
Deciding βη-Equivalence for Product and Function Types

Robert Harper

April 12, 2021

1 Introduction

Formal equality for product and function types is expressed by the inductively defined judgment
Γ ` M ≡ M ′ : A, called definitional equivalence, which is defined for terms Γ ` M,M ′ : A.
Because products and functions have negative polarity, it is natural to postulate their full universal
properties, which are expressed by including β rules to express computation and η rules to express
the unicity conditions required to fully determine the elements of a type. To avoid degeneracy, a
type of binary answers (“accept/reject”) is included. In a fuller type system this requirement would
not be necessary, but would introduce complications that are avoided here. The rules defining
formal equality are given in Figure 1.

The question considered here is whether definitional equivalence for product and function types is
decidable.1 The algorithm, see Figure 2, is given as a collection of rules defining the main judgment,
M ⇔ M ′ ↓ A [∆], and its auxiliary, U ↔ U ′ ↑ A [∆]. All arguments to the main judgment are
regarded as inputs; the terms M and M ′ are deemed equivalent at type A relative to context ∆
exactly when it is derivable. The context and neutral terms U and U ′ are regarded as inputs to the
auxiliary judgment, and the type A as its output; the neutral terms are deemed equivalent relative
to context ∆ when there is a type A for which this judgment is derivable.

These rules constitute an algorithm in that it is apparent that, for the given inputs, it is straight-
forward to determine whether or not the required derivation exists. In the case of the main judgment
termination is proved by induction on the structure of the type A, and in the auxiliary case it is
proved by induction on the neutral terms. The correctness of the algorithm is stated by two theo-
rems, often called the soundness and completeness properties.

Theorem 1 (Correctness). 1. If M ⇔M ′ ↓ A [Γ], then Γ `M ≡M ′ : A.

2. If Γ `M ≡M ′ : A, then M ⇔M ′ ↓ A [Γ].

The first of these, soundness, is proved by induction on the derivation of the algorithmic judg-
ment, with a similar property of the auxiliary, with which it is recursive, being proved simultaneously.
It is only necessary to show that definitional equivalence is closed under well-typed head expansion,
the rest being a straightforward induction on derivations.

Exercise 1. State and prove the soundness of the equivalence checking algorithm defined in Figure 2
relative to definitional equivalence as defined in 1.

1The interest in this question arises in dependent type systems for which decidability of type checking is reducible
to decidability of equivalence, albeit for a richer class of types.

1



refl

Γ `M ≡M : A

sym
Γ `M ≡M ′ : A
Γ `M ′ ≡M : A

trans
Γ `M ≡M ′ : A Γ `M ′ ≡M ′′ : A

Γ `M ≡M ′′ : A

1-η

Γ `M ≡ : 1

×-I
Γ `M1 ≡M ′1 : A1 Γ `M2 ≡M ′2 : A2

Γ ` 〈M1 , M2〉 ≡ 〈M ′1 , M ′2〉 : A1 ×A2

×-E-L
Γ `M ≡M ′ : A1 ×A2

Γ `M · 1 ≡M ′ · 1 : A1

×-E-R
Γ `M ≡M ′ : A1 ×A2

Γ `M · 2 ≡M ′ · 2 : A1

×-β-L

Γ ` 〈M1 , M2〉 · 1 ≡M1 : A1

×-β-R

Γ ` 〈M1 , M2〉 · 2 ≡M2 : A2

×-η

Γ `M ≡ 〈M · 1 , M · 2〉 : A1 ×A2

→-I
Γ, x :A1 `M2 ≡M ′2 : A2

Γ ` λA1(x . M2) ≡ λA1(x . M ′2) : A1 → A2

→-E
Γ `M ≡M ′ : A1 → A2 Γ `M1 ≡M ′1 : A1

Γ ` ap(M,M1) ≡ ap(M ′,M ′1) : A2

→-β

Γ ` ap(λA1(x . M2),M1) ≡ [M1/x]M2 : A2

→-η

Γ `M ≡ λA1(x . ap(M,x)) : A1 → A2

Figure 1: Definitional Equivalence

The second, completeness, requires a more substantial argument based on Tait’s method, which
is the subject of the main body of this note.

2 Completeness Proof

As might be surmised from Harper (2021), the proof of completeness breaks down into two parts,
mediated by logical equivalence as defined in Figure 3.

Lemma 2 (Pas-de-deux). 1. If U ↔ U ′ ↑ A [∆], then U = U ′ ∈ A [∆].

2. If M = M ′ ∈ A [∆], then M ⇔M ′ ↓ A [∆].

Proof. Simultaneously, by induction on A.

1. A = 1:

(a) Immediate, by definition of logical equivalence.

(b) Immediate, by definition of algorithmic equivalence.

