v ]  p. 

Both lemmas are proved by routine induction on the structure of lambda 
terms. We omit the proof (cf. Stoy, 1977). The Substitution Lemma leads to 
the fundamental 

SOUNDNESS THEOREM. The equations valid in an environment model 
f o rm  a lambda theory. In particular, i f  u converts to v, then u = v is valid in 
all environment models. 

A simple application of the notion of environment model is a model- 
theoretic proof of the syntactic consistency of lambda calculus, viz., noncon- 
vertibility between some pair of terms. 

LEMMA. The equation ) , x l . . .  x , .  x i = 2 x 1 . . .  x , .  :9, where 1 <, i < j  ~ n, 
is not valid in any environment model with more than one element. 

Proo f  For 1 ~< k ~< n and any environment p, let p~ = 
~ [ 2 x ~ . . .  x n . xk] p. From the definition of ~ ,  it follows as in the example 
above that p k d ~ . . . d n  = d  k for all d I ..... d,  C D. If D has more than one 
element, there exist dl ..... d~ E D such that di 4: dj, so that 

P i d l  . . . d,  = d i ~/= d j  = p j d  I . . . d,  and therefore P i  =/=Pj" II 

An immediate consequence of this lemma is that every nontrivial model, 
i.e., model with more than one element, is infinite. Assuming, as we show in 
Section 5, that nontrivial environment models exist, the preceding lemma and 
the Soundness Theorem immediately imply the 
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CONSISTENCY THEOREM. For 1 ~ i < j  ~ n the term ~,xl • • • xn • xi  does 
not convert to 2 X l . . . x n . x  i. 

The preceding definitions can be easily modified to deal with q-conversion. 
The intuitive content of the q-rule is that an element may be identified with 
the function it specifies, so that distinct elements must specify distinct 
functions. This amounts simply to the 

DEFINITION. An extensional environment model is an environment model 
for which the map # :D ~ (D ~ D) is one-to-one. 

We then can easily show the 

q-SOUNDNESS THEOREM. The equations valid in an extensional 

environment model f o r m  an extensional Iambda theory. In  particular,  i f  u q- 
converts to v, then u -~ v is valid in all extensional environment models. 

The Consistency Theorem similarly extends to extensional environment 
models and q-conversion. 

A converse to the Soundness Theorem provides the most important 
technical support for the argument that environment models correctly 
capture the intuitive meaning of lambda calculus as embodied in the conver- 
tibility rules. The axioms and rules of lambda calculus provide a complete 

logical system for proving equations about environment models. 

COMPLETENESS THEOREM. Every  lambda theory consists o f  precisely the 

equations valid in some environment model, That is, f o r  every lambda theory 
g-, there is an environment model ~ such that 

~-~u = v i f f  ~ ~ u = v. 

In  particular,  u = v is valid in all environment models i f f  u converts  .to v. 

The required environment model is constructed from classes of provably 
equivalent terms in much the way that polynomial domains are formally 
constructed from a ring of coefficients. 

DEFINITION. Let g- be a lambda theory over a set C of constants. The 
term model associated with g- is the environment model (D, 4,  7/), where 

D = {[[ull -I u c / ( c ) } ,  

(,it, ( [[u II [Iv ]l = [1 (uv) l] 

and 

~(q~([[u]]~-)) = [[2x. ux]]~- for x not free in u. 



LAMBDA MODELS 99 

The proof  that the term model is well defined and is indeed an environment 
model appears in the Appendix. 

4. COMBINATORY MODELS 

The notion of environment model may best reflect the intuitively correct 
way to assign values to terms of  the lambda calculus, but it is 
mathematically a bit awkward. The condition that all the functions f arising 
in (3.6) be in D ~ D obviously defines some kind of  closure condition on this 
set of functions, but the formulation of  the condition is so entangled with the 
syntax of  lambda terms that it is hard to visualize what models look like, 
and it can be awkward to verify that particular functional domains are 
indeed models. 

Is there some way to define the closure conditions implicit in (3.6) without 
reference to the syntactic machinery of  lambda terms? Not  surprisingly, a 
solution lies in considering combinators,  which were originally devised to 
short-circuit the syntactic complexities of variables in terms. Combinators 
are simply variable free terms over combinatory algebras. 

The key property which motivates the rather odd definition of 
combinatory algebra given in the introduction is revealed by considering the 
more natural notion of  combinatory completeness defined below. A structure 
is combinatorially complete if every function definable by a term is equal to 
the function defined by left multiplication by some constant. More precisely, 

DEFINITION. Let • be a binary operation on a set D. The structure 
c~ = ( D , - )  is combinatorially complete iff for every c~-term u and every 
sequence x 1 ..... x n of  variables containing all the variables in u, there is a 
constant d E D such that c ~  u = dx I ... x~. 

DEFINITION. Let I abbreviate the combinator SKK.  For every Y-term u 
and variable x define a new c~-term (x) u as follows: 

(x )  u = Ku  

( x ) x = I ,  

(x)(uv) = S((x) u)((x) v) 

i fx  is does not occur in u, 

if x does occur in u or v. 

COMBINATORY COMPLETENESS LEMMA (Curry). A structure cC = (D, .) 
is combinatorially complete i f f  it is a combinatory algebra. 

Proof. (~)  Let c~ be a combinatory algebra and K, S C D satisfy (1.1) 
and (1.2). It follows directly from the definitions that x does not occur in 
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(x) u, and that ~ ~ u = ((x) u) x. Let d be the value in ~ of the combinator 
(Xl) ( . . .  ((Xn) u)). Then ~ ~u  = d x l . . ,  x n as required. 

(~) This is left to the reader. II 

We now show that the simple definition of combinatory models given at 
the outset provides the desired algebraic characterization of environment 
models. 

DEFINITION. Let c~ = (D, . ,  e) be a combinatory model. Let ~ map 
elements of D into the functions from D to D defined by left multiplication. 
That is, let (~(do))(d) = d o • d. The functional domain associated with ~ is 
(D, ~, ~),  where ~ is given by the rule ~ (~(d ) )  = e • d. 

Note that (1.3b) implies that W is well defined, and (1.3a) implies that 
is a right inverse of ~,  so that (D, ~,  W) is indeed a functional domain. 

DEFINITION. Let ~ = (D, ~, 7/) be an environment model. Define a 
binary operation on D by the rule d o • d l=(~(do) ) (d l ) ,  and let 
e = ~ g [ 2 x y .  xy] p. The algebra associated with ~ is (D , . ,  e). 

Note that by the Free Variable Lemma, the value of e does not depend on 
the environment p. 

COMBINATORY MODEL THEOREM. (i) The functional domain 
associated with a combinatory model ~ is an environment model which 
assigns the same values to ~-terms. That is, 

= 

for all ~- terms u. 

(ii) The algebra associated with an environment model is a 
combinatory model. 

(iii) The associations between combinatory models and environment 
models defined above are inverses of  each other. That is, i f  ~ is the 
environment model associated with a combinatory model ~ ,  then ~ is the 
combinatory model associated with ~, and vice versa. 

