Reynolds’s Parametricity Theorem, Directly*

Robert Harper

Spring, 2021

1 Introduction

In a landmark paper Reynolds (1983) develops a mathematical account of Strachey’s informal con-
cept of parametricity of polymorphic functions. Parametricity characterizes the “uniform” behavior
of polymorphic functions using logical relations, a concept introduced by Tait (1967) in the study
of functionals of finite type.! Reynolds’s work, which was motivated by the study of data abstrac-
tion in programming languages, was done around the same time as, and independently of, Girard’s
extension of Tait’s method to second-order quantification, which was motivated by the analysis of
proofs in second-order logic.?2 Whereas Girard made use of unary predicates, Reynolds used binary
relations, a technically small, yet practically large, difference that gave rise to new methods for
proving properties of programs knowing only their types. Reynolds observed that the type disci-
pline of a language determines the abstraction properties enjoyed by its programs; in particular,
clients of abstract types are polymorphic, and hence enjoy stability properties across changes of
representation determined entirely by their types.

The formulation given here makes use of the aforementioned ideas from Tait, Girard, and
Reynolds, but cast in an operational framework inspired by Martin-Lof (1982) and Constable et al.
(1986) and used throughout Harper (2016). In contrast to the presentation in PFPL the formulation
given here is independent of a prior notion of equality. In compensation candidates are required to
enjoy a property called zig-zag completeness (Krishnaswami and Dreyer, 2012), which ensures that
equality is transitive.

Thanks to Carlo Angiuli, Karl Crary and Yiyang Guo for helpful discussions.

2 The Language

Please see Harper (2020a) for the definition of the language F, including its syntax and dynamics.
The dynamics is to be understood via a tacit erasure of type information from terms given as
follows:

1. Type labels are removed from A-abstractions, A4(x . M) becomes \z.M.

2. A-abstractions AX.M are replaced by anonymous A-abstractions A .M, abbreviated A.M.

*Copyright (©) Robert Harper. All Rights Reserved.
!See Harper (2020b) for an introduction to Tait’s method.
2See Harper (2020a) for an introduction to Girard’s method.



3. Type applications Ap(M, A) are replaced by ordinary applications ap(M, My) to a fixed trivial
argument My, abbreviated Ap(M).

With this understanding it is never necessary to substitute types for type variables when defining
the dynamics of terms.
3 Exact Equality Via Parametricity

A binary relation R over closed terms is a type candidate, written R Cand, iff it satisfies the following
two closure conditions:

1. Head expansion: if M R M’, then
(a) if N +— M, then N R M’', and
(b) if N — M’ then M R N'.
2. Zig-Zag Completeness (ZZC): it M R M', N R N, and N R M’ then M R N'.
Head expansion is a natural requirement when thinking of types as specifications of program behav-
ior. Zig-zag completeness is depicted in Figure 1. It may be re-stated in terms of the converse and
composition of relations as the containment R o R°® o R C R. The opposite containment is always
valid, so zig-zag completeness may be re-stated as the equation R o R°? o R = R.
Lemma 1. Suppose that R is a zig-zag complete binary relation.
1. R°P is zig-zag complete.
2. R°’ o R and R o R°P are symmetric and transitive, and hence zig-zag complete.
3. Ro R°Po R is zig-zag complete.
Proof. 1. If R= Ro R°® o R, then R°°P = R°? o R o R°P.

2. Exercise.

3. Immediate from the definition of R being zig-zag complete.

Exercise 1. Complete the proof of Lemma 1.

A candidate assignment, n, for A is a function such that n(X) is a type candidate for each type
variable X such that A F X type.

Definition 2 (Logical Similarity). Logical similarity of two closed terms relative to an open type
A such that A+ Atype and a candidate assignment for A, written M ~ M' € A [n], is defined by



M —< M’

Figure 1: Zig-Zag Completeness

induction on the structure of A as follows:
M ~ M' € 2[n] < either M, M' —* yes or M, M’ —* no
M~MeX[nle MnX)M
M —* Xx.My, M’ —* Xx. M}, and
[My/x] My ~ [M{/x]Mj € Az [n] if My~ M] € Ay [n]
M —* AMy, M' —* A.MJ}, and
My ~ M} € Ay [n[X — R]] if R Cand

MNM/€A1—>A2[77]<:>{

M~ M e VX.A [n]@{

It is immediate from the form of the definition that logical similarity is closed under head
expansion, given that candidates are required to be.

Lemma 3 (Zig-Zag Completeness). For each A+ Atype, and each candidate assignment n for A,
the similarity relation —~ € A [n] is zig-zag complete.

Proof. By induction on the structure of A:

1. If A is a type variable X, note that n(X) is required to be a type candidate, and hence is
zig-zag complete.

2. If A= Ay — Ay. Assume that

(a) M ~M'" e Aln],
(b) N~ N'e€ A[n], and
() N~M' € Aln].

It follows that

To show that M ~ N’ € A [n], it suffices to assume that M; ~ M| € A; [n], and show that
[My /] My ~ [M]/x]N3 € Az [n].