2. A = 2:

(a) By definition of algorithmic equivalence.

(b) By definition of logical equivalence.

2



1-eq

M ⇔M ′ ↓ 1 [∆]

2-eq
M 7→∗β U M ′ 7→∗β U ′ U ↔ U ′ ↑ 2 [∆]

M ⇔M ′ ↓ 2 [∆]

×-eq
M · 1⇔M ′ · 1 ↓ A1 [∆] M · 2⇔M ′ · 2 ↓ A2 [∆]

M ⇔M ′ ↓ A1 ×A2 [∆]

→-eq
ap(M,x)⇔ ap(M ′, x) ↓ A2 [∆, x :A1]

M ⇔M ′ ↓ A1 → A2 [∆]

var

x↔ x ↑ A [∆, x :A]

yes

yes↔ yes ↑ 2 [∆]

no

no↔ no ↑ 2 [∆]

lft
U ↔ U ′ ↑ A1 ×A2 [∆]

U · 1↔ U ′ · 1 ↑ A1 [∆]

rht
U ↔ U ′ ↑ A1 ×A2 [∆]

U · 2↔ U ′ · 2 ↑ A1 [∆]

app
U ↔ U ′ ↑ A1 → A2 [∆] M1 ⇔M ′1 ↓ A1 [∆]

ap(U,M1)↔ ap(U ′,M ′1) ↑ A2 [∆]

Figure 2: Algorithmic Equality

M = M ′ ∈ 1 [∆] ⇐⇒ (true)
M = M ′ ∈ 2 [∆] ⇐⇒ M ⇔M ′ ↓ 2 [∆]

M = M ′ ∈ A1 ×A2 [∆] ⇐⇒ M · 1 = M ′ · 1 ∈ A1 [∆] and M · 2 = M ′ · 2 ∈ A1 [∆]

M = M ′ ∈ A1 → A2 [∆] ⇐⇒ ∀∆′ ≤ ∆ if M1 = M ′1 ∈ A1 [∆′] then ap(M,M1) = ap(M ′,M ′1) ∈ A2 [∆′]

Figure 3: Logical Equivalence

3



3. A = A1 ×A2:

(a) If U ′ ↔ A ↑ U [∆], then U ′ · 1 ↔ A1 ↑ U · 1 [∆] and U ′ · 2 ↔ A2 ↑ U · 2 [∆]. By
induction U ′ · 1 = A1 ∈ U · 1 [∆] and U ′ · 2 = A2 ∈ U · 2 [∆], and hence U ′ = A ∈ U [∆],
as desired.

(b) Similarly, M ′ · 1 = A1 ∈M · 1 [∆] and M ′ · 2 = A2 ∈M · 2 [∆], and hence by induction
M ′ · 1 ⇔ A1 ↓ M · 1 [∆] and M ′ · 2 ⇔ A2 ↓ M · 2 [∆], from which the result follows
directly.

4. A = A1 → A2:

(a) Suppose that U ′ ↔ A ↑ U [∆], that ∆′ ≤ ∆, and that M ′1 = A1 ∈M1 [∆′]. By inductive
hypothesis M ′1 ⇔ A1 ↓ M1 [∆′], and thus ap(U ′,M ′) ↔ A2 ↑ ap(U,M) [∆′]. But then
by induction ap(U ′,M ′) = A2 ∈ ap(U,M) [∆′], as desired.

(b) Let ∆′ , ∆, x : A1, noting that ∆′ ≤ ∆, and that x ↔ A1 ↑ x [∆′]. But then by
induction x = A1 ∈ x [∆′], and so ap(M ′, x) = A2 ∈ ap(M,x) [∆′]. By induction
ap(M ′, x)⇔ A2 ↓ ap(M,x) [∆′], and so M ′ ⇔ A1 → A2 ↓M [∆].

Corollary 3. For id the identity substitution, id = id ∈ Γ [Γ].

Lemma 4 (Fundamental Lemma).

1. If Γ `M : A and γ = γ′ ∈ Γ [∆], then γ∗(M) = γ′∗(M) ∈ A [∆].

2. If Γ `M ≡M ′ : A and γ = γ′ ∈ Γ [∆], then γ∗(M) = γ′∗(M ′) ∈ A [∆].

Proof. By induction on the structure of derivations of definitional equivalence.

Exercise 2. Prove Lemma 4.

Corollary 5. If Γ `M ≡M ′ : A, then M ⇔M ′ ↓ A [Γ].

Proof. By Lemma 4 and Corollary 3.

References

Robert Harper. Kripke-style logical relations for termination. Unpublished lecture note, Spring
2021. URL https://www.cs.cmu.edu/~rwh/courses/chtt/pdfs/kripke.pdf.

4