The final argument in support of our claim that environment models and 
combinatory models are alternative formulations of the same class of objects 
is that the additional expressive power apparently provided by lambda terms 
in the context of environment models is still achievable in the context of 
combinatory models. In fact, there is a simple, effective translation from any 
lambda term u into an equivalent cC-term u (~). 

To state the relation between the values of lambda terms in an 
environment model and c~-terms in the associated combinatory model, we 
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establish for lambda terms a result corresponding to combinatorial 
completeness. Let Ka abbreviate )~xy. x, S:t abbreviate 2xyz.  xz(yz) ,  and I~t 
abbreviate ((S~Kt)  K~). Define combinatory lambda terms inductively to be 
lambda terms which are either constants, variables, K~t, S~t, or applications 
of combinatory lambda terms. In other words, combinatory lambda terms 
are precisely those lambda terms in which the only abstractions occurring 
are in K~ and S~t. 

COMBINATORY LAMBDA TERM LEMMA. For every u C A ( C )  there is a 
combinatory lambda term u t~t~ C A(C) such that u converts to u ~a~. 

Proof. For any combinatory lambda term u C A ( C )  and variable x, 
define ((x)) u C A(C) as follows: 

((x)) u = (K~ u) if x is not free in u, 

((x)) =z~, 

((x))(uv) = ((St((x)) u)((x)) v) i fx  is free in u or v. 

It follows by simple calculation from the definitions that ((x))u is a 
combinatory lambda term which converts to 2x.  u. 

Let u t~t) to be the combinatory lambda term obtained from an arbitrary 
lambda term u by replacing all occurrences of 2x by ((x)). Inductively, we 
may define u t~) as follows: 

d ~ = d, x ~ = x,  ( u v )  ~ = ( u ~ v ~ ) ,  

(,~x. u) ~> = ( ( x ) ) ( u ~ ) ) .  I 

DEFINITION. Let c ~ = ( D ,  . ,e)  be a combinatory model. For any 
u C A(D), define u t¢¢) be the q- term obtained by replacing all occurrences of 
K a and S a in u ~) by the constant values in D of K t and S~t in the 
environment model associated with ~ .  

Note that by the Free Variable Lemma, the values of the closed terms K~t 
and S t  are determined by the environment model alone and not by any 
particular choice of environment. So u ~e) is well defined. 

COMBINATORY MODEL THEOREM. (iv) Let ff be an environment model 
and ~ its associated combinatory model. Then for all lambda terms u, 

~ [ u ]  = ~ [ u  ~ ] .  

Proof. 7~, [u ]=7~[u~t ) ]  by Soundness since u converts to u ~t). The 
proof now follows immediately by induction on the number of occurrences of 
free variables, constants, and terms K~t and S~t in u ~t). | 
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The Combinatory Model Theorem demonstrates that combinatory models 
and environment models are merely notational variants of the same class of 
mathematical structures. (This correspondence between the two kinds of 
models could be reformulated more abstractly in terms of effective functorial 
bijections between categories, but I do not think such a formulation helps in 
this case.) 

The significance of the these results is that we can now straightforwardly 
interpret arbitrary lambda terms and equations between them as though they 
were standard terms and equations over an ordinary algebraic structure 
defined by first order axioms. 

5. A N  ELEMENTARY M O D E L  CONSTRUCTION 

We now present a simple construction of a class of combinatory models 
using only elementary properties of sets. 

Let A be any nonempty set, and let B be the least set containing A and all 
ordered pairs consisting of a finite subset fl ___ B and an element b ~ B. Such 
an ordered pair is denoted ( f l~b) .  Assume that elements of A are 
distinguishable from ordered pairs. 

Let D A = 2B= {did c B}, and define the binary operation • o n  D A by the 
rule 

(5.1) d I • d 2 = {b ~ B [(fl-o b) ~ d I for some fl ___ d2 }. 

MODEL EXISTENCE THEOREM (Plotkin, 1972). 5 The s t r u c t u r e  (DA,. ,  ~ )  is 
a combinatory model where 

(5.2) c =  { ( a ~ ( f l ~ b ) ) l a ,  f l f i n i t e s u b s e t s o f B a n d b E a . f l } .  6 

5 The construction is taken directly from (Engeler, 1979). It is a notational variant of  one 
of several models first described in (Plotkin, 1972). These constructions are nearly the same 
as the better known Pco construction (Scott, 1976). 

Indeed, Longo (personal communication, 1981) has shown that D A and Pm have the same 
pure lambda theory and each is isomorphically embeddable in th~ other. However, they define 
different set theoretic inclusions among the values of the pure closed terms, and their binary 
operations behave differently; i.e., they are not even isomorphic as combinatory algebras. 

6 The choice of e is not unique. For example, let 

e + = et._JA t..) { ( f l - o a ) l f l ~ B  and a CA}.  

Then (DA,. ,  e) and (DA,. ,  ~ +) are distinct expansions of the combinatory algebra (DA, .) to 
combinatory models. Longo (personal communication, 1981) has even shown that they have 
distinct pure lambda theories; in fact e + yields an interesting model which, in contrast to the 
D A model with e or the P ~  model, does not give all unsolvable terms the same value (el. 
Section 8). 
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Proof Choose 

g = {(a -~ ~ -~ b)) I b ~ a }, 

and 

(5.4) S =  { ( a - ~ ( f l - * ( 7 - ~ b ) ) ) l b ~ a .  7 • (/3.7)}. 

The proof that e, K, and S given by (5.2-4) satisfy (1.1), (1.2), (1.3a,c) is a 
direct consequence of the definitions and is omitted. To verify (1.3b), note 
that A N e d  o = O and that b E d o • fl iff(fl -~ b) G ed 0 by definition. Hence, if 
ed o - -  •d I @ Q~, then (/3 -~ b) ~ ed o - e d  1 for some (fl --* b), so 
b E d o . f l - d l . f l .  ] 

The model Existence Theorem validates the assumption made in proving 
the Consistency Theorem in Section 3 that nontrivial models exist, Indeed, 
D A has uncountably many elements. There are also countably infinite 
models; e.g., the recursively enumerable elements of D A form a countable 
submodel. (The Lambda Algebra Theorem in Section 7 provides another 
mechanism for constructing a nontrivial countable model from any nontrivial 
combinatory model.) 

Now let × be any binary operation on the set A. Let functions fn and f 
from A to D A be defined as follows: 

(5.5) fo(a) = {a}, 

fn + 1(a) = f , ( a ) U  {({a,} -~ b)] a '  E A, b E f , ( a  × a ' ) ) ,  

f ( a )  = U f ,(a).  
n ) O  

EMBEDDING THEOREM (Engeler, 1979). The function f given in (5.5) 
isomorphically embeds the structure (.4, × ) into (DA, . ) .  

