
How to (Re)Invent Tait’s Method∗

Robert Harper

Spring Semester, 2022

1 Introduction

Two of the most important developments in type theory were the invention, by W. W. Tait, of Tait’s
Method for function types, which was later extended by J.Y.Girard to Girard’s Method for type
quantification, both of which were incorporated into a general theory of logical relations for a wide
range of type theories. Tait’s method continues to be known by its original name, the computability
method, which interprets types as predicates in the manner developed below.

The problem considered by Tait was to prove that β-reduction for the simply typed λ-calculus
is strongly normalizing, which is usually defined to mean that there are no infinite β-reduction
sequences starting with a well-typed term: M = M0 →β M1 → A better definition, of more
immediate utility, is the validity of transfinite induction on reduction, stated as follows: for any
property P of typed λ-terms, to show that P holds for every such term, it is enough to show, for
every well-typed typed term M , if all of its immediate β-reducts satisfy P, then so does P. More
succinctly,

(∀M :τ(∀N :τ.M →β N ⊃ P(N)) ⊃ P(M)) ⊃ ∀M :τ.P(M).

The importance of strong normalization lies exactly in the utility afforded by this principle for
proving other properties. For example, using transfinite induction on reduction it is possible to
prove that weak confluence (every one-step split can be reconciled) implies confluence (transitivity
of the “has a common reduct” relation.) This statement is false for untyped terms; it is precisely
the strong normalization property that ensures its validity for well-typed terms.

The question considered here is a related, but technically much simpler, problem, the termina-
tion of a deterministic head reduction strategy for a simply typed λ-calculus. The simplification
compared to Tait’s original proof is that head reduction is defined only for closed terms, avoiding
the need to consider open terms in the development of Tait’s method. The type system considered
here has unit, product, and function types, augmented with a two-element type of observables,
corresponding to the familiar “accept/reject” formulation in the study of abstract machines.

∗Copyright © Robert Harper. All Rights Reserved.

1

var

Γ, x:A ⊢ x : A

yes

Γ ⊢ yes : 2

no

Γ ⊢ no : 2

unit

Γ ⊢ ⋆ : 1

pair
Γ ⊢ M1 : A1 Γ ⊢ M2 : A2

Γ ⊢ ⟨M1 , M2⟩ : A1 ×A2

lft
Γ ⊢ M : A1 ×A2

Γ ⊢ M · 1 : A1

rht
Γ ⊢ M : A1 ×A2

Γ ⊢ M · 2 : A2

lam
Γ, x:A1 ⊢ M2 : A2

Γ ⊢ λA1(x . M2) : A1 → A2

app
Γ ⊢ M1 : A2 → A Γ ⊢ M2 : A2

Γ ⊢ ap(M1,M2) : A

Figure 1: Typed λ-Calculus Statics

2 Simple Types

The syntax of the language considered here is given by the following grammar:

A ::= 1 | 2 | A1 ×A2 | A1 → A2

M ::= x | yes | no | ⋆ | ⟨M1 , M2⟩ | M · 1 | M · 2 | λA(x . M) | ap(M1,M2)

The statics is entirely standard, defining the typing judgment Γ ⊢ M : A, in such a way that
the structural properties are admissible. Contraction and exchange are accounted for by treating
the typing context Γ as a finite set of variable typings x1:A1, . . . , xn:An in which xi ̸= xj whenever
i ̸= j. Weakening is built-in by stating all rules with an ambient typing context Γ that goes along
for the ride. See Figure 1 for the definition of typing. Substitution (transitivity), which states that
if Γ, x :A ⊢ N : B, and Γ ⊢ M : A, then Γ ⊢ [M/x]N : B, is readily proved by induction on the first
premise.

The dynamics is given by a transition system M 7−−→ M ′ between closed λ-terms of some type.
Any closed typed term is a valid initial state. Final states are defined along with transition in
Figure 2.

Theorem 1 (Preservation). If M : A and M 7−−→ M ′, then M ′ : A.

Proof. By induction on transition.

3 Termination Proof

The goal is to prove termination for terms of observable type:

Theorem 2 (Termination). If M : 2, then either M 7−−→∗ yes or M 7−−→∗ no.

