
INFORMATION AND CONTROL 52, 87-1.22 (1982)

What Is a Model of the Lambda Calculus?*

ALBERT R, MEYER

Laboratory for Computer Scienee, Massachusetts Institute of Technology, Cambridge,
Massaehusetts 02139

An elementary, purely algebraic definition of model for the untyped lambda
calculus is given. This definition is shown to be equivalent to the natural semantic
definition based on environments. These definitions of model are consistent with,
and yield a completeness theorem for, the standard axioms for lambda conver-
tibility. A simple construction of models for lambda calculus is reviewed. The
algebraic formulation clarifies the relation between combinators and lambda terms.

1. INTRODUCTION

Lambda notation provides a convenient means for writing expressions
which denote functions. As an informal example, consider the polynomial
expression x 2 + 7 x - 1. One can construct an expression 2x. x 2 + 7 x - 1
called a lambda abstraction denoting the polynomial function whose values
are given by the polynomial expression. Thus, ,~x. x 2 + 7x - 1 could be read
as "the function of x whose value is x 2 + 7x - 1," and the defining equation
p (x) = x 2 + 7 x - 1 for the polynomial p could as well be written p =
)~x. x 2 + 7x - 1. The value o fp at the argument 3, for example, is obtainable
by applying the expression 2x. x 2 + 7x - 1 to 3, which entails substituting 3
for x to obtain 32 _[_ 7 • 3 - 1 and evaluating the result to obtain 29. This
process of application and evaluation reflects the computational behavior of
many modern programming languages--which explains in part the recent
interest in the lambda calculus among computer scientists (cf. Landin, 1964,
1965; Plotkin, 1975, 1977; Stoy, 1977; Gordon, 1979).

Some of the power of the lambda calculus is suggested by the way
functions of several arguments can be handled. The addition function of two
variables, for example, whose value is the sum of the values of the variables,
could be denoted 2x. 2),. x + y. More accurately, the value of / Ix . ~,y. x + y
is a functional which, applied, say, to the argument 2, yields the add-two
function of one variable:)~y. 2 +y . The add-two function can in turn be

* This work was supported in part by The National Science Foundation, Grants MCS
7719754 and MCS 8010707, and by a grant to the M.I.T. Laboratory for Computer Science
by the IBM Corporation.

87
0019-9958/82/010087 36502.00/0

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

88 ALBERT R. MEYER

applied to the argument 4 to yield the sum 6. So a function of two variables
can be regarded as a functional of one variable whose value is a function of
one variable, in this case an "add a constant" function. Thus, in studying
calculations with lambda notations there is no loss of generality in restricting
attention to functions---or more precisely functionals--of one argument, and
we shall do so in what follows.

A more intriguing example suggesting the importance and special
character of the lambda calculus is the "triple composition" functional T.
For any function f of one argument and positive integer n, let f~n) denote
the composition f o f o ... o f of f with itself n times. The functional T
can be defined by the equation T (f) = f ~3) or equivalently by T =
2f. (2x . f (f (f (x)))) . Thus, T applied to the cubic polynomial-2z, z 3 would
yield the 27th degree polynomial 2z. z zT. By the same reasoning, T applied
to T equals the "compose 27 times" functional because T(T) applied to f
equals (T(T))(f) = (To To T)(f) = T(T(T(f))) = T(T(f(3))) =
T(f(3) oft3) of(3))= T(f~9))=f~zT).

But although it makes good intuitive sense to define the value of T(T) in
this way, there are obvious logical difficulties. Applying a function to itself
violates the rules of ordinary set theory which forbid a function from being
in its own domain. The violation can quickly lead to contradiction. For
example, let P be the "paradoxical" functional such that P(f) is zero if f (f)
is not the integer zero, and P(f) is the integer one otherwise. So by definition
P (f) : / : f (f) for all f ; substituting P for f immediately yields the
contradiction P(P) ~ P(P).

The problem we consider is how to give values to such expressions
involving functionals which may be applied to themselves. The intuitive
sense of examples like T(T) must be preserved while avoiding contradictions
from examples like P(P). Such a domain of values would be a model for the
lambda calculus.

Introduced by (Curry, 1930; Church, 1932/1933), lambda calculus and
related systems of combinatory logic have been the subject of research by
logicians for more than fifty years. However, the model theory of the lambda
calculus is a development primarily of the past decade--largely carried out
following the lead of Dana Scott. While a host of models and methods for
model construction are now available, the clear statement of just what in
general a model of the lambda calculus may be seems not to be well known.
The purpose of this article, which is largely tutorial, is to review briefly why
there is an apparent difficulty in defining the notion of model for the lambda
calculus, and then to show how this difficulty is overcome.

This question of what a model of the lambda calculus is has bothered me
for some time. A similar concern is expressed in (Hindley and Longo, 1980)
who comment that "...there seems to be, firstly an assumption that the
definition is to obvious to need stating, and secondly a disagreement about

LAMBDA MODELS 89

what the definition should be." Reading through the l i terature describing the
various model construct ions (Plotkin, 1972, 1978; Wadswor th , 1976; Scott,
1976, 1980(a), (b); Stoy, 1977; Engeler, 1979), I felt as though I kept
asking, " W h a t is a g roup?" and kept being told "Permuta t ions on n letters
are a group," or "Z k is a group," but was never told that a group is s imply
an algebraic structure with a b inary operat ion satisfying the well known
conditions. It turns out that there is a comparab ly simple definition of model
for the l ambda calculus. We state the definition now just to verify its
s implici ty; the reader is not supposed to make detailed sense of it yet. The
remainder of this article provides a just i f icat ion for the claim that the
following definition is appropriate .

DEFINITION. A eombinatory algebra is a structure (D, .), where , is a
b inary operat ion on D, such that there are elements K, S E D satisfying

(1.1) (K . do) . d, = d o ,

and

(1.2) ((s . do). d ,) . d2 = (do" 4) " (d, • d9

for all do, d l , d 2 (~ D.

A combinatory model of the l ambda calculus is a structure (D , . , e), where
(D, .) is a combina tory a lgebra and E C D satisfies

(1.3a) (e • do) • d I = d o • d 1,

(1.3b) if VdED(d o . d = d 1.d) then e . d 0 = e . d t ,

for all d 0, d I C D, and

(1.3c) e • e = e. 1

Combina to ry models serve for what is known as the f l - lambda calculus. For
the other main variant, known as r/-lambda calculus, we simply require that
the element e be a left identity on D, i.e., e . d = d for all d CD.
Equivalently, we can simplify condit ion (1.3) to (1.4).

i If (D, .) is a combinatory algebra and ~ satisfies (1.3a, b), then e - e satisfies (l.3a, b, and
c); i.e., (D, -, e . c) is a combinatory model, as is easily verified. So in a sense (1.3c) is a
redundant, normalizing condition. The reason for requiring it is revealed in the Combinatory
Model Theorem (iii) in Section 4.

90 ALBERT R. MEYER

DEFINITION. An ,extensional combinatory model of the lambda calculus
is a combinatory algebra (D , .) such that

(1.4) if V d C D (d o • d = d 1 • d) then d o = d 1

for all d o , d I E D.

The above definitions are not specially new. The definition of combinatory
algebra is due to Curry. Condition (1.4) is known as extensionali ty, g and the
fact that extensional combinatory algebras serve as models for the r/-lambda
calculus has been observed often (Barendregt, 1977; Hindley and Longo,
1980; Scott, 1980a). A variant of the definition of combinatory model above
is mentioned along the way in (Scott, 1980b). Other slightly more complex
but still simple, purely algebraic formulations appear in (Obtulowicz, 1977;
Obtulowicz and Wiweger, 1978; Volken, 1978; Aczel, 1980; 1981; Baren-
dregt and Longo, 1980; Barendregt, 1981). Barendregt (1981, Chap. 5,
Sect. 4) and Cooperstock (1981) survey many of these.

Nevertheless, it still seems worthwhile to emphasize again here that the
general definition of lambda calculus model can be formulated in this
elementary way without any of the algebraic baggage--very useful for other
purposes----of lattices, continuity, or categories, and also without any of the
syntactic baggage of lambda calculus terms. Although the results described
are known in one form or another to a number of researchers, I have not
seen the story told in quite so elementary a way as attempted below. 3

To keep this article self-contained, we review in the next section the basic
definitions of the syntactic properties of what is known as the untyped

lambda calculus. It will turn out that most of the standard syntactic results
about reductions, normal forms, and Church-Rosser properties will not be
needed in our development. The main syntactic notion required is merely
that of a lambda theory, namely, a system of equations between lambda
terms closed under the standard inference rules. (See (Hindley et al., (1972)
for a more complete treatment of the syntactic theory and (Barendregt,
1981) as a comprehensive reference.)

Section 3 introduces env i ronment models. We develop enough of their
properties to explain the view that environment models are the natural, most

z Scott (1980a, b) argues persuasively that "extensionality" should more soundly be
reserved to refer to the weaker condition (~) given in Section 2, but I fear that familiar usage
is already too deeply ingrained to adopt Scott's terminology.

3 (Cooperstock, 1981) is a study similar to this one in which Barendregt's structures,
environment models, Aczel structures, Obtulowicz structures, and variations of combinatory
models and Scott models (of. Note 8) are compared. Cooperstock also presents a thoughtful
discussion of the sense in which all the structures provide equivalent mechanisms for inter-
preting lambda terms.

Barendregt (1981) gives a comprehensive treatment of combinatory algebras, lambda
models and lambda algebras (cf. Sects. 6, 7).

LAMBDA MODELS 91

general formulation of what might be meant by mathematical models for the
untyped lambda calculus. In particular, the axioms and rules of inference of
lambda calculus are sound when interpreted by environment models; every
environment model thus yields an associated lambda theory. The consistency
of lambda calculus--a purely syntactic notion commonly proved by
syntactic (Church-Rosser) properties--is shown to follow from the existence
of nontrivial environment models. The central result is a completeness
theorem demonstrating that every lambda theory is the theory associated
with some environment model.

The drawback of environment models is that they define purely algebraic
conditions by induction on the syntactic structure of lambda terms. In
Section 4 we demonstrate the equivalence between the combinatory models
defined above and environment models, thereby revealing how to formulate
the algebraic conditions needed for models without reference to syntax.