Proof. Note t h a t f ( a )  C~A = {a}, s o f i s  injective. The verification t h a t f  
is a homomorphism is a routine calculation which we omit (cf. Engeler, 
1979). I 

To illustrate the significance of the Embedding Theorem, we can now 
make sense of the examples involving integers, polynomials, and triple 
composition given in the Introduction. For example, to obtain the piecewise 
integer polynomials as part of a combinatory model, let A be the least set 
containing the integers Z and distinct new elements add, adds, mult, rnultn, 
eond, condo, eonda, ~, for n E 7/, a, a '  @ A. Define a binary operation × on A 
by the rules 
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a d d  × n = a d d , ,  a d d  n × m = n + m,  

m u l t  X n = muI tn ,  m u l t  n × m = n m ,  

e o n d  X a = e o n d  a, eond~ X a '  = eonda.o, ,  

eond~,~,, X a "  = a '  if a C IN, otherwise a" ,  

for n, m C Z, and a, a ' ,  a "  E A ;  the operation × may be defined arbitrarily 
on arguments not specified above. 

Now embedding (.4, × )  into D A yields (an isomorphic copy of) Z along 
with addition, multiplication, and conditionals. The triple composition 
functional T of the Introduction also appears in D A , since T = )~fx . f ( f ( f x ) )  

is defined by a pure lambda expression and so can be interpreted in D a 

without even appealing to the Embedding Theorem. The reader is invited to 
consider why the difficulties surrounding the paradoxical functional P no 
longer threaten. 

For construction of extensional models, see Scott (1980a, Sect. 5) who 
sketches an elementary construction of an embedding theorem into exten- 
sional models based on a modification of D A. Scott (1981) provides another 
construction of extensional embeddings based on a universal embedding 
property for the Pco model. See Wadsworth (1977) for a detailed treatment 
of Scott's original construction of extensional models from continuous 
lattices. 

6. ANOTHER ALGEBRAIC AXIOMATIZATION: LAMBDA MODELS 

The definition of combinatory model connects nicely with the definition of 
environment model, but suffers the small technical disadvantage that the 
elements K, S are not identified uniquely. For example, {({b}~ 
( O ~  b))lb E B} is another element in D A distinct from the K of (5.3) which 
satisfies (1.1). In fact, there are uncountably many elements in D A which 
satisfy (1.1). 

In order to maintain a full correspondence between the algebraic 
properties of a combinatory model and the values of lambda terms, it is 
necessary to make the appropriate choice of K and S, namely, as the values 
of K~ and S a in the associated environment model. As an exercise we shall 
now show how to describe these values in a purely algebraic way. Then we 
define Lambda Models essentially as combinatory models in which K, S are 
properly chosen. The Lambda Model Theorem given below summarizes how 
to determine K, S from e and vice versa.  Readers who are not amused by 
this kind of exercise in algebra should skip directly to the Lambda Model 
Theorem and the discussion following it. 



LAMBDA MODELS 105 

Let ~ be a combinatory model, b ~ its associated environment model, and 
begin by choosing any If, S satisfying (1.i) and (1.2). Let 

(6.1) B = S(KS) K 

be the "composition" combinator. It is easy to verify that Bxyz = x(yz)  is 
valid in any combinatory algebra. Let 

(6.2) e 2 = (B.  ~). (B.  g). 

We now have 

(6.3) U)[Ka]  = e 2 • K, 

because 

~,[2xy .  x]p = 7'(2d. ~ , [ 2 y .  x] p{d/x}) = ~(2d. W(2e. d)) 

= 7t(2d. 7t(cP(K • d ) ) ) =  ~(2d .  e • (K .  d)) 

= 7~(q)((B • ~). K ) ) = e .  ( (B.  e ) .  K ) =  ((B.  e ) .  (B.  ~)).  K. 

Note that as predicted by the Free Variable Lemma, the value of the closed 
term K a is determined by the environment model g~ alone and not by any 
particular choice of p, K, or S. 
Letting 

(6.4) e 3 = (B.  e ) .  (B.  G2), 

a similar calculation shows that 

(6.5) ~}[Sa]  = e3" S. 

DEFINITION (Scott, 1980b; Barendregt, 1981). A lambda model is an 
algebra (D, . ,  K, S)  such that 

K, S C D satisfy (1.1), (1.2), 

(D, . ,  e) is a combinatory model, where e = S(KI), 

K =  e~ • K, (6.6) 

and 

(6.7) S = E 3 • S, 

where e2, e3 are given by (6.2) and (6.4). 

Because the righthand sides of (6.6) and (6.7) are the values o f K  a and S a 
in the environment model associated with any combinatory model (D, . ,  e), 



106 ALBERT R. MEYER 

they are un ique ly  de te rmined  independent ly  o f  the par t i cu la r  choice  of  K and 
S. 7 Conver se ly ,  the values  o f  K~ and S~ de te rmine  e because  e is the va lue  

o f  2 x y .  x y ,  and 2 x y .  x y  conver t s  to S ~ ( K ~ I ~ ) .  Thus  we have  es tabl ished the 

LAMBDA MODEL THEOREM. A n y  c o m b i n a t o r y  m o d e l  ( D , . ,  e) u n i q u e l y  

d e t e r m i n e s  a l a m b d a  m o d e l  ( D , . ,  e2 • K,  e 3 • S ) ,  i n d e p e n d e n t l y  o f  t h e  c h o i c e  

o f  K a n d  S ~ D s a t i s f y i n g  (1 .1-2) .  

Conver se ly ,  if  ( D , . ,  K,  S )  is a l a m b d a  model ,  then ( D , . ,  S ( K I ) )  is a 

c o m b i n a t o r y  model .  Moreove r ,  these two co r re spondences  are inverses o f  

each  other.  

In l a m b d a  mode ls  the s tandard  a lgebra ic  no t ion  o f  a s u b s t r u c t u r e  relates 

n ice ly  to cer ta in  syntac t ic  proper t ies  o f  l a m b d a  terms.  F o r  example ,  the 

i n t e r i o r  of  a l a m b d a  calculus  mode l  is no rma l ly  def ined as the values  of  the 

pure,  i.e., cons tan t  free, c l o s e d  l a m b d a  te rms  (Barendregt ,  1976). In te rms  of  

l a m b d a  models ,  the inter ior  now has a fami l ia r  a lgebra ic  def ini t ion as the 

m i n i m u m  suba lgebra  o f  a l a m b d a  mode l ;  this fo l lows immed ia t e ly  f rom 

(6.3), (6.5), and the C o m b i n a t o r y  L a m b d a  T e r m  L e m m a  in Sect ion  4. 

v In general, e n is chosen to be ~ [ 2 x 0 . . . x  n. ( X o . . . x n )  ]. Continuing with a purely 
algebraic approach, we could define, following Scott (1980b), 

e~=e and e , + l = ( B . ~ ) . ( B . e , )  for n > O ,  

It is easy to verify that in any combinatory model (D,., ~), 

(N.1) e , d  o . . . d ,  = dod 1. . . d , ,  

(N.2) if g e I ..... e ,  ~ D .  doe I . . .  e ,  = dl e I . . .  e ,  then e , d  o = e , d l  , 

and 

(N.3) • e(e,  do) = e,(edo) = ed o 

for all do ..... d n C D, n > 0. 
The reader might enjoy deriving an algebraic proof solely from (N.1-3) that in any 

eombinatory model (D,., e) there is exactly one pair of elements K and S satisfying (1.1-2), 
(6.6-7). 

