
On Equivalence and Canonical Forms in the
LF Type Theory

ROBERT HARPER and FRANK PFENNING
Carnegie Mellon University

Decidability of definitional equality and conversion of terms into canonical form play a central role
in the meta-theory of a type-theoretic logical framework. Most studies of definitional equality are
based on a confluent, strongly normalizing notion of reduction. Coquand has considered a different
approach, directly proving the correctness of a practical equivalance algorithm based on the shape
of terms. Neither approach appears to scale well to richer languages with, for example, unit types
or subtyping, and neither provides a notion of canonical form suitable for proving adequacy of
encodings.

In this article, we present a new, type-directed equivalence algorithm for the LF type theory
that overcomes the weaknesses of previous approaches. The algorithm is practical, scales to richer
languages, and yields a new notion of canonical form sufficient for adequate encodings of logical
systems. The algorithm is proved complete by a Kripke-style logical relations argument similar to
that suggested by Coquand. Crucially, both the algorithm itself and the logical relations rely only
on the shapes of types, ignoring dependencies on terms.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Language]:
Mathematical Logic—Lambda calculus and related systems

General Terms: Languages, Theory

Additional Key Words and Phrases: Logical frameworks, type theory

1. INTRODUCTION

At present, the mechanization of constructive reasoning relies almost entirely
on type theories of various forms. The principal reason is that the computational
meaning of constructive proofs is an integral part of the type theory itself. The
main computational mechanism in such type theories is reduction, which has
therefore been studied extensively.

For logical frameworks, the case for type theoretic meta-languages is also
compelling, since they allow us to internalize deductions as objects. The validity
of a deduction is then verified by type-checking in the meta-language. To ensure
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that proof checking remains decidable under this representation, the type
checking problem for the meta-language must also be decidable. To support
deductive systems of practical interest, the type theory must support depen-
dent types, that is, types that depend on objects.

The correctness of the representation of a logic in type theory is given by
an adequacy theorem that correlates the syntax and deductions of the logic
with canonical forms of suitable type. To establish a precise correspondence,
canonical forms are taken to be β-normal, η-long forms. In particular, it is
important that canonical forms enjoy the property that constants and variables
of higher type are “fully applied”—that is, each occurrence is applied to enough
arguments to reach a base type.

Thus, we see that the methodology of logical frameworks relies on two fun-
damental meta-theoretic results: the decidability of type checking, and the ex-
istence of canonical forms. For many type theories, the decidability of type
checking is easily seen to reduce to the decidability of definitional equality of
types and terms. Therefore, we focus attention on the decision problem for def-
initional equality and on the conversion of terms to canonical form.

Traditionally, both problems have been treated by considering normal forms
for β, and possibly η, reduction. If we take definitional equality to be conversion,
then its decidability follows from confluence and strong normalization for the
corresponding notion of reduction. In the case of β-reduction this approach to
deciding definitional equality works well, but for βη-reduction the situation is
much more complex. In particular, βη-reduction is confluent only for well-typed
terms, and subject reduction depends on strengthening, which is difficult to
prove directly.

These technical problems with βη-reduction have been addressed with dif-
ferent methods by Salvesen [1990], Geuvers [1992], and Goguen [1999], but
nevertheless several problems remain. First, canonical forms are not βη-normal
forms and so conversion to canonical form must be handled separately. The work
by Dowek et al. [1993] shows how to do this for the Calculus of Constructions,
but it is not clear that their approach would scale to theories such as those in-
cluding linear types, unit types, or subtyping. Second, the algorithms implicit in
the reduction-based accounts are not practical; if two terms are not definition-
ally equal, we can hope to discover this without reducing both to normal form.

These problems were side-stepped in the original paper on the LF logical
framework [Harper et al. 1993] by restricting attention to β-conversion for
definitional equality. This is sufficient if we also restrict attention to η-long
forms [Felty and Miller 1990; Cervesato 1996]. This restriction is somewhat un-
satisfactory, especially in linear variants of LF [Cervesato and Pfenning 2002].

More recently, η-expansion has been studied in its own right, using modi-
fication of standard techniques from rewriting theory to overcome the lack of
strong normalization when expansion is not restricted [Jay and Ghani 1995;
Ghani 1997]. In the dependently typed case, even the definition of long nor-
mal form is not obvious [Dowek et al. 1993] and the technical development
is fraught with difficulties. We have not been able to reconstruct the proofs
given by Ghani [1997]. The approach taken by Virga [1999] relies on a complex
intermediate system with annotated terms.
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To address the problems of practicality, Coquand [1991] suggested aban-
doning reduction-based treatments of definitional equality in favor of a direct
presentation of a practical equivalence algorithm. Coquand’s approach is based
on analyzing the “shapes” of terms, building in the principle of extensionality
instead of relying on η-reduction or expansion. This algorithm improves on
reduction-based approaches by avoiding explicit computation of normal forms,
and allowing for early termination in the case that two terms are determined
to be inequivalent. However, Coquand’s approach cannot be easily extended to
richer type theories such as those with unit types. The problem can be traced
to the reliance on the shape of terms, rather than on their classifying types,
to guide the algorithm. For example, if x and y are two variables of unit type,
they are definitionally equal, but structurally distinct. Moreover, their canon-
ical forms would be the sole element of unit type. More recently, Compagnoni
and Goguen [1999] have developed an equality algorithm based on weak head-
normal forms using typed operational semantics for a system with bounded
operator abstraction. It is plausible that their method would also apply to LF,
but, again, type theories with a less tractable notion of equality are likely to
present problems.