As an easy application of the notion of combinatory model, we will see in
Section 5 that the construction of a lambda calculus model in (Engeler,
1979) follows for simpler, more general reasons than was demonstrated
there. This completes the main part of the story.

In Sections 6 and 7 we indulge in an algebraic excursion in which several
structures akin to combinatory algebras are defined and compared. In
Section 6 lambda models are introduced; they provide a technically useful
variation of combinatory models. In Section 7 the connection between
lambda terms and combinatory terms given in Sections 4 and 6 leads to the
formulation of lambda algebras, which are not equivalent either to
combinatory algebras or lambda models, but retain the best features of both.
In the final section we cite some additional results connecting the model
theory and proof theory of lambda calculus. An Appendix contains many of
the longer proofs whose presence in the main text would have been a
distraction.

2. SYNTAX AND LAMBDA THEORIES

We let x, y , z denote variables chosen from some fixed infinite set of
variables, d denote a constant, and u, v, w denote lambda terms defined
inductively as follows. A lambda term is either a variable, a constant, an
application of the form (uv), or an abstraction of the form (2x u). For
readability the notation 2 x . u is usually used for abstractions, and
parentheses are omitted in applications with association to the left being
understood. Thus, uvw abbreviates ((uv)w). Occurrences of variables in
terms are said to be bound or free following the usual rules as though 2x was
a quantifier such as ~ x. Finally, ~X1X2...x n. u abbreviates
~.x 1 . 2x 2)~xn. u. For every set C of constants, we let A(C) denote the

92 A L B E R T R. M E Y E R

l ambda terms whose constants are chosen solely from C; so A(#) denotes the
constant-free or pure terms.

Let u[v/x] denote the result of substituting the term v for f r e e occurrences
of x in u subject to the usual provisos about renaming bound variables in u
to avoid capture of free variables in v. Two basic axiom schemes (a) and (fl),
and an optional third axiom scheme (r/), reflect the intuition behind
abstraction and application.

(a) (2 x u) = (2 y u [y / x]) for y not free in u (the names of bound
variables do not matter),

(fl) ((2x u) v) = u[v/x] (application can be computed by substitution),

(~/) (2y (uy)) = u for y not free in u (every object is a function).

With these axiom schemes we take the usual inference rules for a congruence
relation, namely, three rules of inference,

(transitivity and symmetry) u = v, u = v ' ~ v = v ' ,

(congruence) u = u', v = v ' ~ (uv) = (u ' v ') ,

(~) u = v ~- (~x u) = (, tx v) .

We would also insist on the additional axiom

(reflexivity) u = u,

except that it happens to follow already from (fl) and (transitivity and
symmetry) as the reader may check.

Terms which are provably equal by these from instances of (a), (fl) (and
(r/)), are said to (tl-)convert to one another. Note that convertibility is an
equivalence relation on te rms-- t rans i t iv i ty and symmetry follow immediately
from the corresponding inference rule once reflexivity is proved.

Axioms and inference rules lead directly to the notion of a theory.

DEFINITION. A Iambda theory g- over a set C of constants is a set of
equations between terms in A (C) containing all instances of (a) and (fl), and
closed under the rules (transitivity and symmetry) , (congruence), and (¢).
The notation ~-~-u = v means that the equation "u = v" is in gr. The theory
is extensional if it also contains all instances of (r/).

Clearly, if u converts to v, then ~-~u = v for all l ambda theories gr.
As with convertibility, equality in any lamhda theory g- defines an

equivalence relation on lambda terms. The g '-equivalence class of u is
denoted [[u]]~-. Namely,

[[ul]~- = {vl ~ u = v}.

LAMBDA MODELS 93

It is not hard to show that simultaneous substitution preserves equations.
That is,

if b-~-u i = v i for i = 0 n,

then b-~-Uo[Ul/X 1 u , / x ,] = Vo[Vl/X 1 v f f x ,] ,

where Uo[Ul/X 1 un ix ,] denotes the result of s imul taneously substituting
u 1 un for free occurrences of x I x n in u o. (We require of course that the
variables xl , x , be distinct and, as in the case of (fl), that bound variables
of u0 are renamed to avoid capture of free variables in ul un.)

This is all we need in the way of syntactic notions about lambda calculus.

3. VALUES OF TERMS AND ENVIRONMENT MODELS

The simplest first notion of lambda calculus model might be any set D of
values together with a mapping from any lambda term u to a value
[[u]] E D such that convertible terms are assigned the same value. Clearly it
is a minimal requirement of any notion of model that convertible terms
receive the same value in the model. This ought not be the sole requirement
of models, however, because it does not guarantee the condition that the
value of a term determines its behavior with respect to the values of other
terms. Specifically, we expect the inference rules to be sound, which leads to
the following

DEFINITION. A (n extensional) value model of the lambda calculus over a
set C of constants consists of a set D whose elements are called values, and a
mapping [[.]] from A (C) onto D such that

[[(2x u)]] = [[(2y u[y/x])]] for y not free in u,

u) v)l] = [[u[v/x]]1,

([[2y (uy))]] = [[u]] for y not free in u),

and

if [[u]] = [[vl] and [[u']] = [[v'l], then

[[(uu')]] = [[(vv')l] and [[(~,x u)]l = [[(Xx v)]].

Clearly, value models are a mere reformulation of lambda theories.
Namely, if g- is a lambda theory, then mapping a term to its g--equivalence
class yields a value model. Conversely, if [[.]] is the mapping of a value
model, then the set of equations "u = v" such that [[u]] = [Iv]] is the lambda
theory which yields the value model.

643/52/1-7

94 ALBERT R. MEYER

So although the notion of value model is simple and natural given the
axioms and rules for lambda calculus, it remains an essentially syntactic
notion which hardly serves to justify belief or interest in the axioms. That is,
value models fail to capture the intuitive idea of lambda terms as
descriptions of functions. (It is like saying that a model of group theory is
any assignment of truth values to formulas such that provably equivalent
formulas about groups receive the same truth value. The central model-
theoretic notion which justifies the rules of proof, namely, the notion of how
an algebraic structure satisfies a formula, has been left out.)

What sort of structure allows interpretation of lambda terms? It would be
easiest if we could appeal to the standard inductive definition of the value of
a term over an ordinary algebraic structure--for example, a structure

= (D, .), where • is a binary operation on the set D. It will be helpful to
review how values are determined in this standard case.

We define the set of ~-terms to be constructed from constants in D,
variables, parentheses, and a symbol for the binary operation • on D.
Actually for reasons which will appear below, it will be convenient to omit
the symbol for • and write (uv) instead of (u • v), so that cg-terms become
the special case of lambda terms in which lambda abstractions do not occur.

Each c~-term has a value in D which is determined as soon as an
assignment of values to the free variables in the term is given. That is, the
term is thought of as defining a function on D of as many arguments as there
are free variables. It turns out to be simpler technically to regard terms as
defining functions of all the variables, even though the value will actually
depend only on the values of the free variables in the term. In the context of
lambda calculus, assignments of values to variables are usually referred to as
environments.

Formally, an environment p is any map from the set of all variables into
D. The valuation mapping ~'~ defines for each c~-term u, a function 7~'~[u]
from environments to D. The value of u in the environment p is written as
7~'[u] p. (We omit the subscript cg whenever it is clear from context.)

The value of a term consisting of a single constant is simply the value of
the constant.

(3.1) ~"[d]p=d for dCD.

The value of a term consisting of a single variable is the value assigned the
variable by an environment.

(3.2) ~ [x I p = p(x).

Finally, the value in ~ of a term of the form (uv) is simply the result of
applying the binary operation • to the values of u and v.

(3.3) ~'~e[(uv)] p = (7~'~e[u] p) . (~'~e[v] p).

LAMBDA MODELS 9 5

DEFINITION. An equation u = v between c~-terms is defined to be valid in
c~, written C ~ u _ _ v , iff the values of u and v are the same in all
environments. Namely,

~ u = v iff ~P~e[u] = ~ e [v] .

The difficulty in extending these familiar definitions to lambda terms is
that lambda abstractions are meant to denote functions, so their values
would not, like ordinary terms, be expected to be elements of the structure
but rather to be functions on it. Of course, once we allow functions as values,
a lambda term might be applied to a lambda term whose value was deter-
mined to be a function, so we must then admit that the value of a term could
also be a functional on functions on the structure. Things get even messier if
we think of applying a term to itself, for, as we noted in the introduction, this
violates the rules of set theory which forbid a function from being in its own
domain.

The way out of this potential paradox is quite straightforward (and
familiar in recursion theory). Namely, we regard each element over the
structure as denoting a function on the structure (much as an integer denotes
a partial recursive function via a Godel numbering). So we first require of a
model that it consist of a nonempty set D whose elements will be the values
of terms, together with a map q~ from D onto a set D ~ D of certain
functions from D to D. We will also want to represent each function in
D ~ D as an element of D, so we require an inverse map 7 t from D ~ D into
D (much like a mapping from a recursive function to its least Godel
number). That is,

q)

D W : ~ (D ~ D) ,
~p

(3.4) f = ~(ku(f)) for all fED--*D.

We shall call the structure ~" = (D, qs, ~) a functional domain. Note that
since q~ maps D onto D ~ D, it follows from Cantor 's cardinality theorems
that D ~ D cannot equal the set of all functions from D to D (except in the
trivial case that D has exactly one element). However, we will shortly require
that D ~ D have enough closure properties to mimic the behavior of the set
of all functions from D to D, which is why the suggestive notation D ~ D is
used.

Now the intended interpretation of an application (uv) is that u denotes a
function applied to the argument v. So the value over a functional domain ~e
of the application is gotten by interpreting the value of u as a function and
applying that function to the value of v.

(3.5) 7~}[(uv)] p = f (~ [v] p), where f = q~(~'~[u] p).

96 ALBERT R. MEYER

Finally, we must assign values to lambda abstractions of the form ~,x. u. The
intended interpretation here is that u is an expression which can be evaluated
for any given value of x, and 2x. u denotes the funct ionfwhose va luer (d) is
obtained from the evaluation of u when x is assigned the value d ~ D.
However, since we want values of terms to be elements rather than functions,
we define the value of the abstraction to be the element ku(f)E D which
represents the function f . To describe the assignment of d to x, let p{d/x}
denote an environment which agrees with p at all variables other than x and
which assigns x the value d.