These equations suggest another axiomatization of models proposed by Scott [cf. Volken, 
1978; Barendregt, 1981, Theorem 5.4.9). 

DEFINITION. Let Y = (D, .,F} be a structure where - is a binary operation on D and 
F _~ D. Let F 0 = D and F,  +1 = {do E F Id o • d I C F ,  for all d~ C D}. Y is a Sco t t  M o d e l  if, for 
all n > 0 and any cC-term u over D such that x o is not free in u, Y satisfies 

!x o @ F , V  x I • • • X, ~ D[x  o . . .  x ,  = u]. 

It is easy to see that if Y = (D,., F) is a Scott model, then (D,.,  e) is a combinatory model, 
where e is the unique element o f F  z such that (1.3b) is valid in Y .  Conversely, if (D,.,  e) is a 
eombinatory model, then (D,.,  F) is a Scott model, where F = {e -d[d C D} = e • D. In fact, 
F n = e n • D. 
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From a mathematical point of view, then, lambda models are a bit nicer 
than combinatory models because they provide a useful notion of 
substructure. On the other hand, combinatory models have a simpler and 
much more easily checkable set of axioms--which is why I have given them 
emphasis in this article. The Lambda Model Theorem shows that one can 
easily switch to whichever of the two notions of model is more convenient at 
any point. 

It might seem that we are now ready to develop a nice theory of models 
using the usual algebraic notions of substructures, morphisms, etc. One 
serious technical impediment remains, however. Neither the class of 
combinatory models nor the class of lambda models is closed under the 
operation of taking substructures or of applying morphisms with respect to 
the binary operation .! 

The difficulty springs from the fact that the first order axioms (1.3b) and 
(1.4) are not equations. Equationally axiomatized structures are guaranteed 
to be closed under taking substructures and morphisms, but first order 
axiomatizable structures are not, in general (cf. Monk, 1976, Sect. 24, or any 
text on Universal Algebra). 

In fact the combinatory algebra which is the interior of the extensional 
term model is not even expandable by any choice of K, S into a (not 
necessarily extensional) lambda model (Barendregt, letter to Meyer, Oct. 
1980); see also (Plotkin, 1974). This implies among other things that there is 
no purely equational definition of lambda or combinatory models, since 
equationally defined classes of structures are closed under taking 
substructures. 

Nevertheless, there is an equationally definable class of structures called 
lambda algebras which serve so well for interpreting lambda terms that it is 
tempting to identify them as the proper algebraic embodiment of lambda 
calculus (cf. Lambek, 1980). We consider these next. 

7. LAMBDA ALGEBRAS 

The mapping from a lambda term u to u (~e) given in Section 4 suggests an 
obvious way to interpret a lambda term u within an arbitrary combination 
algebra--rewrite u to be a provably equivalent term consisting solely of 
applications of Kn's and S~'s, and then replace the K~'s by the constant 
K E D, and similarly for S~. But this way of assigning values to lambda 
terms may not be sound unless the K and S are chosen properly. 

For example, K~ converts to S~(K~K~)Ia. But there is no guarantee that 
the algebra will contain K, S such that K = S(KK) I. 

If the combinatory algebra is a combinatory model, then the-content of the 
Combinatory Model Theorem (iv) of Section 4 is that there are satisfactory 
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constants K, S in the model. In an arbi t rary  combina tory  a lgebra  no K 
satisfying (1.1) need behave completely like K a.  However,  some further 
purely equat ional  condit ions on combina tory  algebras,  strictly weaker than 
the axioms for eombina tory  models,  are sufficient to guarantee the existence 
of  well behaved K and S. These condit ions are embodied in the following 
axioms. 

DEFINITION (Curry;  cf. Barendregt,  1981, Chap.  7). A lambda algebra is 
a structure (D, • ,  K, S) ,  where (D, • ) is a combina tory  algebra, K, S C D 
satisfy (1 . i ) ,  (1.2), and 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

K = (x)((y)(Kxy)) ,  

S = (x)((y)((z)(Sxyz))) ,  

(x)((y)(S(Kx)(Ky)))  = (x)((y)(K(xy))) ,  

(x ) ( (y ) (S(S(KK)  x) y)) = (x)((y)((z)(xz))) ,  

( x ) ( (y ) ( ( z ) (S (S(S(KS)  x )y )  z) = (x)((y)((z)(S(Sxz)(Syz)) .  

Note that  (7 .1-5)  denote equations between constants.  For  example,  (7.1) in 
less abbreviated form reads 

K = S(S(KS)(S(KK)(S(KK) I)))(KI) 

which would be even longer if we had expanded the combina tor  I as SKK 
and put in full parenthesizat ion.  The reader will appreciate  the utility of the 
abbreviat ions.  8 Even with the abbreviat ions,  (7 .1-5)  are hardly  memorable ,  
having been chosen solely for the purpose of  carrying out the proofs below. 

We now prove the rather surprising fact that combina to ry  models  can be 
obtained from lambda  algebras s imply by extending l ambda  algebras with 
inde te rmina tes - - jus t  as the domain  of integer mult ivar ia te  polynomials  is 
obtained from the ring of  integers. 9 This result will then yield another,  
mathemat ica l ly  robust,  character izat ion of  l ambda  algebras which is surely 
not apparent  from their definition. 

8 Our definition of the transformation (x) on ~-terms was chosen for ease in proofs rather 
than efficiency, and consequently the length of (x) u has been allowed to grow exponentially 
in the length of u. There exist transforms with the same properties as (x) which increase the 
length only linearly (Turner, 1979). 

9 Barendregt and Koymans (1980) show that not all combinatory algebras can be expanded 
by choice of K and S (as opposed to extended by the addition of new elements possibly 
including K and S) into lambda algebras. The interior of the combinatory word algebra based 
on K, S-terms is an example of such a combinatory algebra. They also show, as noted at the 
end of Section 6, that not all lambda algebras are lambda models. 
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Let g = (D, .) be a combinatory algebra, and K, S E D be any elements 
satisfying (1.1-2). 

Let X be a set of variables and g [ X ]  be the free eombinatory algebra 
generated by X over the constants in g .  That is, g [ X ]  is the free word 
algebra of g-terms with variables only from X, modulo the congruence 
relation on g-terms generated by the equations between constant terms valid 
in g and all substitution instances of (1.1-2). 

Formally, let u, v, w range over g-terms, and define the proof system offl- 
Combinatory Logic for g to have axioms 

and 

u = v such that u, v are variable free terms and g ~ u = v, 

Kuv = u, 

S u v w  = uw(vw) ,  

and inference rules: (transitivity and symmetry) and (congruence). (Again, 
we would also insist on the axiom (reflexivity) except that it follows already 
from Kuv = u and (transitivity and symmetry).) 

Write g-CL~ F- u = v iff equation u = v is provable in this system, and let 

[[u]] -- {v lg -Ct~  ~- u = v}, 

D[X] = {HuH [u E A(D)  and all variables in u are in X}. 

Then 

g [ X ]  = (D[X], .), where [[u]]. [[v]] = [[(uv)]]. 