That is, any complete program either accepts or rejects.
Given the statement of the theorem, practically the only move available is to proceed by induc-

tion on typing. Let us consider some cases.

2

yes

yes final

no

no final

unit

⋆ final

pair

⟨M1 , M2⟩ final

lam

λA1(x . M2) final

lft
M 7−−→ M ′

M · 1 7−−→ M ′ · 1

rht
M 7−−→ M ′

M · 2 7−−→ M ′ · 2

lft-pair

⟨M1 , M2⟩ · 1 7−−→ M1

rht-pair

⟨M1 , M2⟩ · 2 7−−→ M2

app
M1 7−−→ M ′

1

ap(M1,M2) 7−−→ ap(M ′
1,M2)

app-lam

ap(λA2(x . M),M2) 7−−→ [M2/x]M

Figure 2: Typed λ-Calculus Dynamics

var Does not apply to closed terms.

yes Immediate, as yes final.

no Immediate, as no final.

unit Does not apply, not of type 2.

pair Does not apply, not of type 2.

lft By induction, um

rht By induction, um

fun Does not apply, not of type 2.

app By induction applied to the first premise, um

All cases are trivial, or completely unclear.
Well, because the subterms of a term of type 2 need not have type 2, it seems clear that it is

necessary to strengthen the theorem to say something about terms of any type.

Lemma 3. If M : A, then there exists N such that N final and M 7−−→∗ N .

The lemma suffices for the theorem because of the definition of finality for terms of type 2. Let
us consider the proof of this lemma.

var Does not apply to closed terms.

yes Immediate, as yes final.

no Immediate, as no final.

unit Immediate, as ⋆ final.

3

pair Immediate, as ⟨M1 , M2⟩ final.

lft By induction there exists N such that N final and M 7−−→∗ N . By preservation and the
definition of finality N must be of the form ⟨N1 , N2⟩. By the definition of transition

M · 1 7−−→∗ ⟨N1 , N2⟩ · 1 7−−→ N1.

But now what?

rht Analogous, what to do with N2?

fun Immediate, as λA1(x . M2) final.

app By induction applied to the first premise there exists N1 such that N1 final and M1 7−−→∗ N1.
By preservation and the definition of finality N1 must have the form λA2(x . M). By the
definition of transition

ap(M1,M2) 7−−→∗ ap(λA2(x . M),M2) 7−−→ [M2/x]M.

But now what?

In the projection cases the components of the pair are general terms about which nothing is
known. In the application case the value of the first argument is a λ-abstraction whose body is an
open term (with free variable x) about which nothing is known. This suggests strengthening the
lemma by proving a property called hereditary termination, which is stronger than mere termination.
It should have the following characteristics in order to push through the proof of the strengthened
lemma below:

1. A hereditarily terminating expression of type 1 should be terminating, and hence transition
to ⋆.

2. A hereditarily terminating expression of type 2 should be terminating, and hence transition
to either yes or no.

3. A hereditarily terminating expression of type A1 ×A2 should terminate with a pair ⟨N1 , N2⟩
such that both N1 and N2 are hereditarily terminating.

4. A hereditarily terminating expression of type A2 → A should terminate with a function
λA2(x . M) such that if M2 is hereditarily terminating of type A2, then [M2/x]M should be
hereditarily terminating at type A.

These conditions constitute a definition of the property M is hereditarily terminating at type A,
which is defined for closed M : A. The first two cases are given outright; the others rely on
hereditary termination at constituent types of a compound type. Thus, hereditary termination at a
type is defined by induction on the structure of the type.1

Lemma 4. If M : A, then M is hereditarily terminating at type A.
1For reference the type-indexed family of predicates, HTA(M), defining hereditary termination is given in Figure 3.

4

HT1(M) iff M 7−−→∗ ⋆

HT2(M) iff M 7−−→∗ yes or M 7−−→∗ no

HTA1×A2(M) iff M 7−−→∗ ⟨M1 , M2⟩ and HTA1(M1) and HTA2(M2)

HTA1→A2(M) iff M 7−−→∗ λA1(x . M2) and HTA1(M1) implies HTA2([M1/x]M2)

HTΓ(γ) iff HTA(γ(x)) for all x :A ∈ Γ

Figure 3: Hereditary Termination, HTA(M)

The proof proceeds as before by induction on typing. The cases for the constants are immediate
by the definition of hereditary termination at base type.