(3.6) ~[)~x.u]p= 7~(f), where f :D~ Disthefunctionsuchthat

f (d) = .~[u](p{d/x}).

The only possible catch in clause (3.6) is that the function f may not be in
the set D-+ D, in which case ~u(f) is undefined. We take the denial of this
possibility as our fundamental definition of model.

DEFINITION. An environment mode l 4 of the lambda calculus is any
functional domain such that if values are assigned to lambda terms
according to (3.1), (3.2), (3.5), and (3.6) above, the functions f=)~dC
D.T/~[u](p{d/x}) arising in (3.6) are all in O ~ D.

An equation u = v between lambda terms is defined to be valid in an
environment model g~, written g~ ~ u = v, iff the values of u and v are the
same in all enVironments. Namely,

g ~ u = v iff ~ g [u] = ~ g [v] .

4 The technical setup here is very close to that of (Wadsworth, 1976), except that I have
dropped any requirement of a lattice structure on D as well as the requirement that the maps
q~ and W be (continuous) isomorphisms. In fact (Obtulowicz, 1977; Obtulowicz and Wiweger,
1978) give essentially this definition which they credit as implicit in (Wadsworth, 1976).
Precisely the definition of environment model is also given in (Cooperstock, 1981), where it is
credited as jointly proposed by Cooperstock and C. Rackoff based on the preceding earlier
references.

Barendregt (1977) defines valuations over a more general class of structures resembling
functional domains using essentially the same rules (3.1-2), (3.5-6), but valuations over these
more general structures suffer the flaw that the (~) rule is not sound. More recently Berry
(1980) has offered a definition which is a combination of Barendregt's notion and value
models.

The pathologies of Barendregt's structures are lucidly analyzed by Hindley and Longo
(1978) who essentially identify the structures as combinatory algebras and lambda algebras
(considered in Section 7). Hindley and Longo also arrive at a definition equivalent to
environment models (which they call 2-structures) by adding to Barendregt's formulation the
requirement that the (~) rule be sound. They note by the way that their formulation was
obtained independently of Barendregt's, and I note that my definitions were formulated
independently of all the papers subsequent to (Wadsworth, 1976).

LAMBDA MODELS 97

To illustrate this definition, consider the term ~.XlX 2 .X 1 which intuitively
denotes the first projection function of two variables. Let Pl be the value of
)~x l x2 . x 1 in some environment p. For d l , d 2 E D , let dad 2 abbreviate
(q~(dl))(d2), and let d i d 2 ... d, be read as associated to the left, i.e., as
(...((dld2) dg)...dn). Then we expect Pl to have the property that p~ d 1 d 2 = d 1
for all all, d 2 ~ D.

To verify this, observe that p l d l = (~ [2 x 2 . Xl])(P{dl/Xl}) by (3.6). Then
p ld ld2 = 7~'[xl]((P {dl/Xl }){dz/x2 }) by (3.6) again, and the righthand side of
this equation equals da by (3.2).

A more general technical justification of the reasonableness of the
definition of environment model comes from the fact that the axioms and
rules of lambda calculus already follow from the definition. To show this, we
begin by observing, following (Wadsworth, 1976), that our use of
environments propertly reflects the properties of substitution in formulas.
First, the value of a term depends only on the values of its free variables.

FREE VARIABLE LEMMA. ~ ' [U] p = ~'[u] (p{d /y}) f o r y not f ree in u.

More generally, we have the

SUBSTITUTION LEMMA. [u[v/xl] p = ~ [u] (p { d / x }) f o r d = ~ ' [v] p.

Both lemmas are proved by routine induction on the structure of lambda
terms. We omit the proof (cf. Stoy, 1977). The Substitution Lemma leads to
the fundamental

SOUNDNESS THEOREM. The equations valid in an environment model
f o rm a lambda theory. In particular, i f u converts to v, then u = v is valid in
all environment models.

A simple application of the notion of environment model is a model-
theoretic proof of the syntactic consistency of lambda calculus, viz., noncon-
vertibility between some pair of terms.

LEMMA. The equation) , x l . . . x , . x i = 2 x 1 . . . x , . :9, where 1 <, i < j ~ n,
is not valid in any environment model with more than one element.

Proo f For 1 ~< k ~< n and any environment p, let p~ =
~ [2 x ~ . . . x n . xk] p. From the definition of ~ , it follows as in the example
above that p k d ~ . . . d n = d k for all d I d, C D. If D has more than one
element, there exist dl d~ E D such that di 4: dj, so that

P i d l . . . d, = d i ~/= d j = p j d I . . . d, and therefore P i =/=Pj" II

An immediate consequence of this lemma is that every nontrivial model,
i.e., model with more than one element, is infinite. Assuming, as we show in
Section 5, that nontrivial environment models exist, the preceding lemma and
the Soundness Theorem immediately imply the

98 ALBERT R. MEYER

CONSISTENCY THEOREM. For 1 ~ i < j ~ n the term ~,xl • • • xn • xi does
not convert to 2 X l . . . x n . x i.

The preceding definitions can be easily modified to deal with q-conversion.
The intuitive content of the q-rule is that an element may be identified with
the function it specifies, so that distinct elements must specify distinct
functions. This amounts simply to the

DEFINITION. An extensional environment model is an environment model
for which the map # :D ~ (D ~ D) is one-to-one.

We then can easily show the

q-SOUNDNESS THEOREM. The equations valid in an extensional

environment model f o r m an extensional Iambda theory. In particular, i f u q-
converts to v, then u -~ v is valid in all extensional environment models.

The Consistency Theorem similarly extends to extensional environment
models and q-conversion.

A converse to the Soundness Theorem provides the most important
technical support for the argument that environment models correctly
capture the intuitive meaning of lambda calculus as embodied in the conver-
tibility rules. The axioms and rules of lambda calculus provide a complete

logical system for proving equations about environment models.

COMPLETENESS THEOREM. Every lambda theory consists o f precisely the

equations valid in some environment model, That is, f o r every lambda theory
g-, there is an environment model ~ such that

~-~u = v i f f ~ ~ u = v.

In particular, u = v is valid in all environment models i f f u converts .to v.

The required environment model is constructed from classes of provably
equivalent terms in much the way that polynomial domains are formally
constructed from a ring of coefficients.

DEFINITION. Let g- be a lambda theory over a set C of constants. The
term model associated with g- is the environment model (D, 4, 7/), where

D = {[[ull -I u c / (c) } ,

(,it, ([[u II [Iv]l = [1 (uv) l]

and

~(q~([[u]]~-)) = [[2x. ux]]~- for x not free in u.

LAMBDA MODELS 99

The proof that the term model is well defined and is indeed an environment
model appears in the Appendix.

4. COMBINATORY MODELS

The notion of environment model may best reflect the intuitively correct
way to assign values to terms of the lambda calculus, but it is
mathematically a bit awkward. The condition that all the functions f arising
in (3.6) be in D ~ D obviously defines some kind of closure condition on this
set of functions, but the formulation of the condition is so entangled with the
syntax of lambda terms that it is hard to visualize what models look like,
and it can be awkward to verify that particular functional domains are
indeed models.

Is there some way to define the closure conditions implicit in (3.6) without
reference to the syntactic machinery of lambda terms? Not surprisingly, a
solution lies in considering combinators, which were originally devised to
short-circuit the syntactic complexities of variables in terms. Combinators
are simply variable free terms over combinatory algebras.

The key property which motivates the rather odd definition of
combinatory algebra given in the introduction is revealed by considering the
more natural notion of combinatory completeness defined below. A structure
is combinatorially complete if every function definable by a term is equal to
the function defined by left multiplication by some constant. More precisely,

DEFINITION. Let • be a binary operation on a set D. The structure
c~ = (D , -) is combinatorially complete iff for every c~-term u and every
sequence x 1 x n of variables containing all the variables in u, there is a
constant d E D such that c ~ u = dx I ... x~.

DEFINITION. Let I abbreviate the combinator SKK. For every Y-term u
and variable x define a new c~-term (x) u as follows:

(x) u = Ku

(x) x = I ,

(x)(uv) = S((x) u)((x) v)

i fx is does not occur in u,

if x does occur in u or v.

COMBINATORY COMPLETENESS LEMMA (Curry). A structure cC = (D, .)
is combinatorially complete i f f it is a combinatory algebra.

Proof. (~) Let c~ be a combinatory algebra and K, S C D satisfy (1.1)
and (1.2). It follows directly from the definitions that x does not occur in

lO0 ALBERT R. MEYER

(x) u, and that ~ ~ u = ((x) u) x. Let d be the value in ~ of the combinator
(Xl) (. . . ((Xn) u)). Then ~ ~u = d x l . . , x n as required.

(~) This is left to the reader. II

We now show that the simple definition of combinatory models given at
the outset provides the desired algebraic characterization of environment
models.

DEFINITION. Let c~ = (D, . , e) be a combinatory model. Let ~ map
elements of D into the functions from D to D defined by left multiplication.
That is, let (~(do))(d) = d o • d. The functional domain associated with ~ is
(D, ~, ~), where ~ is given by the rule ~ (~(d)) = e • d.

Note that (1.3b) implies that W is well defined, and (1.3a) implies that
is a right inverse of ~, so that (D, ~, W) is indeed a functional domain.

DEFINITION. Let ~ = (D, ~, 7/) be an environment model. Define a
binary operation on D by the rule d o • d l=(~(do)) (d l) , and let
e = ~ g [2 x y . xy] p. The algebra associated with ~ is (D , . , e).

Note that by the Free Variable Lemma, the value of e does not depend on
the environment p.

COMBINATORY MODEL THEOREM. (i) The functional domain
associated with a combinatory model ~ is an environment model which
assigns the same values to ~-terms. That is,

=

for all ~- terms u.

(ii) The algebra associated with an environment model is a
combinatory model.

(iii) The associations between combinatory models and environment
models defined above are inverses of each other. That is, i f ~ is the
environment model associated with a combinatory model ~ , then ~ is the
combinatory model associated with ~, and vice versa.

The final argument in support of our claim that environment models and
combinatory models are alternative formulations of the same class of objects
is that the additional expressive power apparently provided by lambda terms
in the context of environment models is still achievable in the context of
combinatory models. In fact, there is a simple, effective translation from any
lambda term u into an equivalent cC-term u (~).