(7.6) LEMMA. g[X] is a combinatory algebra and the mapping taking 
d E D to [[d]] isomorphically embeds g into g [X]. Moreover, if u, v are g -  
terms all o f  whose variables are in the set, X, then 

g [ X ]  ~ u = v iff g - C L ~ -  u = v. 

Proof. The construction of g [ X ]  from g is the standard one for 
constructing a "polynomial" algebra from any equationally defined 
algebra. I 

Lemma (7.6)justifies identifying d E D  with the element [[d]] of D[X] 
which we shall continue to do. Note that because (7.1-5) denote equations 
between variable-free g-terms, it now follows immediately that ~¢[X] 
satisfies whichever of (7.1-5) that g satisfies. In particular, if g is a lambda 
algebra, then so is g [ X ] .  

In the Appendix we demonstrate via Lemmas (7.7-11) that Eqs. (7.1-5) 
imply the following key technical property about the (x)-transformation of 
g-terms. 

643/52/1-8 
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(7.12) LEMMA. Let ~ be a lambda algebra and u, v be ~-terms with 
variables only in X. I f  ~[X]  ~ u = v, then ~[X]  ~ (x) u = (x) v. 

A point of possible confusion about (7.12) is that it does not hold in c~ as 
opposed to c~[X]. That is, it may be that the equation u = v is valid in c~, 
but the equation (x )u  = (x )v  is not. The source of the confusion is that 
while ~ [X]  ~ u = v implies c~ ~ u = v, the converse fails. (This frequently 
happens in classical algebras. For example, x = x  2 is valid in the ring Z2, 
but not in the polynomial ring Zz[x].) The key property of ~ [X]  required in 
the proof of (7.12) is the equivalence of validity and provability given by 
(7.6) which holds only for c~-terms all of whose variables are in X. 

We can now state precisely the relation between lambda algebras and 
lambda models. 

LAMBDA ALGEBRA THEOREM. (i) I f  C~= (D, . ,K, S)  is a lambda 
algebra and X is an infinite set of  variables, then cC a [X] = (D IX],. ,  K, S)  is 
a lambda model. 

(ii) Conversely, every lambda model is a lambda algebra. 

So given a lambda algebra c~, we can always extend it with at most a 
countable number of indeterminates to obtain a lambda model. 

COROLLARY (Barendregt). (i) The lambda algebras are precisely the 
class of  all substructures of  lambda models.  

(ii) The Iambda algebras are precisely the class of  all homomorphic 
images of  lambda models. 

Proof. Applying homomorphisms and taking substructures preserves 
equations, so homomorphic images and substructures of models are algebras; 
i.e., the set of lambda algebras contains the images and substructures of the 
lambda models. The reverse containment follows because every lambda 
algebra c~ is an image and a substructure of ~a[X] .  II 

Thus, we learn the unexpected facts that the class of homomorphic images 
and the class of substructures of lambda models coincide and are finitely 
axiomatizabIe by equations, namely the axioms for lambda algebras. This is 
the robust characterization of lambda algebras promised above. 

Extensional combinatory algebras and extensional combinatory models 
coincide. To characterize their substructures axiomatically, just add the 
axiom I = (x) ( (y)(xy))  to (7.1-5). The resulting class of algebras are called 
Curry algebras (cf. Lambek, 1980). 

Clearly this connection between lambda algebras and lambda models is 
very intimate. It is esentially the same as the relation between a ring of coef- 
ficients and its polynomial domain. Several researchers have preferred to 
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give the coefficients priority over the polynomials as it were, and propose to 
define "models" of the lambda calculus to be lambda algebras. The principal 
argument in support of this view is the feeling that the values of the closed 
terms of lambda calculus ought to be a model and, more generally, that 
models ought to be closed under .-morphisms and taking substructures-- 
properties possessed by lambda algebras but not by lambda models. 

In contrast, my view is that soundness of rule (~) is essential. It embodies 
the idea that 2x .  u defines a function which is determined uniquely by the 
value of the term u in each possible environment over the model. Rule (~) is 
sound for lambda models, but not for lambda algebras, as we noted 
following (7.12). 

Of course as long as all concerned are aware of the distinction between the 
polynomial domain and coefficient ring, it hardly matters which is given 
priority, but ignoring the distinction has been a source of some confusion. 

The same distinction in another guise arises between the algebraic 
formulation of a system of functional types embodied in the axioms for a 
Cartesian Closed Category (CCC) and a concrete CCC, which actually is a 
system of functions of higher types. The connections between lambda 
calculus and CCCs has been emphasized by several authors (cf. Lambek, 
1980; Scott, 1980b; Obtulowicz and Wiweger, 1978; Koymans, 1981). In 
particular, Koymans (1981) establishes a natural isomorphism between 
CCCs and lambda algebras, and between concrete CCCs and lambda 
models. Thus the equational axioms for CCCs provide a mathematically 
meaningful axiomatization of lambda algebras, a notable improvement over 
(7.1-5). That, however, is another story. 

8. SUMMARY AND FURTHER DIRECTIONS 

By mimicking how ordinary terms are evaluated over an algebraic 
structure, we developed the idea of evaluating a lambda term over a 
functional domain. This led directly to the formulation of environment 
models. The Soundness and Completeness Theorems of Section 2 confirmed 
that environment models precisely captured and jus t i f ied  the informal 
intuition behind the classical calculus of lambda terms. 

The development in subsequent sections revealed how to treat lambda 
calculus as a theory of equations for a class of ordinary algebraic structures. 
In particular, the Combinatory Model Theorem of Section 4 described a 
bijection between environment models and combinatorial models, and 
showed how to translate effectively between lambda terms and equivalent 
combinatory terms. The Lambda Model Theorem of Section 6 described a 
similar bijection between combinatory models and lambda models. In fact, 
the Soundness and Completeness Theorems can also be understood as 
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describing natural correspondences between environment models and lambda 
theories. 10 So 

1. environment models, 

2. lambda theories, 

3. combinatory models, 

4. lambda models 

can be regarded as alternative formulations of the same concept. Finally, by 
considering substructures and images of models, we developed in Section 7 
the class of 

5. lambda algebras. 

Lambda algebras have a finite equational axiomatization, and therefore are 
closed under forming substructures and images. They properly include the 
class of models, but determine models in precisely the same way that the ring 
of coefficients determines the the corresponding domain of multivariate 
polynomials. 

Algebraic definitions and arguments can often offer more simplicity and 
greater appeal than syntactic ones, particularly if one can avoid the 
notorious pitfalls of substitution in the presence of bound variables. Having 
in principle eliminated the need for syntactic notions in defining which 
structures are models, the general question arises of how much more of the 
highly developed syntactic-computational "proof theory" of lambda calculus 
can be usefully understood from an algebraic "model theory" viewpoint. 
There has already been valuable interaction between the two viewpoints. One 
important example is worth sketching. 