From the assumptions we have



(a) [My/z]Ma ~ [M{/z]My € As [n],
(b) [Mi/x]N2 ~ [M{/2]Ny € Ag [n],
(c) [My/x]Na ~ [M{/2]M; € Az [n].

But then the result follows by the induction hypothesis that similarity at As relative to 7 is
zig-zag complete.

3. If A=VX.Ay. Assume that
(a) M~ M e€A[n],
(b) N~ N'e A[n], and
(¢) N~M € Aln].

It follows that

To show that M ~ N’ € A [n], it suffices to assume that R is a type candidate, and show
that My ~ Né € Ay [H[X = RH

From the assumptions we have

(a) Mz~ Mj e As [n[X — RJ],
(b) Ny ~ N} € As [n[X — R]], and
(c) No~ Mj € Ag [n[X — R]].

But then the result follows by the inductive hypothesis that similarity at As relative to n[X —
R] is zig-zag complete.

O

Ezact equality of two terms in a type, I' >a M = M’ € A, is defined to mean that for all
candidate assignments n for A, if v ~ 4/ € T' [n], then (M) ~ ~' (M) € A [n]. Semantic
membership, written T' >a M € A, is defined to mean I' > M = M € A.

Lemma 4 (Compositionality). Suppose that A+ Btype and A, X - Atype. Let n be a relation
assignment for A, and define E(N,N') iff N ~ N' € B [n]. Then, M ~ M' € [B/X]A [n] iff
M~M € A[nX— E]].

Exercise 2. Prove Lemma 4.
Theorem 5 (Parametricity). If T'Fa M : A, then T > M € A.

Proof. By induction on typing derivations, using Lemma 3 and 4. O



Figure 2: Symmetry via Zig-Zag Completeness

Exercise 3. Prove the parametricity theorem.

Theorem 6 (Soundness). I[f T A M= M': A, then T >A M =M' € A
Sketch. Closure under head expansion suffices for the S principles:
1. D, z: Ay >A My € Ay and I’ > M7 € Ay, then

I'>na ap(()\x.Mg),Ml) = [Ml/l‘]Mg € As.

2. If T >A xtype M2 € Ay and A F A type, then

I'>aA Ap(AMg) =M € [Al/X]AQ

The definition of similarity ensures that the n principles are valid:
LT >AMe A — AQ, then I' >A M = )\xap(M,x) € A — As.
2. T >A M e VX. Ay, then I' >A M = A Ap(M) € VX . As.

Compatibility of exact equality with both forms of abstraction and application are easily obtained.
Parametricity states that equality is reflexive. The proofs of symmetry and transitivity are given in
Figures 2 and 3. 0

Exercise 4. Complete the proof of Theorem 6.

The proof of symmetry is depicted in Figure 2. The assumptions give rise to the Z; its completion
establishes the desired simulation. The proof of transitivity is depicted in Figure 3. The assumptions
give rise to the emboldened Z, whose completion establishes the desired simulation.

Exercise 5. Re-formulate the foregoing using typed terms, rather than erasure. Specifically, define
the notion of a candidate R : A — A’ being a binary relation between closed terms of closed types
A and A’ satisfying the closure conditions given above. Then, for 6,0 being substitutions of closed
types for type variables in A, define n : & — &' to be an assignment to each X € A a candidate
n(X) : §(X) = §(X). Using these notions, reformulate the development of parametricity using
typed terms.



Figure 3: Transitivity via Zig-Zag Completeness

References

Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, R. W. Harper,
Douglas J. Howe, Todd B. Knoblock, N. P. Mendler, Prakash Panangaden, James T. Sasaki, and

Scott F. Smith. Implementing mathematics with the Nuprl proof development system. Prentice
Hall, 1986. ISBN 978-0-13-451832-9. URL http://dl.acm.org/citation.cfm?id=10510.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

Robert Harper. How to (re)invent Girard’s method. Unpublished lecture note, Spring 2020a. URL
https://www.cs.cmu.edu/ rwh/courses/chtt/pdfs/girard.pdf.

Robert Harper. How to (re)invent Tait’s method. Unpublished lecture note, Spring 2020b. URL
https://www.cs.cmu.edu/ rwh/courses/chtt/pdfs/tait.pdf.

Neelakantan R Krishnaswami and Derek Dreyer. A relationally parametric model of the calculus of
constructions. Auzilliary materials at http://www. mpi-sws. org/” neelk/paradep-techreport. pdf,
2012.

Per Martin-Lof. Constructive mathematics and computer programming. In L. Jonathan Cohen,
Jerzy t.o§, Helmut Pfeiffer, and Klaus-Peter Podewski, editors, Logic, Methodology and Philos-
ophy of Science VI, Proceedings of the Sixth International Congress of Logic, Methodology and
Philosophy of Science, Hannover 1979, volume 104 of Studies in Logic and the Foundations of
Mathematics, pages 153-175. North-Holland, 1982. doi: 10.1016/S0049-237X(09)70189-2. URL
http://dx.doi.org/10.1016/50049-237X(09)70189-2.

John C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor,
Information Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France,
September 19-23, 1983, pages 513-523. North-Holland /TFIP, 1983.

W. Tait. Intentional interpretations of functionals of finite type i. Journal of Symbolic Logic, 32:
198-212, 1967.