To state the relation between the values of lambda terms in an
environment model and c~-terms in the associated combinatory model, we

LAMBDA MODELS 101

establish for lambda terms a result corresponding to combinatorial
completeness. Let Ka abbreviate)~xy. x, S:t abbreviate 2xyz. xz(yz) , and I~t
abbreviate ((S~Kt) K~). Define combinatory lambda terms inductively to be
lambda terms which are either constants, variables, K~t, S~t, or applications
of combinatory lambda terms. In other words, combinatory lambda terms
are precisely those lambda terms in which the only abstractions occurring
are in K~ and S~t.

COMBINATORY LAMBDA TERM LEMMA. For every u C A (C) there is a
combinatory lambda term u t~t~ C A(C) such that u converts to u ~a~.

Proof. For any combinatory lambda term u C A (C) and variable x,
define ((x)) u C A(C) as follows:

((x)) u = (K~ u) if x is not free in u,

((x)) =z~,

((x))(uv) = ((St((x)) u)((x)) v) i fx is free in u or v.

It follows by simple calculation from the definitions that ((x))u is a
combinatory lambda term which converts to 2x. u.

Let u t~t) to be the combinatory lambda term obtained from an arbitrary
lambda term u by replacing all occurrences of 2x by ((x)). Inductively, we
may define u t~) as follows:

d ~ = d, x ~ = x, (u v) ~ = (u ~ v ~) ,

(,~x. u) ~> = ((x)) (u ~)) . I

DEFINITION. Let c ~ = (D , . ,e) be a combinatory model. For any
u C A(D), define u t¢¢) be the q- term obtained by replacing all occurrences of
K a and S a in u ~) by the constant values in D of K t and S~t in the
environment model associated with ~ .

Note that by the Free Variable Lemma, the values of the closed terms K~t
and S t are determined by the environment model alone and not by any
particular choice of environment. So u ~e) is well defined.

COMBINATORY MODEL THEOREM. (iv) Let ff be an environment model
and ~ its associated combinatory model. Then for all lambda terms u,

~ [u] = ~ [u ~] .

Proof. 7~, [u]=7~[u~t)] by Soundness since u converts to u ~t). The
proof now follows immediately by induction on the number of occurrences of
free variables, constants, and terms K~t and S~t in u ~t). |

102 ALBERT R. MEYER

The Combinatory Model Theorem demonstrates that combinatory models
and environment models are merely notational variants of the same class of
mathematical structures. (This correspondence between the two kinds of
models could be reformulated more abstractly in terms of effective functorial
bijections between categories, but I do not think such a formulation helps in
this case.)

The significance of the these results is that we can now straightforwardly
interpret arbitrary lambda terms and equations between them as though they
were standard terms and equations over an ordinary algebraic structure
defined by first order axioms.

5. A N ELEMENTARY M O D E L CONSTRUCTION

We now present a simple construction of a class of combinatory models
using only elementary properties of sets.

Let A be any nonempty set, and let B be the least set containing A and all
ordered pairs consisting of a finite subset fl ___ B and an element b ~ B. Such
an ordered pair is denoted (f l~b) . Assume that elements of A are
distinguishable from ordered pairs.

Let D A = 2B= {did c B}, and define the binary operation • o n D A by the
rule

(5.1) d I • d 2 = {b ~ B [(fl-o b) ~ d I for some fl ___ d2 }.

MODEL EXISTENCE THEOREM (Plotkin, 1972). 5 The s t r u c t u r e (DA,. , ~) is
a combinatory model where

(5.2) c = { (a ~ (f l ~ b)) l a , f l f i n i t e s u b s e t s o f B a n d b E a . f l } . 6

5 The construction is taken directly from (Engeler, 1979). It is a notational variant of one
of several models first described in (Plotkin, 1972). These constructions are nearly the same
as the better known Pco construction (Scott, 1976).

Indeed, Longo (personal communication, 1981) has shown that D A and Pm have the same
pure lambda theory and each is isomorphically embeddable in th~ other. However, they define
different set theoretic inclusions among the values of the pure closed terms, and their binary
operations behave differently; i.e., they are not even isomorphic as combinatory algebras.

6 The choice of e is not unique. For example, let

e + = et._JA t..) { (f l - o a) l f l ~ B and a CA}.

Then (DA,. , e) and (DA,. , ~ +) are distinct expansions of the combinatory algebra (DA, .) to
combinatory models. Longo (personal communication, 1981) has even shown that they have
distinct pure lambda theories; in fact e + yields an interesting model which, in contrast to the
D A model with e or the P ~ model, does not give all unsolvable terms the same value (el.
Section 8).

L A M B D A M O D E L S 1 0 3

Proof Choose

g = {(a -~ ~ -~ b)) I b ~ a },

and

(5.4) S = { (a - ~ (f l - * (7 - ~ b))) l b ~ a . 7 • (/3.7)}.

The proof that e, K, and S given by (5.2-4) satisfy (1.1), (1.2), (1.3a,c) is a
direct consequence of the definitions and is omitted. To verify (1.3b), note
that A N e d o = O and that b E d o • fl iff(fl -~ b) G ed 0 by definition. Hence, if
ed o - - •d I @ Q~, then (/3 -~ b) ~ ed o - e d 1 for some (fl --* b), so
b E d o . f l - d l . f l .]

The model Existence Theorem validates the assumption made in proving
the Consistency Theorem in Section 3 that nontrivial models exist, Indeed,
D A has uncountably many elements. There are also countably infinite
models; e.g., the recursively enumerable elements of D A form a countable
submodel. (The Lambda Algebra Theorem in Section 7 provides another
mechanism for constructing a nontrivial countable model from any nontrivial
combinatory model.)

Now let × be any binary operation on the set A. Let functions fn and f
from A to D A be defined as follows:

(5.5) fo(a) = {a},

fn + 1(a) = f , (a) U {({a,} -~ b)] a ' E A, b E f , (a × a ')) ,

f (a) = U f ,(a).
n) O

EMBEDDING THEOREM (Engeler, 1979). The function f given in (5.5)
isomorphically embeds the structure (.4, ×) into (DA, .) .

Proof. Note t h a t f (a) C~A = {a}, s o f i s injective. The verification t h a t f
is a homomorphism is a routine calculation which we omit (cf. Engeler,
1979). I

To illustrate the significance of the Embedding Theorem, we can now
make sense of the examples involving integers, polynomials, and triple
composition given in the Introduction. For example, to obtain the piecewise
integer polynomials as part of a combinatory model, let A be the least set
containing the integers Z and distinct new elements add, adds, mult, rnultn,
eond, condo, eonda, ~, for n E 7/, a, a ' @ A. Define a binary operation × on A
by the rules

104 ALBERT R. MEYER

a d d × n = a d d , , a d d n × m = n + m,

m u l t X n = muI tn , m u l t n × m = n m ,

e o n d X a = e o n d a, eond~ X a ' = eonda.o, ,

eond~,~,, X a " = a ' if a C IN, otherwise a" ,

for n, m C Z, and a, a ' , a " E A ; the operation × may be defined arbitrarily
on arguments not specified above.

Now embedding (.4, ×) into D A yields (an isomorphic copy of) Z along
with addition, multiplication, and conditionals. The triple composition
functional T of the Introduction also appears in D A , since T =)~fx . f (f (f x))

is defined by a pure lambda expression and so can be interpreted in D a

without even appealing to the Embedding Theorem. The reader is invited to
consider why the difficulties surrounding the paradoxical functional P no
longer threaten.

For construction of extensional models, see Scott (1980a, Sect. 5) who
sketches an elementary construction of an embedding theorem into exten-
sional models based on a modification of D A. Scott (1981) provides another
construction of extensional embeddings based on a universal embedding
property for the Pco model. See Wadsworth (1977) for a detailed treatment
of Scott's original construction of extensional models from continuous
lattices.

6. ANOTHER ALGEBRAIC AXIOMATIZATION: LAMBDA MODELS

The definition of combinatory model connects nicely with the definition of
environment model, but suffers the small technical disadvantage that the
elements K, S are not identified uniquely. For example, {({b}~
(O ~ b))lb E B} is another element in D A distinct from the K of (5.3) which
satisfies (1.1). In fact, there are uncountably many elements in D A which
satisfy (1.1).

In order to maintain a full correspondence between the algebraic
properties of a combinatory model and the values of lambda terms, it is
necessary to make the appropriate choice of K and S, namely, as the values
of K~ and S a in the associated environment model. As an exercise we shall
now show how to describe these values in a purely algebraic way. Then we
define Lambda Models essentially as combinatory models in which K, S are
properly chosen. The Lambda Model Theorem given below summarizes how
to determine K, S from e and vice versa. Readers who are not amused by
this kind of exercise in algebra should skip directly to the Lambda Model
Theorem and the discussion following it.

LAMBDA MODELS 105

Let ~ be a combinatory model, b ~ its associated environment model, and
begin by choosing any If, S satisfying (1.i) and (1.2). Let

(6.1) B = S(KS) K

be the "composition" combinator. It is easy to verify that Bxyz = x(yz) is
valid in any combinatory algebra. Let

(6.2) e 2 = (B. ~). (B. g).

We now have

(6.3) U)[Ka] = e 2 • K,

because

~,[2xy . x]p = 7'(2d. ~ , [2 y . x] p{d/x}) = ~(2d. W(2e. d))

= 7t(2d. 7t(cP(K • d))) = ~(2d . e • (K . d))

= 7~(q)((B • ~). K)) = e . ((B. e) . K) = ((B. e) . (B. ~)). K.

Note that as predicted by the Free Variable Lemma, the value of the closed
term K a is determined by the environment model g~ alone and not by any
particular choice of p, K, or S.
Letting

(6.4) e 3 = (B. e) . (B. G2),

a similar calculation shows that

(6.5) ~}[Sa] = e3" S.

DEFINITION (Scott, 1980b; Barendregt, 1981). A lambda model is an
algebra (D, . , K, S) such that

K, S C D satisfy (1.1), (1.2),

(D, . , e) is a combinatory model, where e = S(KI),

K = e~ • K, (6.6)

and

(6.7) S = E 3 • S,

where e2, e3 are given by (6.2) and (6.4).