A lambda term has a h e a d  n o r m a l  f o r m  if it converts to a term of the form 
2 x l  • • • x , .  ( y u )  for some n >/0; " ~ , X  1 • • • .X n • y"  is called the h e a d  of the term 
and is unique up to renaming bound variables (for q-calculus there is a 
slightly more complicated kind of uniqueness property). A lambda term is 
u n s o l v a b l e  if it does not have a head normal form. By repeatedly converting 
the solvable subterms of any term u into head normal form and replacing 
unsolvable subterms by a new constant O, one obtains in the limit a unique, 
possibly infinite, term called the B o h m  tree of u. The Bohm tree can be 
regarded as the trace of the possibly infinite computation needed to evaluate 
the term. Following earlier work in (Hyland, 1976; Wadsworth, 1976; 

~0 The lambda theory of the term model constructed from a given lambda theory g- as in 
the proof of the Completeness Theorem is a conservative extension of g-, but not the same as 
g-. So the correspondences established in Section 2 in each direction between lambda theories 
and environment models are not quite inverses. A natural bijection could be establised 
between models and theories with enough constants, viz., such that every closed term is 
provably equivalent to a constant. 
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Plotkin, 1978; Barendregt and Longo, 1980), Longo has recently observed 
that the value in D A of  a closed term u is set theoretically included in the 
value of a closed term v iff the Bohm tree of u approximates that of v; 
namely, the Bohm tree of u is obtainable from the Bohm tree of v by 
replacing some of the subterms of the tree of v by .Q [Longo, 1981]. In 
particular, an equation between lambda terms is valid in D A iff the terms 
have the same Bohm tree. This provides an elegant connection between the 
syntactic-computational behavior of lambda terms and their meaning in a 
mathematically elementary model.1 

As Scott (1980b) has emphasized, the untyped lambda calculus considered 
above can be viewed as the special case of the typed lambda calculus in 
which there is a "universal" type into which all other types can be 
isomorphically embedded. Most applications of lambda calculus in the study 
of programming languages and computability require the richer structure of 
multiple types (cf. Stoy, 1977; Gordon, 1979). I hope to provide an 
elementary treatment of this generalization in a sequel tentatively titled 
"What is a solution of a domain equation?" 

APPENDIX:  PROOFS 

From Section 3 

SOUNDNESS THEOREM. The equations valid in an environment model 
form a Iambda theory. In particular, if  u converts to v, then u = v is valid in 
all environment models. 

Proof. By (3.5) and (3.6), ~ ' [ (uv) l  and ~/'[(2x u)l are determined solely 
by ~ [ u ]  and ~ [ v ] ,  so (congruence) and (~) preserve validity. 

To verify that (a) is valid, let ~ [ ( 2 x u ) ] p  = ~ ( f )  as in (3.6), so that 
f ( d )  = ~'[u](p{d/x}).  Let y be a variable distinct from x and such that y is 
not free in u. Let 7~[(2y u[y/x])] p = 7;(g), so g(d) = ~[u[y/x]](p{d/y}) .  
Then 2x.  u = 2y.  u[y/x] will be valid providing f =  g. 

By the Substitution Lemma, g(d)=~'[u]( (p{d/y}){d ' /x}) ,  where d ' =  
~[y](p{d /y} ) .  By (3.2), d ' = d .  Also, (p{d/y}){d ' /x}=(p{d' /x}){d/y}  by 
definition since y 4=x, so g(d)= ~[u]((p{d/x}){d/y}) .  By the Substitution 
Lemma again, g(d)=~'[u[x/y]](p{d/x}) ,  but since y is not free in u, 
u[x/y] = u, so g ( d ) = f ( d ) .  

Verification of (fl) follows even more easily from the Substitution Lemma. 

~ It also provides a simple model theoretic characterization of the syntactic concept of 
normal form, as pointed out by Longo. Namely, d C D A is the value of a pure closed lambda 
term in normal form iff d is maximal  under set inclusion in the interior of D~ and contains 
only finitely many elements of  the interior. 

643/52q 9 
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Finally, if u converts to v, then the equation u - - v  is in every lambda 
theory, and hence is in the lambda theory of equations valid in any 
particular environment model, l 

COMPLETENESS THEOREM. Every lambda theory consists of precisely the 
equations valid in some environment model. That is, for every lambda theory 
g-, there is an environment model ~ sueh that 

In particular, u = v is valid in all environment models iff u converts to v. 

Proof Let g- be a lambda theory and ~e its associated term model. First 
we verify that the ~ is a functional domain. 

Note that the (congruence) rule implies that q0 in the definition of term 
model is well defined. To see that W is well defined, note that if ~([[u]]~-) = 
• ([[v]]~), then evaluating at argument  [[x]]~- for x not free in u, v yields 

so (~) implies [[2x.ux]]~-=[[2x.vx]]r; that is, 
7t(~([[u]]g-)) = 7t(~([[v]]r))  by definition. Finally, 66) immediately implies 
that • is a left inverse of  ~u, so (D, ~ ,  7 j)  is a functional domain.  

Next, we verify that g" is indeed an environment model. 
For any environment p, let u[p] abbreviate [[U[Ul/X, ..... u, /x,]]]r,  where 

xl ..... x ,  are the free variables of  u and P(Xi) = [[ui]]g-. Note that u[p] is well 
defined since simultaneous substitution preserves equations. 

We claim that for all u E A(C) and environments p, if ~ g [ u ]  p is defined 
by (3.1-2),  (3.5-6),  then 

-~g[u] p = u[p]. 

In particular, g is an environment model. (Alert readers may  remember  that 
our formal definitions require that constants in lambda terms must be 
elements of  D, so we must identify constants c C C with the corresponding 
constants [[c]]~- E D.) 

The claim follows by induction on the definition of a lambda term u. We 
consider only the most  difficult case when u is of  the form 2x .  v, where x is 
free in v. In this case, 

~ . [ u ]  p = 7t(2d C D . 7Y',~.[v](p{d/x} )) 

by (3,6), providing the argument  of  7 t is in the range of ~ .  So it suffices to 
prove that )~d E D .  ~g[v](p{d/x}) = ~ ( ( 2 .  v)Lo]). 
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= [[((Xx 

= U((~.x 

= [[(,~y. 

avoid 

= [[((~y 
! 

Ui 

= [ [ (~y .  

is not 

= [[((~y 

But for any [[w]]g- G D, 

(2d C D . 7~'g[vl(P{d/x} ))([[w]]g-) 

= ~ [ v l ( p {  [[wll~/x}) 

= [[v[u~/x 1,..., u . / x . ,  w/x] ]]~ by induction hypothesis. 