The problematic elimination cases use the definition of hereditary termination, along with an
additional property, called head expansion. Before stating it, let us see how it arises. Consider the
rule lft once again. By induction on the premise of the rule, HTA1×A2(M). By the definition of
hereditary termination M 7−−→∗ ⟨M1 , M2⟩ and HTA1(M1). To show HTA1(M · 1), observe that

M · 1 7−−→∗ ⟨M1 , M2⟩ · 1 7−−→ M1.

To complete the proof it suffices to show that hereditary termination is closed under “reverse exe-
cution”.

Lemma 5 (Head Expansion). If HTA(M) and M ′ 7−−→ M , then HTA(M
′).

Proof. Immediate, because the definition of hereditary termination is defined in terms of the eval-
uation behavior of terms.

This completes the proof for the rule lft; rules rht and app are handled similarly.
What about the pair and function cases?

pair By induction M1 is hereditarily terminating at A1 and M2 is hereditarily terminating at type
A2; the goal is to show that ⟨M1 , M2⟩ is hereditarily terminating at type A1 × A2. A pair
is already a value (final state), so an appeal to the inductive hypothesis suffices to finish the
proof.

fun To show that λA1(x . M2) is hereditarily terminating at A1 → A2, show that whenever M1 is
hereditarily terminating at A1, then [M1/x]M2 is hereditarily terminating at A2. But what
to do?

The problem now is that in the function case there is no inductive hypothesis available to give us
the necessary information about the open term M , which has one free variable, x, in it. The lemma
must be strengthened once more to account for open terms, even though the desired property applies
only to closed terms.

To state the required result, define γ : Γ to mean that γ is a map assigning to each variable
x declared in Γ a term of the type specified in Γ. The action γ̂(M) of a substitution γ is defined
inductively on the structure of M to replace each free variable x with the term assigned to it by γ.

5

A substitution γ is hereditarily terminating at Γ iff whenever Γ ⊢ x : A, then γ(x) is hereditarily
terminating at type A.

Define Γ ≫ M ∈ A to mean that if γ is hereditarily terminating at Γ, then γ̂(M) is hereditarily
terminating at type A. We may then state the main lemma as follows:

Lemma 6. If Γ ⊢ M : A, then Γ ≫ M ∈ A.

The proof is by induction on typing derivations. The critical case is the last one in the preceding
attempt, for which the strengthened statement provides precisely what is needed to push the proof
through. The other cases require a bit more care in handling the application of γ to the terms in
question, but there are no further obstacles to worry about.

And that is Tait’s Method!

Exercise 1. If termination is required only for closed programs of answer type, and not for higher
types, then a “negative” formulation of hereditary termination is sensible:

HTA1×A2(M) iff HTA1(M · 1) and HTA2(M · 2)
HTA1→A2(M) iff HTA1(M1) implies HTA2(ap(M,M1))

Re-prove the termination theorem using this revised definition of hereditary termination at product
and function types.

Exercise 2. Finite sums, given by the empty type 0 and the binary sum, A1+A2, require a “positive”
formulation of hereditary termination:

HT0(M) iff (never)
HTA1+A2(M) iff M 7−−→∗ 1 ·M1 and HTA1(M1), or

M 7−−→∗ 2 ·M2 and HTA2(M2).

Extend the proof of termination to account for sum types based on these definitions. What would be
a “negative” formulation of sum types? What goes wrong?

Exercise 3. Extend the termination proof to account for the type N of natural numbers, generated
by zero and successor, and interpreted by iteration, under a lazy dynamics whereby any successor
is a value, regardless of the form of the predecessor. Define hereditary termination at type N as the
strongest property P of M : N such that

1. If M 7−−→∗ zero, then P(N), and

2. If M 7−−→∗ succ(N) and P(N), then P(M).

From this definition derive a suitable induction principle to use in the proof of termination by Tait’s
method.

References

6