Because the righthand sides of (6.6) and (6.7) are the values o f K a and S a
in the environment model associated with any combinatory model (D, . , e),

106 ALBERT R. MEYER

they are un ique ly de te rmined independent ly o f the par t i cu la r choice of K and
S. 7 Conver se ly , the values o f K~ and S~ de te rmine e because e is the va lue

o f 2 x y . x y , and 2 x y . x y conver t s to S ~ (K ~ I ~) . Thus we have es tabl ished the

LAMBDA MODEL THEOREM. A n y c o m b i n a t o r y m o d e l (D , . , e) u n i q u e l y

d e t e r m i n e s a l a m b d a m o d e l (D , . , e2 • K, e 3 • S) , i n d e p e n d e n t l y o f t h e c h o i c e

o f K a n d S ~ D s a t i s f y i n g (1 .1-2) .

Conver se ly , if (D , . , K, S) is a l a m b d a model , then (D , . , S (K I)) is a

c o m b i n a t o r y model . Moreove r , these two co r re spondences are inverses o f

each other.

In l a m b d a mode ls the s tandard a lgebra ic no t ion o f a s u b s t r u c t u r e relates

n ice ly to cer ta in syntac t ic proper t ies o f l a m b d a terms. F o r example , the

i n t e r i o r of a l a m b d a calculus mode l is no rma l ly def ined as the values of the

pure, i.e., cons tan t free, c l o s e d l a m b d a te rms (Barendregt , 1976). In te rms of

l a m b d a models , the inter ior now has a fami l ia r a lgebra ic def ini t ion as the

m i n i m u m suba lgebra o f a l a m b d a mode l ; this fo l lows immed ia t e ly f rom

(6.3), (6.5), and the C o m b i n a t o r y L a m b d a T e r m L e m m a in Sect ion 4.

v In general, e n is chosen to be ~ [2 x 0 . . . x n. (X o . . . x n)]. Continuing with a purely
algebraic approach, we could define, following Scott (1980b),

e~=e and e , + l = (B . ~) . (B . e ,) for n > O ,

It is easy to verify that in any combinatory model (D,., ~),

(N.1) e , d o . . . d , = dod 1. . . d , ,

(N.2) if g e I e , ~ D . doe I . . . e , = dl e I . . . e , then e , d o = e , d l ,

and

(N.3) • e(e, do) = e,(edo) = ed o

for all do d n C D, n > 0.
The reader might enjoy deriving an algebraic proof solely from (N.1-3) that in any

eombinatory model (D,., e) there is exactly one pair of elements K and S satisfying (1.1-2),
(6.6-7).

These equations suggest another axiomatization of models proposed by Scott [cf. Volken,
1978; Barendregt, 1981, Theorem 5.4.9).

DEFINITION. Let Y = (D, .,F} be a structure where - is a binary operation on D and
F _~ D. Let F 0 = D and F, +1 = {do E F Id o • d I C F , for all d~ C D}. Y is a Sco t t M o d e l if, for
all n > 0 and any cC-term u over D such that x o is not free in u, Y satisfies

!x o @ F , V x I • • • X, ~ D[x o . . . x , = u].

It is easy to see that if Y = (D,., F) is a Scott model, then (D,., e) is a combinatory model,
where e is the unique element o f F z such that (1.3b) is valid in Y . Conversely, if (D,., e) is a
eombinatory model, then (D,., F) is a Scott model, where F = {e -d[d C D} = e • D. In fact,
F n = e n • D.

LAMBDA MODELS 107

From a mathematical point of view, then, lambda models are a bit nicer
than combinatory models because they provide a useful notion of
substructure. On the other hand, combinatory models have a simpler and
much more easily checkable set of axioms--which is why I have given them
emphasis in this article. The Lambda Model Theorem shows that one can
easily switch to whichever of the two notions of model is more convenient at
any point.

It might seem that we are now ready to develop a nice theory of models
using the usual algebraic notions of substructures, morphisms, etc. One
serious technical impediment remains, however. Neither the class of
combinatory models nor the class of lambda models is closed under the
operation of taking substructures or of applying morphisms with respect to
the binary operation .!

The difficulty springs from the fact that the first order axioms (1.3b) and
(1.4) are not equations. Equationally axiomatized structures are guaranteed
to be closed under taking substructures and morphisms, but first order
axiomatizable structures are not, in general (cf. Monk, 1976, Sect. 24, or any
text on Universal Algebra).

In fact the combinatory algebra which is the interior of the extensional
term model is not even expandable by any choice of K, S into a (not
necessarily extensional) lambda model (Barendregt, letter to Meyer, Oct.
1980); see also (Plotkin, 1974). This implies among other things that there is
no purely equational definition of lambda or combinatory models, since
equationally defined classes of structures are closed under taking
substructures.

Nevertheless, there is an equationally definable class of structures called
lambda algebras which serve so well for interpreting lambda terms that it is
tempting to identify them as the proper algebraic embodiment of lambda
calculus (cf. Lambek, 1980). We consider these next.

7. LAMBDA ALGEBRAS

The mapping from a lambda term u to u (~e) given in Section 4 suggests an
obvious way to interpret a lambda term u within an arbitrary combination
algebra--rewrite u to be a provably equivalent term consisting solely of
applications of Kn's and S~'s, and then replace the K~'s by the constant
K E D, and similarly for S~. But this way of assigning values to lambda
terms may not be sound unless the K and S are chosen properly.

For example, K~ converts to S~(K~K~)Ia. But there is no guarantee that
the algebra will contain K, S such that K = S(KK) I.

If the combinatory algebra is a combinatory model, then the-content of the
Combinatory Model Theorem (iv) of Section 4 is that there are satisfactory

108 ALBERT R. MEYER

constants K, S in the model. In an arbi t rary combina tory a lgebra no K
satisfying (1.1) need behave completely like K a. However, some further
purely equat ional condit ions on combina tory algebras, strictly weaker than
the axioms for eombina tory models, are sufficient to guarantee the existence
of well behaved K and S. These condit ions are embodied in the following
axioms.

DEFINITION (Curry; cf. Barendregt, 1981, Chap. 7). A lambda algebra is
a structure (D, • , K, S) , where (D, •) is a combina tory algebra, K, S C D
satisfy (1 . i) , (1.2), and

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

K = (x)((y)(Kxy)) ,

S = (x)((y)((z)(Sxyz))) ,

(x)((y)(S(Kx)(Ky))) = (x)((y)(K(xy))) ,

(x) ((y) (S(S(KK) x) y)) = (x)((y)((z)(xz))) ,

(x) ((y) ((z) (S (S(S(KS) x)y) z) = (x)((y)((z)(S(Sxz)(Syz)) .

Note that (7 .1-5) denote equations between constants. For example, (7.1) in
less abbreviated form reads

K = S(S(KS)(S(KK)(S(KK) I)))(KI)

which would be even longer if we had expanded the combina tor I as SKK
and put in full parenthesizat ion. The reader will appreciate the utility of the
abbreviat ions. 8 Even with the abbreviat ions, (7 .1-5) are hardly memorable ,
having been chosen solely for the purpose of carrying out the proofs below.

We now prove the rather surprising fact that combina to ry models can be
obtained from lambda algebras s imply by extending l ambda algebras with
inde te rmina tes - - jus t as the domain of integer mult ivar ia te polynomials is
obtained from the ring of integers. 9 This result will then yield another,
mathemat ica l ly robust, character izat ion of l ambda algebras which is surely
not apparent from their definition.

8 Our definition of the transformation (x) on ~-terms was chosen for ease in proofs rather
than efficiency, and consequently the length of (x) u has been allowed to grow exponentially
in the length of u. There exist transforms with the same properties as (x) which increase the
length only linearly (Turner, 1979).

9 Barendregt and Koymans (1980) show that not all combinatory algebras can be expanded
by choice of K and S (as opposed to extended by the addition of new elements possibly
including K and S) into lambda algebras. The interior of the combinatory word algebra based
on K, S-terms is an example of such a combinatory algebra. They also show, as noted at the
end of Section 6, that not all lambda algebras are lambda models.

LAMBDA MODELS 109

Let g = (D, .) be a combinatory algebra, and K, S E D be any elements
satisfying (1.1-2).

Let X be a set of variables and g [X] be the free eombinatory algebra
generated by X over the constants in g . That is, g [X] is the free word
algebra of g-terms with variables only from X, modulo the congruence
relation on g-terms generated by the equations between constant terms valid
in g and all substitution instances of (1.1-2).

Formally, let u, v, w range over g-terms, and define the proof system offl-
Combinatory Logic for g to have axioms

and

u = v such that u, v are variable free terms and g ~ u = v,

Kuv = u,

S u v w = uw(vw) ,

and inference rules: (transitivity and symmetry) and (congruence). (Again,
we would also insist on the axiom (reflexivity) except that it follows already
from Kuv = u and (transitivity and symmetry).)

Write g-CL~ F- u = v iff equation u = v is provable in this system, and let

[[u]] -- {v lg -Ct~ ~- u = v},

D[X] = {HuH [u E A(D) and all variables in u are in X}.

Then

g [X] = (D[X], .), where [[u]]. [[v]] = [[(uv)]].

(7.6) LEMMA. g[X] is a combinatory algebra and the mapping taking
d E D to [[d]] isomorphically embeds g into g [X]. Moreover, if u, v are g -
terms all o f whose variables are in the set, X, then

g [X] ~ u = v iff g - C L ~ - u = v.

Proof. The construction of g [X] from g is the standard one for
constructing a "polynomial" algebra from any equationally defined
algebra. I

Lemma (7.6)justifies identifying d E D with the element [[d]] of D[X]
which we shall continue to do. Note that because (7.1-5) denote equations
between variable-free g-terms, it now follows immediately that ~¢[X]
satisfies whichever of (7.1-5) that g satisfies. In particular, if g is a lambda
algebra, then so is g [X] .

In the Appendix we demonstrate via Lemmas (7.7-11) that Eqs. (7.1-5)
imply the following key technical property about the (x)-transformation of
g-terms.

643/52/1-8

110 ALBERT R. MEYER

(7.12) LEMMA. Let ~ be a lambda algebra and u, v be ~-terms with
variables only in X. I f ~[X] ~ u = v, then ~[X] ~ (x) u = (x) v.