Now let y, z be a new variables not free in v, w, Ul ..... u. ,  and let u} = 
ui[z /x  ]. Then by the definition of simultaneous substitution, 

[ [ V [ U l / X  1 . . . . .  UnIx., W/X] ]]gr = [ [V[U~/X 1 , . . . ,  .;/X.I [W/X] IX/Z] ]]g- 
• (v[u~/xl  ..... u ' / x . ] ) )  w)[x/z111~- by  (fl) 

• (v[u~/xl  ..... u~/x,l))[x/~l w)]]~- since z is not free in w 

(v[u;/xl ..... u ; / x , l [ y / x l ) ) [ x / z l  w)]]~- renaming 2x to 2y to 
capture of x 

. ( v[y /x]  [u[/x,  ..... u ' , / x , ] ) )[x /z]  w)]]~- since x is not free in 

( v [ y / x ] [ u l / x  1 ..... u , / x , ] )  w)]]~- by definition of u" since z 
free in v [ y / x ]  

• ( v [ y / x ] ) ) [ u l / x  I .... , u , / x , ]  w)]]e- since y is not free in u i 

= [[(Xx. v)[ul /x l , . . . ,  u , / x , l  w)ll~ renaming 2y to 2x by (a) 

= (q~((,~x. v)[p]))([[w]]~-) by definition of [p] and q~. 

Therefore, 2d E D .  ~ g [ v ] ( p { d / x } ) =  q~((2x, v)[p]), and the claim is proved• 
Now if g ~ u =  v, then in the particular environment P0 such that 

Po(X) = [[x]],~ for all variables x, the terms u and v have the same value• By 
the above claim, the value of u is [[u]]g- and that of v is [[viii-, so [[u]]~-= 
[[vl]~.  That is, ~-g-u = v. 

Conversely, if ~-g-u = v, then ~-g-u[p] = v[p] for all p since simultaneous 
substitution preserves equations• The above claim immediately implies that 
g ~ u = v .  | 

From Section 4 

COMBINATORY MODEL THEOREM. (i) The funct ional  domain g 
associated with a combinatory model ~ is an environment model which 
assigns the same values to Y- terms .  That is, 

~ [ u l  = ~ [ u l  

f o r  all Y - t e rms  u. 
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(ii) The algebra associated with an environment model is a 
eombinatory model. 

(iii) The associations between eombinatory models and environment 
models defined above are inverses of  each other. That is, if  ~ is the 
environment model associated with a eombinatory model ~ ,  then ~ is the 
combinatory model associated with ~, and vice versa. 

Proof (i) Let .~, abbreviate the sequence of distinct variables x 1 ..... x n. 
Let d,  abbreviate the sequence d I ..... d n of  (not necessarily distinct) elements 
in D, and let p{dn/~,} abbreviate ( . . .  (p{d~/xi}) . . .  {dn/xn} ). We claim that 
for every term u E A ( D ) ,  for every environment p, and all -~n, there is an 
element duoe. @ D such that  

  [ul(p {dn/Xn}) = d,o .d. 
for all d ,  E D. 

This claim follows by induction on the definition of lambda terms. We 
give the details only for the most  difficult case that u is of  the form 2x,  +a • v, 
where xn+ 1 is distinct from fin. We have 

v] o{d./xn} ) 
= 7 t (2d ,+1E D .  ~g[v]((p{d,/Yn}){d,+l/xn+,})) by (3.6) 

= 7t(2dn+, @ D .  ~/~g[v](p{gn+i/X,+l})) 

= 7t(2d,+l E D .  dvo~.+fln+ l) by induction hypothesis 

= (e(dvo~,+fl,)) by definition of 7/. 

By combinatory  completeness,  there is a d E D such that 

~ (e(dvo~n+X,)) = dX,, 

so we define d~o~, to be d. 
The claim immediately implies that  2d E D . T f  t[u](p{d/x} ) = q~(d,o~) E 

D - ~  D, so that the functional domain g is an environment model. 
Induction on the definition of c~-terms establishes that U~  and ~ ' ,  

coincide on c~-terms. 
(ii) Let Y = (D, # ,  7 t) be an environment model and c~ its associated 

algebra. Choose K, S E D to be ~g[2xy .  x] and ~g[)~xyz. xz(yz)],  respec- 
tively. Then (1.1), (1.2), (1.3a, c) follow directly from the Soundness 
Theorem, (fl), and the definitions. To verify (1.3b), note that 

e • d o = ( ~ ( ~ ' g [ 2 x y .  xy]))(do) by definition of q~ and e 

= (3,d E D .  ~/'g[3,y. xy](p{d/x}))(do) by (3.4) and (3.6) 
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= xy](p{do/x})  

= W(2d C D .  ~fg[(xy)]((P{do/x}){d/y})  ) by (3.6) 

=  '(Zd o .  by (3.2), (3.4), (3.5) 

= 

Hence, if d o • d = d~ • d for all d, then q~(do) = q~(dl) by definition of ~ ,  so 
e .  d o = W(q~(do))= ~ ( ~ ( d l ) ) =  e .  dl. This proves (1.3b) holds in ~ .  

(iii) Let ~e = (D, ~ ,  ~ )  be an environment model, ~ = (D , . ,  e) the 
associated combinatory model, ~e ,=  (D, q~', W') the environment model 
associated with ~ ,  and ~ '  the combinatory model associated with ~ ' ,  
Clearly, q~ = ~ ' .  But ~ ' (~ (do )  ) = e .  d o by definition of W', and e .  d o = 
W(~(do)) by the proof of (ii) above, so ~ = W'. Hence, ~ = ~ ' .  The proof 
that ~ - - ~ '  follows similarly. | 

From Section 7 

(7.7) LEMMA. 

(i) 
(ii) 

Proo f  

For any Y - t e r m  u and variables x,  y,  

x does not occur in (x} u, 

i f  y does not occur in u, then (x} u = ( y } ( u [ y / x ] ) .  

By induction on the definition of (x}. II 

(7.8) LEMMA. For all Y - t e r m s  u, v and distinct variables x, y, i f  x does 
not occur in v, then 

( ( x )  u)[v/y] = (x ) (u[v /y] ) .  

Proof. By induction on the definition of (x}. The cases that u = x or x 
does not occur in u are trivial. 

Suppose u = (UlUE) and x occurs in u. Then 

((x} u)[v/y] = (S((x} Ul)((x } u2))[v/y ] by definition of (x) 

= S(((x} ul ) [v /y] ) ( ( (x  } u2)[v/y]) by definition of Iv/Y] 

= S( (x} (u l[v /y] ) ) ( (x} (u2[v /y] ) )  by induction hypothesis 

= (x}(u~[v/y] UE[V/y]) by definition of (x} 

= (x}(u[v /y])  by definition of [v/y]. II 

(7.9) LEMMA. For any Y - t e rms  u, v and variable x,  ~ ~ ( ( ( x ) u ) v ) =  
u [ v / x ] .  
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Proof As already observed in the Combinatory Completeness Lemma, 
an induction on the definition of (x) implies c ~  ( ( x ) u ) x =  u. Since 
substitution preserves validity of equations, c~ ~ (((x) u)x)[v/x] = u[v/x], 
but by (7.7(i)), x does not occur in (x)u ,  so ( ( ( x ) u ) x ) [ v / x ] =  
(((x) u) v). | 

(7.10) LEMMA. I f  K, 
x, y, z, and ~-terms u 

(i) 

(ii) 

(iii) 

Proof 

S satisfy (7.1-2), then for  all distinct variables 

~ (y)(Kxy)  = Kx, 

~" ~ ( z ) ( S x y z )  = Sxy ,  

~ (y ) ( ( (x )  u)y)  = (x) u i f y  does not occur in (x) u. 