A point of possible confusion about (7.12) is that it does not hold in c~ as
opposed to c~[X]. That is, it may be that the equation u = v is valid in c~,
but the equation (x)u = (x)v is not. The source of the confusion is that
while ~ [X] ~ u = v implies c~ ~ u = v, the converse fails. (This frequently
happens in classical algebras. For example, x = x 2 is valid in the ring Z2,
but not in the polynomial ring Zz[x].) The key property of ~ [X] required in
the proof of (7.12) is the equivalence of validity and provability given by
(7.6) which holds only for c~-terms all of whose variables are in X.

We can now state precisely the relation between lambda algebras and
lambda models.

LAMBDA ALGEBRA THEOREM. (i) I f C~= (D, . ,K, S) is a lambda
algebra and X is an infinite set of variables, then cC a [X] = (D IX],. , K, S) is
a lambda model.

(ii) Conversely, every lambda model is a lambda algebra.

So given a lambda algebra c~, we can always extend it with at most a
countable number of indeterminates to obtain a lambda model.

COROLLARY (Barendregt). (i) The lambda algebras are precisely the
class of all substructures of lambda models.

(ii) The Iambda algebras are precisely the class of all homomorphic
images of lambda models.

Proof. Applying homomorphisms and taking substructures preserves
equations, so homomorphic images and substructures of models are algebras;
i.e., the set of lambda algebras contains the images and substructures of the
lambda models. The reverse containment follows because every lambda
algebra c~ is an image and a substructure of ~a[X] . II

Thus, we learn the unexpected facts that the class of homomorphic images
and the class of substructures of lambda models coincide and are finitely
axiomatizabIe by equations, namely the axioms for lambda algebras. This is
the robust characterization of lambda algebras promised above.

Extensional combinatory algebras and extensional combinatory models
coincide. To characterize their substructures axiomatically, just add the
axiom I = (x) ((y)(xy)) to (7.1-5). The resulting class of algebras are called
Curry algebras (cf. Lambek, 1980).

Clearly this connection between lambda algebras and lambda models is
very intimate. It is esentially the same as the relation between a ring of coef-
ficients and its polynomial domain. Several researchers have preferred to

LAMBDA MODELS 1 1 1

give the coefficients priority over the polynomials as it were, and propose to
define "models" of the lambda calculus to be lambda algebras. The principal
argument in support of this view is the feeling that the values of the closed
terms of lambda calculus ought to be a model and, more generally, that
models ought to be closed under .-morphisms and taking substructures--
properties possessed by lambda algebras but not by lambda models.

In contrast, my view is that soundness of rule (~) is essential. It embodies
the idea that 2x . u defines a function which is determined uniquely by the
value of the term u in each possible environment over the model. Rule (~) is
sound for lambda models, but not for lambda algebras, as we noted
following (7.12).

Of course as long as all concerned are aware of the distinction between the
polynomial domain and coefficient ring, it hardly matters which is given
priority, but ignoring the distinction has been a source of some confusion.

The same distinction in another guise arises between the algebraic
formulation of a system of functional types embodied in the axioms for a
Cartesian Closed Category (CCC) and a concrete CCC, which actually is a
system of functions of higher types. The connections between lambda
calculus and CCCs has been emphasized by several authors (cf. Lambek,
1980; Scott, 1980b; Obtulowicz and Wiweger, 1978; Koymans, 1981). In
particular, Koymans (1981) establishes a natural isomorphism between
CCCs and lambda algebras, and between concrete CCCs and lambda
models. Thus the equational axioms for CCCs provide a mathematically
meaningful axiomatization of lambda algebras, a notable improvement over
(7.1-5). That, however, is another story.

8. SUMMARY AND FURTHER DIRECTIONS

By mimicking how ordinary terms are evaluated over an algebraic
structure, we developed the idea of evaluating a lambda term over a
functional domain. This led directly to the formulation of environment
models. The Soundness and Completeness Theorems of Section 2 confirmed
that environment models precisely captured and jus t i f ied the informal
intuition behind the classical calculus of lambda terms.

The development in subsequent sections revealed how to treat lambda
calculus as a theory of equations for a class of ordinary algebraic structures.
In particular, the Combinatory Model Theorem of Section 4 described a
bijection between environment models and combinatorial models, and
showed how to translate effectively between lambda terms and equivalent
combinatory terms. The Lambda Model Theorem of Section 6 described a
similar bijection between combinatory models and lambda models. In fact,
the Soundness and Completeness Theorems can also be understood as

112 ALBERT R. MEYER

describing natural correspondences between environment models and lambda
theories. 10 So

1. environment models,

2. lambda theories,

3. combinatory models,

4. lambda models

can be regarded as alternative formulations of the same concept. Finally, by
considering substructures and images of models, we developed in Section 7
the class of

5. lambda algebras.

Lambda algebras have a finite equational axiomatization, and therefore are
closed under forming substructures and images. They properly include the
class of models, but determine models in precisely the same way that the ring
of coefficients determines the the corresponding domain of multivariate
polynomials.

Algebraic definitions and arguments can often offer more simplicity and
greater appeal than syntactic ones, particularly if one can avoid the
notorious pitfalls of substitution in the presence of bound variables. Having
in principle eliminated the need for syntactic notions in defining which
structures are models, the general question arises of how much more of the
highly developed syntactic-computational "proof theory" of lambda calculus
can be usefully understood from an algebraic "model theory" viewpoint.
There has already been valuable interaction between the two viewpoints. One
important example is worth sketching.

A lambda term has a h e a d n o r m a l f o r m if it converts to a term of the form
2 x l • • • x , . (y u) for some n >/0; " ~ , X 1 • • • .X n • y" is called the h e a d of the term
and is unique up to renaming bound variables (for q-calculus there is a
slightly more complicated kind of uniqueness property). A lambda term is
u n s o l v a b l e if it does not have a head normal form. By repeatedly converting
the solvable subterms of any term u into head normal form and replacing
unsolvable subterms by a new constant O, one obtains in the limit a unique,
possibly infinite, term called the B o h m tree of u. The Bohm tree can be
regarded as the trace of the possibly infinite computation needed to evaluate
the term. Following earlier work in (Hyland, 1976; Wadsworth, 1976;

~0 The lambda theory of the term model constructed from a given lambda theory g- as in
the proof of the Completeness Theorem is a conservative extension of g-, but not the same as
g-. So the correspondences established in Section 2 in each direction between lambda theories
and environment models are not quite inverses. A natural bijection could be establised
between models and theories with enough constants, viz., such that every closed term is
provably equivalent to a constant.

LAMBDA MODELS 113

Plotkin, 1978; Barendregt and Longo, 1980), Longo has recently observed
that the value in D A of a closed term u is set theoretically included in the
value of a closed term v iff the Bohm tree of u approximates that of v;
namely, the Bohm tree of u is obtainable from the Bohm tree of v by
replacing some of the subterms of the tree of v by .Q [Longo, 1981]. In
particular, an equation between lambda terms is valid in D A iff the terms
have the same Bohm tree. This provides an elegant connection between the
syntactic-computational behavior of lambda terms and their meaning in a
mathematically elementary model.1

As Scott (1980b) has emphasized, the untyped lambda calculus considered
above can be viewed as the special case of the typed lambda calculus in
which there is a "universal" type into which all other types can be
isomorphically embedded. Most applications of lambda calculus in the study
of programming languages and computability require the richer structure of
multiple types (cf. Stoy, 1977; Gordon, 1979). I hope to provide an
elementary treatment of this generalization in a sequel tentatively titled
"What is a solution of a domain equation?"

APPENDIX: PROOFS

From Section 3

SOUNDNESS THEOREM. The equations valid in an environment model
form a Iambda theory. In particular, if u converts to v, then u = v is valid in
all environment models.

Proof. By (3.5) and (3.6), ~ ' [(uv) l and ~/'[(2x u)l are determined solely
by ~ [u] and ~ [v] , so (congruence) and (~) preserve validity.

To verify that (a) is valid, let ~ [(2 x u)] p = ~ (f) as in (3.6), so that
f (d) = ~'[u](p{d/x}). Let y be a variable distinct from x and such that y is
not free in u. Let 7~[(2y u[y/x])] p = 7;(g), so g(d) = ~[u[y/x]](p{d/y}) .
Then 2x. u = 2y. u[y/x] will be valid providing f = g.

By the Substitution Lemma, g(d)=~'[u]((p{d/y}){d ' /x}) , where d ' =
~[y](p{d /y}) . By (3.2), d ' = d . Also, (p{d/y}){d ' /x}=(p{d' /x}){d/y} by
definition since y 4=x, so g(d)= ~[u]((p{d/x}){d/y}) . By the Substitution
Lemma again, g(d)=~'[u[x/y]](p{d/x}) , but since y is not free in u,
u[x/y] = u, so g (d) = f (d) .

Verification of (fl) follows even more easily from the Substitution Lemma.

~ It also provides a simple model theoretic characterization of the syntactic concept of
normal form, as pointed out by Longo. Namely, d C D A is the value of a pure closed lambda
term in normal form iff d is maximal under set inclusion in the interior of D~ and contains
only finitely many elements of the interior.

643/52q 9

114 ALBERT R. MEYER

Finally, if u converts to v, then the equation u - - v is in every lambda
theory, and hence is in the lambda theory of equations valid in any
particular environment model, l

COMPLETENESS THEOREM. Every lambda theory consists of precisely the
equations valid in some environment model. That is, for every lambda theory
g-, there is an environment model ~ sueh that

In particular, u = v is valid in all environment models iff u converts to v.

Proof Let g- be a lambda theory and ~e its associated term model. First
we verify that the ~ is a functional domain.

Note that the (congruence) rule implies that q0 in the definition of term
model is well defined. To see that W is well defined, note that if ~([[u]]~-) =
• ([[v]]~), then evaluating at argument [[x]]~- for x not free in u, v yields

so (~) implies [[2x.ux]]~-=[[2x.vx]]r; that is,
7t(~([[u]]g-)) = 7t(~([[v]]r)) by definition. Finally, 66) immediately implies
that • is a left inverse of ~u, so (D, ~ , 7 j) is a functional domain.

Next, we verify that g" is indeed an environment model.
For any environment p, let u[p] abbreviate [[U[Ul/X, u, /x,]]]r, where

xl x , are the free variables of u and P(Xi) = [[ui]]g-. Note that u[p] is well
defined since simultaneous substitution preserves equations.

We claim that for all u E A(C) and environments p, if ~ g [u] p is defined
by (3.1-2), (3.5-6), then

-~g[u] p = u[p].

In particular, g is an environment model. (Alert readers may remember that
our formal definitions require that constants in lambda terms must be
elements of D, so we must identify constants c C C with the corresponding
constants [[c]]~- E D.)

The claim follows by induction on the definition of a lambda term u. We
consider only the most difficult case when u is of the form 2x . v, where x is
free in v. In this case,

~ . [u] p = 7t(2d C D . 7Y',~.[v](p{d/x}))

by (3,6), providing the argument of 7 t is in the range of ~ . So it suffices to
prove that)~d E D . ~g[v](p{d/x}) = ~ ((2 . v)Lo]).

LAMBDA MODELS 115

= [[((Xx

= U((~.x

= [[(,~y.

avoid

= [[((~y
!

Ui

= [[(~y .

is not

= [[((~y

But for any [[w]]g- G D,

(2d C D . 7~'g[vl(P{d/x}))([[w]]g-)

= ~ [v l (p { [[wll~/x})

= [[v[u~/x 1,..., u . / x . , w/x]]]~ by induction hypothesis.

Now let y, z be a new variables not free in v, w, Ul u. , and let u} =
ui[z /x]. Then by the definition of simultaneous substitution,

[[V [U l / X 1 UnIx., W/X]]]gr = [[V[U~/X 1 , . . . , .;/X.I [W/X] IX/Z]]]g-
• (v[u~/xl u ' / x .])) w)[x/z111~- by (fl)

• (v[u~/xl u~/x,l))[x/~l w)]]~- since z is not free in w

(v[u;/xl u ; / x , l [y / x l)) [x / z l w)]]~- renaming 2x to 2y to
capture of x

. (v[y /x] [u[/x, u ' , / x ,]))[x /z] w)]]~- since x is not free in

(v [y / x] [u l / x 1 u , / x ,]) w)]]~- by definition of u" since z
free in v [y / x]

• (v [y / x])) [u l / x I , u , / x ,] w)]]e- since y is not free in u i

= [[(Xx. v)[ul /x l , . . . , u , / x , l w)ll~ renaming 2y to 2x by (a)

= (q~((,~x. v)[p]))([[w]]~-) by definition of [p] and q~.

Therefore, 2d E D . ~ g [v] (p { d / x }) = q~((2x, v)[p]), and the claim is proved•
Now if g ~ u = v, then in the particular environment P0 such that

Po(X) = [[x]],~ for all variables x, the terms u and v have the same value• By
the above claim, the value of u is [[u]]g- and that of v is [[viii-, so [[u]]~-=
[[vl]~. That is, ~-g-u = v.

Conversely, if ~-g-u = v, then ~-g-u[p] = v[p] for all p since simultaneous
substitution preserves equations• The above claim immediately implies that
g ~ u = v . |

From Section 4

COMBINATORY MODEL THEOREM. (i) The funct ional domain g
associated with a combinatory model ~ is an environment model which
assigns the same values to Y- terms . That is,

~ [u l = ~ [u l

f o r all Y - t e rms u.

116 A L B E R T R. M E Y E R

(ii) The algebra associated with an environment model is a
eombinatory model.

(iii) The associations between eombinatory models and environment
models defined above are inverses of each other. That is, if ~ is the
environment model associated with a eombinatory model ~ , then ~ is the
combinatory model associated with ~, and vice versa.

Proof (i) Let .~, abbreviate the sequence of distinct variables x 1 x n.
Let d, abbreviate the sequence d I d n of (not necessarily distinct) elements
in D, and let p{dn/~,} abbreviate (. . . (p{d~/xi}) . . . {dn/xn}). We claim that
for every term u E A (D) , for every environment p, and all -~n, there is an
element duoe. @ D such that

 [ul(p {dn/Xn}) = d,o .d.
for all d , E D.

This claim follows by induction on the definition of lambda terms. We
give the details only for the most difficult case that u is of the form 2x, +a • v,
where xn+ 1 is distinct from fin. We have

v] o{d./xn})
= 7 t (2d ,+1E D . ~g[v]((p{d,/Yn}){d,+l/xn+,})) by (3.6)

= 7t(2dn+, @ D . ~/~g[v](p{gn+i/X,+l}))

= 7t(2d,+l E D . dvo~.+fln+ l) by induction hypothesis

= (e(dvo~,+fl,)) by definition of 7/.

By combinatory completeness, there is a d E D such that

~ (e(dvo~n+X,)) = dX,,

so we define d~o~, to be d.
The claim immediately implies that 2d E D . T f t[u](p{d/x}) = q~(d,o~) E

D - ~ D, so that the functional domain g is an environment model.
Induction on the definition of c~-terms establishes that U~ and ~ ' ,

coincide on c~-terms.
(ii) Let Y = (D, # , 7 t) be an environment model and c~ its associated

algebra. Choose K, S E D to be ~g[2xy . x] and ~g[)~xyz. xz(yz)], respec-
tively. Then (1.1), (1.2), (1.3a, c) follow directly from the Soundness
Theorem, (fl), and the definitions. To verify (1.3b), note that

e • d o = (~ (~ ' g [2 x y . xy]))(do) by definition of q~ and e

= (3,d E D . ~/'g[3,y. xy](p{d/x}))(do) by (3.4) and (3.6)

LAMBDA MODELS 1 17

= xy](p{do/x})

= W(2d C D . ~fg[(xy)]((P{do/x}){d/y})) by (3.6)

= '(Zd o . by (3.2), (3.4), (3.5)

=

Hence, if d o • d = d~ • d for all d, then q~(do) = q~(dl) by definition of ~ , so
e . d o = W(q~(do))= ~ (~ (d l)) = e . dl. This proves (1.3b) holds in ~ .

(iii) Let ~e = (D, ~ , ~) be an environment model, ~ = (D , . , e) the
associated combinatory model, ~e ,= (D, q~', W') the environment model
associated with ~ , and ~ ' the combinatory model associated with ~ ' ,
Clearly, q~ = ~ ' . But ~ ' (~ (do)) = e . d o by definition of W', and e . d o =
W(~(do)) by the proof of (ii) above, so ~ = W'. Hence, ~ = ~ ' . The proof
that ~ - - ~ ' follows similarly. |

From Section 7

(7.7) LEMMA.

(i)
(ii)

Proo f

For any Y - t e r m u and variables x, y,

x does not occur in (x} u,

i f y does not occur in u, then (x} u = (y } (u [y / x]) .

By induction on the definition of (x}. II

(7.8) LEMMA. For all Y - t e r m s u, v and distinct variables x, y, i f x does
not occur in v, then

((x) u)[v/y] = (x) (u[v /y]) .

Proof. By induction on the definition of (x}. The cases that u = x or x
does not occur in u are trivial.

Suppose u = (UlUE) and x occurs in u. Then

((x} u)[v/y] = (S((x} Ul)((x } u2))[v/y] by definition of (x)

= S(((x} ul) [v /y]) (((x } u2)[v/y]) by definition of Iv/Y]

= S((x} (u l[v /y])) ((x} (u2[v /y])) by induction hypothesis

= (x}(u~[v/y] UE[V/y]) by definition of (x}

= (x}(u[v /y]) by definition of [v/y]. II

(7.9) LEMMA. For any Y - t e rms u, v and variable x, ~ ~ (((x) u) v) =
u [v / x] .

118 ALBERT R. MEYER

Proof As already observed in the Combinatory Completeness Lemma,
an induction on the definition of (x) implies c ~ ((x) u) x = u. Since
substitution preserves validity of equations, c~ ~ (((x) u)x)[v/x] = u[v/x],
but by (7.7(i)), x does not occur in (x)u , so (((x) u) x) [v / x] =
(((x) u) v). |

(7.10) LEMMA. I f K,
x, y, z, and ~-terms u

(i)

(ii)

(iii)

Proof

S satisfy (7.1-2), then for all distinct variables

~ (y)(Kxy) = Kx,

~" ~ (z) (S x y z) = Sxy ,

~ (y) (((x) u)y) = (x) u i f y does not occur in (x) u.

(i) ~ ~ (y)(Kxy) = ((x)((y)(Kxy))) x by (7.9)

= K x by (7.1).

(ii) c~ ~ (z)(Sxyz) = ((x)((y)((z)(Sxyz)))) xy by (7.9) twice

= Sxy by (7.2).

(iii) By definition (x) u is always of the form Kv or Svw. In the first
case, (x) u = Kv = (Kx)[v/x], but

~ (Kx)[v/x] = ((y)(Kxy))[v/x] by (i),

= (y)((Kxy)[v/x]) by (7.8) providing y does not occur in v

= (y)(Kvy) = (y) (((x) u)y).

The case u = Svw follows similarly from (ii). II

(7.11)LEMMA. I f K, S satisfy (7.3), then for all ~-terms u, v and
variables x,

~ (x)(uv) = S((x) u)((x) v).

Proof If x occurs in (uv), then the equation is identically true, so assume
x does not occur in (uv). Lety, z be distinct variables not equal to x and not
occurring in (uv). Then

(x)(uv) = K(uv) by definition of (x)

= K(uy)[v/y] since y does not occur in u.

LAMBDA MODELS 119

But

f~ ~ K(uy)[v /y]

= ((y) (K(uy)) v) by (7.9)

= ((y) ((K(xy)) [u / x]) v)

= (((y) (K(xy))) [u /x] v) by (7.8) sincey does not occur in u

= ((x) ((y) (K (x y)))) uv by (7.9)

= ((x) ((y) (S (K x) (K y)))) uv by (7.3)

= (((y) (S (K x) (K y))) [u / x] v) by (7.9)

= ((y) ((S (K x) (g y)) [u / x]) v) by (7.8) since y does not occur in u

= ((y) (S (K u) (K y)) v) by substitution

= (S(Ku)(Ky))[v /y] by (7.9)

= S (K u) (K v) since y does not occur in u

= S ((x) u) ((x) v) by definition of (x). |

(7.12) LEMMA. Let ~ be a lambda algebra and u, v be ~ - t e r m s with
variables only in X. I f ~ [X] ~ u = v, then ~[X] ~ (x) u = (x) v.