(i) ~ ~ (y)(Kxy)  = ((x)((y)(Kxy)))  x by (7.9) 

= K x  by (7.1). 

(ii) c~ ~ (z)(Sxyz)  = ((x)((y)((z)(Sxyz))))  xy by (7.9) twice 

= Sxy by (7.2). 

(iii) By definition (x) u is always of the form Kv or Svw. In the first 
case, (x) u = Kv = (Kx)[v/x], but 

~ (Kx)[v/x] = ((y)(Kxy))[v/x] by (i), 

= (y)((Kxy)[v/x])  by (7.8) providing y does not occur in v 

= (y)(Kvy)  = (y ) ( ( (x )  u)y). 

The case u = Svw follows similarly from (ii). II 

(7.11)LEMMA. I f  K, S satisfy (7.3), then for all ~-terms u, v and 
variables x, 

~ (x)(uv) = S((x) u)((x) v). 

Proof If x occurs in (uv), then the equation is identically true, so assume 
x does not occur in (uv). Lety,  z be distinct variables not equal to x and not 
occurring in (uv). Then 

(x)(uv) = K(uv) by definition of (x) 

= K(uy)[v/y] since y does not occur in u. 
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But 

f~ ~ K(uy)[v /y]  

= ( ( y ) (K(uy ) )  v) by (7.9) 

= ( ( y ) ( (K(xy ) ) [u / x ] )  v) 

= ( ( ( y ) (K(xy ) ) ) [u /x ]  v) by (7.8) sincey does not occur in u 

= ( ( x ) ( ( y ) ( K ( x y ) ) ) )  uv by (7.9) 

= ( ( x ) ( ( y ) ( S ( K x ) ( K y ) ) ) )  uv by (7.3) 

= ( ( ( y ) ( S ( K x ) ( K y ) ) ) [ u / x ]  v) by (7.9) 

= ( ( y ) ( ( S ( K x ) ( g y ) ) [ u / x ] )  v) by (7.8) since y does not occur in u 

= ( ( y ) ( S ( K u ) ( K y ) )  v) by substitution 

= (S(Ku)(Ky))[v /y]  by (7.9) 

= S ( K u ) ( K v )  since y does not occur in u 

= S ( ( x )  u ) ( (x )  v) by definition of (x). | 

(7.12) LEMMA. Let  ~ be a lambda algebra and u, v be ~ - t e r m s  with 
variables only in X.  I f  ~ [ X ]  ~ u = v, then ~[X]  ~ (x) u = (x) v. 

Proof. By (7.6) validity is the same as provability for equations between 
c~-terms u, v all of whose variables are in X. We proceed by induction on the 
length of the proof that ~ - C L ~  ~- u = v. 

If the proof is of length one, i.e., u = v is an axiom, then if u, v are 
variable free terms, the result is immediate. If u = Kulu2  and v = u 1, then, 
noting that (7.11) holds for c~[X] because, by (7.6), cg[X] is a combinatory 
algebra satisfying the same variable free equations as c~, we have (x )u  = 
(x) v because 

(x)(Ku,u2) 
= S ( { x ) ( K u l ) ) ( ( x )  u2) by (7.11) 

= S ( S ( K K ) ( ( x )  u~))((x) u2) by (7.11) 

= ( S ( S ( K K ) ( ( x )  u O ) y ) [ ( x  ) u J y ]  where y is chosen not to occur in 
(x) u, 

= ( ( y ) ( S ( S ( K K ) ( x )  U l ) ) y ) ) ( x )  uz by (7.9) 

= ( ( y ) ( ( S ( S ( K K ) x ) y ) [ ( x )  u , / x ] ) ) ( x )  u 2 

= ( ( ( y ) ( ( S ( S ( K K ) x ) y ) ) ) [ ( x )  u l / x ] ) ( x )  u 2 by (7.8) since y is not 
in (x) ul 
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= ( ( x ) ( ( y ) ( ( S ( S ( K K ) x ) y ) ) ) ) ( x )  u , (x)  u2 by (7.9) 

= ( (x ) ( (y ) ( ( z ) (xz ) ) ) ) ( x )  us(x ) u s by (7.4) 

= ( z ) ( ( ( x ) u O z )  by (7.8-9), where z is chosen not to occur in 

(x) us, 

= (x) Ul by (7.10(iii)). 

The case that u = v  is the axiom SUlU2U3=U~Ua(U2U3) follows similarly 
using (7.5). So (7.12) holds for the axioms of 9~-CL~. 

If the last inference rule in the proof of u = v was (transitivity and 
symmetry), then (7.12) follows immediately by induction. If the last rule was 
(congruence), then u=(u lu2) ,  v=(v l v2 ) ,  and ~ [ X ] ~ / ~ I ~ - V l ,  u 2 = v  2 . 

Hence, 

9~[ X] ~ (x) u = S(<x) u,)(<x) u2) by (7.11) 

= S ( ( x )  v , ) ( (x)v2)  by induction since substitution preserves 
validity 

= ( x ) v  by (7.11). [[ 

LAMBDA ALGEBRA THEOREM. ( i ) I f  ~ = ( D ,  . , K , S )  is a lambda 
algebra and Y is an infinite set o f  variables, then c~t[Y ] = (D[X], . ,  K, S )  is 
a lambda model. 

(ii) Conversely, every lambda model is a lambda algebra. 

Proof. (i)Let e =  (x)((y)(xy)) .  We first observe that (D[X], . ,e)  is a 
combinatory model. To see this, note that by (7.8-9), ed= (y)(dy)  for all 
d E  D[X]. Eq. (1.3a) follows directly by another application of (7.9), and 
(1.3c) follows by (7.10(iii)). 

To verify (1.3b), suppose [[u]] d =  [[v]] d for all d in D[X]. Lety  E X b e  a 
variable not in u, v; there is such a y since X is infinite. Then letting d be 
[[y]], we have [[uy]] = [[vy]], and so by (7.6) and (7.12), [[(y)(uy)]] = 
[[(y)(vy)]]. But by (7.8-9), [[(eu)]] = [[(y)(uy)]] and likewise with v in place 
o f  u ,  s o  - -  

So (D[X], . ,  e) is a combinatory model. By the Lambda Model Theorem, 
(D[X], . ,  e2K, e3S ) is a lambda model. But 

c~[X] ~ e2K = e((Be) K) by (6.1-2) 

= (x)(BeKx) by (7.9) 

= (x)(e(Kx))  by (6.1) and (7.12) 

= (x) ( (y ) (Kxy) )  by (7.9) and (7.12) 

= K  by (7.1), 
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and a s imilar  ca l cu la t ion  using (7.2) shows tha t  c~[X] ~ e 3 S  = S ,  so ~ a [ X ]  

is this l a m b d a  model .  

(ii) E q u a t i o n s  (7 .1 -5 )  fo l low f rom the C o m b i n a t o r y  M o d e l  

T h e o r e m  (iv) s ince (7 .1 -5 )  are each  o f  the  fo rm u ~ e ) =  v (~e) for conver t ib le  

l a m b d a  te rms  u, v. II 
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