Proof. By (7.6) validity is the same as provability for equations between
c~-terms u, v all of whose variables are in X. We proceed by induction on the
length of the proof that ~ - C L ~ ~- u = v.

If the proof is of length one, i.e., u = v is an axiom, then if u, v are
variable free terms, the result is immediate. If u = Kulu2 and v = u 1, then,
noting that (7.11) holds for c~[X] because, by (7.6), cg[X] is a combinatory
algebra satisfying the same variable free equations as c~, we have (x)u =
(x) v because

(x)(Ku,u2)
= S ({ x) (K u l)) ((x) u2) by (7.11)

= S (S (K K) ((x) u~))((x) u2) by (7.11)

= (S (S (K K) ((x) u O) y) [(x) u J y] where y is chosen not to occur in
(x) u,

= ((y) (S (S (K K) (x) U l)) y)) (x) uz by (7.9)

= ((y) ((S (S (K K) x) y) [(x) u , / x])) (x) u 2

= (((y) ((S (S (K K) x) y))) [(x) u l / x]) (x) u 2 by (7.8) since y is not
in (x) ul

120 ALBERT R. MEYER

= ((x) ((y) ((S (S (K K) x) y)))) (x) u , (x) u2 by (7.9)

= ((x) ((y) ((z) (xz)))) (x) us(x) u s by (7.4)

= (z) (((x) u O z) by (7.8-9), where z is chosen not to occur in

(x) us,

= (x) Ul by (7.10(iii)).

The case that u = v is the axiom SUlU2U3=U~Ua(U2U3) follows similarly
using (7.5). So (7.12) holds for the axioms of 9~-CL~.

If the last inference rule in the proof of u = v was (transitivity and
symmetry), then (7.12) follows immediately by induction. If the last rule was
(congruence), then u=(u lu2) , v=(v l v2) , and ~ [X] ~ / ~ I ~ - V l , u 2 = v 2 .

Hence,

9~[X] ~ (x) u = S(<x) u,)(<x) u2) by (7.11)

= S ((x) v ,) ((x)v2) by induction since substitution preserves
validity

= (x) v by (7.11). [[

LAMBDA ALGEBRA THEOREM. (i) I f ~ = (D , . , K , S) is a lambda
algebra and Y is an infinite set o f variables, then c~t[Y] = (D[X], . , K, S) is
a lambda model.

(ii) Conversely, every lambda model is a lambda algebra.

Proof. (i)Let e = (x)((y)(xy)) . We first observe that (D[X], . ,e) is a
combinatory model. To see this, note that by (7.8-9), ed= (y)(dy) for all
d E D[X]. Eq. (1.3a) follows directly by another application of (7.9), and
(1.3c) follows by (7.10(iii)).

To verify (1.3b), suppose [[u]] d = [[v]] d for all d in D[X]. Lety E X b e a
variable not in u, v; there is such a y since X is infinite. Then letting d be
[[y]], we have [[uy]] = [[vy]], and so by (7.6) and (7.12), [[(y)(uy)]] =
[[(y)(vy)]]. But by (7.8-9), [[(eu)]] = [[(y)(uy)]] and likewise with v in place
o f u , s o - -

So (D[X], . , e) is a combinatory model. By the Lambda Model Theorem,
(D[X], . , e2K, e3S) is a lambda model. But

c~[X] ~ e2K = e((Be) K) by (6.1-2)

= (x)(BeKx) by (7.9)

= (x)(e(Kx)) by (6.1) and (7.12)

= (x) ((y) (Kxy)) by (7.9) and (7.12)

= K by (7.1),

LAMBDA MODELS 121

and a s imilar ca l cu la t ion using (7.2) shows tha t c~[X] ~ e 3 S = S , so ~ a [X]

is this l a m b d a model .

(ii) E q u a t i o n s (7 .1 -5) fo l low f rom the C o m b i n a t o r y M o d e l

T h e o r e m (iv) s ince (7 .1 -5) are each o f the fo rm u ~ e) = v (~e) for conver t ib le

l a m b d a te rms u, v. II

ACKNOWLEDGMENTS

I thank Dana Scott for encouragement, technical suggestions, and explanation of his results,
David McAllester whose excellent comments led to the present formulation of the
Completeness Theorem, H. Barendregt and G. Longo for pointing out solutions to nearly all
the questions I raised, Kim Bruce for patient close reading of several drafts, and Girard Berry,
Dan Cooperstock, T. Fehlmann, Joe Halpern, Roger Hindley, Anne Mahoney, A. Obtulowicz,
Rohit Parikh, Gordon Plotkin, David Park, Vaughan Pratt, Charles Rackoff, Rick Statman,
Robert Street, Paul Weiss, A. Wiweger and E. Zachos for their comments and interest.

RECEIVED; July 19, 1982

REFERENCES

ACZEL, P. (1980), Frege structures and the notions of proposition, truth and set, in "The
Kleene Symposium" (Barwise et al., Ed.), pp. 31-60, Studies in Logic 101, North-Holland,
New York.

ACZEL, P.(1981), Abstract models of the lambda calculus, J. Symbolic Logic, in press.
BARENDREGT, H. P. (1977), The type free lambda calculus, "Handbook of Mathematical

Logic" (J. Barwise, Ed.), pp. 1091-1132, North-Holland, New York.
BARENDREGT, H.P. (1981), "The Lambda Calculus: Its Syntax And Semantics," Studies in

Logic 103, North-Holland, New York.
BARENDREGT, H., AND KOYMANS, K. (1980), Comparing some classes of lambda-calculus

models, in "To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism" (J.P. Seldin and J.R. Hindley, Eds., pp. 287-302, Academic Press,
New York.

BARENDREGT, H. P., AND LONGO, G. (1980), Equality of 2-terms in the model T °,, in "To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism," (J. P. Seldin
and J. R. Hindley, Eds., pp. 303-338, Academic Press, New York.

BERRY, G. (1980), On the definition of lambda-calculus models, INRIA Rapports de
Recherche 46.

CHURCH, A. (1932/1933), A set of postulates for the foundation of logic, Ann. of Math. 33,
346-366; 34, 839-864.

C OOVERSTOCK, D. (1981), "Alternative Axiomatizations of Models of the Lambda-Calculus,"
Technical Report 151/81, Department of Computer Science, University of Toronto.

CURRY, H. B. (1930), Grundlagen der kombinatorischen Logik, Amer. J. Math. 52, 509-536,
789-834.

ENGELER, E (1979), Algebras and combinators, Berichte des Insituts ffir Informatik 32, ETH,
Zurich.

122 ALBERT R. MEYER

GORDON, M.J .C. (19;79), "The Denotational Description of Programming Languages,"
Springer-Verlag, New York.

HYLAND, M. (1976), A syntactic characterization of the equality in some models for the
lambda calculus, J. London Math. Soe. 361-370.

HINDLEY, R., LERCHER, B., AND SELDIN, J. (1972), "Introduction to Combinatory Logic,"
London Math. Soc. Lecture Note Series 7, Cambridge Univ. Press, London/New York.

KOYMANS, C.P.J.(1981), Models of the lambda calculus, Preprint 23, Department of
Mathematics, University of Utrecht, Holland.

HINDLEY, R., AND LONGO, G. (1980), Lambda-calculus models and extensionality, Z. Math.
Logik Grundlag. Math. 26, 289-310.

LAM~EK, J. (1980), From ~,-calculus to cartesian closed categories, in "To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism" (J. P. Seldin and
J. R. Hindley, Eds.,) pp. 375-402, Academic Press, New York.

LANDIN, P. J. (1964), The mechanical evaluation of expressions, Comput. J. 6, 308-20.
LANDIN, P. J. (1965), A correspondence between ALGOL 60 and Church's lambda-notation,

Parts l and II, Comm. ACM8, 89-101, 158-65.
LoNao, G.(1981), Power set models of the lambda-calculus: Theories, expansions,

isomorphisms, MIT/LCS/TM-207.
OBTULOWrCZ, A.(1977), Funetorial semantics of the type free X-fir/calculus, "Fundamentals of

Computation Theory," pp. 302-307, Lecture Notes in Computer Science 56, Springer-
Verlag, New York.

OBTULOWICZ, A., AND WIWEGER, A. (1978), Categorical, functorial and algebraic aspects of
the type free lambda calculus, Preprint 164, Institute of Mathematics, Polish Academy of
Sciences, Sniadeckich 8, Skr. Poczt. 137, 00-950, Warszaw, Poland.

PLOTKIN, G. D. (1972), A set-theoretical definition of application, Memorandum MIP-R-95,
School of Artificial Intelligence, University of Edinburgh.

PLOTKIN, G. D. (1974), The lambda calculus is o-incomplete, J. Symbolic Logic 39, 313-317.
PLOTKIN, G.D. (1975), Call-by-name, call-by-value, and the lambda calculus, Theoret.

Comput. Sei. 1, 125-159.
PLOTKIN, G. D. (1977), LCF Considered as a Programming Language, Theoret. Comput. Sei.

5, 223-255.
PLOTKIN, G. D. (1978), T ~ as a universal domain, J. Comput. System Sei. 17, 2, 209-236.
SCOTT, D. S. (1976), Data types as lattices, SIAM J. Comput. 5, 522-587.
ScoTT, D. S.(1980a), Lambda calculus: Some models, some philosophy, in "The Kleene

Symposium" (Barwise etal., Ed.), pp. 381-421, Studies in Logic 101, North-Holland,
New York.

SCOTT, D. S. (1980b), Relating theories of the ~,-calculus, in "To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism" (J. P. Seldin and J. R. Hindley,
Eds.), pp. 403-450, Academic Press, New York.

ScoTT, D. S. (1981), Lectures on a mathematical theory of computation, Oxford Univ.
Computing Lab., Tech. Mono. PRG-19.

STOY, J. E. (1977), "Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory," MIT Press, Cambridge, Mass.

TURNER, D.A.(1979), Another algorithm for bracket abstraction, J. Symbolic Logic 44,
267-270.

VOLKEN, H. (1978), "Formale Stetigkeit un Modelle des Lambda Kalkuls," P. D. thesis, ETH,
Zurich.

WADSWORTh, C. (1976), The relation between computational and denotational properties for
Scott's Do~-models of the lambda-calculus, SIAM J. Comput. 5, No. 3, 488-521.

Printed in Belgium