In this article, we present a new type-directed algorithm for testing equal-
ity for a dependent type theory in the presence of β and η-conversion, which
generalizes the algorithm for the simply typed case given by Pfenning [1992].
We prove its correctness directly via logical relations. The essential idea is that
we can erase dependencies when defining the logical relation, even though the
domain of the relation contains dependently typed terms. This makes the defi-
nition obviously well-founded, which is quite difficult to see for the dependent
case. Moreover, it means that the type-directed equality-testing algorithm on
dependently typed terms requires only simple types. Consequently, transitivity
of the algorithm is an easy property, which we were unable to obtain without
this simplifying step. Soundness and completeness of the equality-testing algo-
rithm yields the decidability of the type theory rather directly.

The erasure of dependencies has been previously applied to showing normal-
ization, for example, in the original investigation of LF [Harper et al. 1993]. To
our knowledge, it has not been applied to devising an equality algorithm or
proving its correctness. The use of approximate type information is a direct
reflection of the fact that extensional equivalence reasoning need not be sen-
sitive to the precise dependent type, only to its shape. A related observation
on the value of approximate types has already been made by Elliott [1989]
and has recently been exploited for the implementation of a two-phase type
and term reconstruction algorithm for the implementation of LF in the Twelf
system [Pfenning and Schürmann 1999]. The first phase determines approx-
imate, but non-dependent types which is enough information to verify that
dependencies are respected in the second phase. This clean architecture easily
extends to the case of type theories such as linear LF where no complete alter-
native seems to exist. Moreover, using approximate types significantly speeds
up equality and unification operations, since precise types are expensive to
compute and check due to the required substitution operation when traversing
an application.
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In summary, we believe that approximate types are valuable both from a
foundational and practical point of view. From a foundational point of view they
yield a logical relation over dependently typed terms whose well-foundedness is
indisputable; from a practical point of view they yield efficient implementations
of term and type reconstruction and unification.

Another advantage of our approach is that it can be easily adapted to support
adequacy proofs using a new notion of quasi-canonical forms, that is, canoni-
cal forms without type labels on λ-abstractions. We show that quasi-canonical
forms of a given type are sufficient to determine the meaning of an object, since
the type labels can be reconstructed (up to definitional equality) from the classi-
fying type. Interestingly, recent research on dependently typed rewriting [Virga
1999] has also isolated equivalence classes of terms modulo conversion of the
type labels as a critical concept. In some of the original work on Martin-Löf
type theory [Nordström et al. 1990] and some subsequent studies [Streicher
1991], type theories without type labels have been studied, but to our knowl-
edge they have not been considered with respect to bi-directional type-checking
or adequacy proofs in logical framework representations.

There is now significant evidence that our construction is robust with re-
spect to extension of the type theory with products, unit, linearity, subtyping
and similar complicating factors. The reason is the flexibility of type-directed
equality in the simply-typed case and the harmony between the definition of
the logical relation and the algorithm, both of which are based on the erased
types. Stone and Harper [2000] have concurrently developed a variant of the
technique presented here to handle a form of subtyping and singleton kinds.
A number of papers subsequent to the original technical report describing our
construction [Harper and Pfenning 1999] have clearly demonstrated that the
proposed technique is widely applicable. Vanderwaart and Crary [2002] have
adapted the ideas with minor modifications to give a proof of the decidability for
linear LF that is stronger than the original one [Cervesato and Pfenning 2002]
since it does not require η-long forms from the start. The further adaptation
to the case of an ordered linear type theory [Polakow 2001] provides further
evidence. Finally, the second author has adapted the technique to prove decid-
ability and existence of canonical forms for a type theory with an internal notion
of proof irrelevance and intensional types [Pfenning 2001]. We conclude that
our technique is directly applicable for a large class of dependent type theories
where equality at the level of types is directly inherited from equality at the
level of objects.

Despite this robustness for a whole class of extensions of the LF type theory,
there are likely to be difficulties in applying our techniques in the impredica-
tive setting, or even in the case of predicative universes. It is essential to our
method that injectivity of products can be proved without first proving subject
reduction and a Church–Rosser theorem; the reverse is the case for pure type
systems [Barendregt 1992; Geuvers 1992].

More generally, it is not clear how to apply our ideas when faced with a
complex notion of equality at the level of types unless it is directly inherited
from the level of objects. Our formulation of LF omits λ-abstractions at the type
level so that we can prove injectivity of products at an early stage. Note that
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this is not a restriction from the point of view of our applications: Geuvers and
Barendsen [1999] have shown that LF without family level λ-abstraction is just
as expressive as full LF. Moreover, Vanderwaart and Crary [2002] have shown
that Coquand’s technique for handling type-level λ-abstractions can be adapted
to our proof by carrying out a separate, second logical relations argument. We
suspect that this may be extended to the case of predicative universes, but the
impredicative case is likely to require completely new ideas as discussed in the
conclusion.

Our approach is similar to the technique of typed operational semantics
[Goguen 1994, 1999] in that both take advantage of types during reduction.
However, as pointed out by Goguen [1999], the development of the complete
meta-theory of the LF requires the use of an untyped reduction relation. Our
techniques avoid this entirely, fulfilling Goguen’s conjecture that a complete
development should be possible without resorting to untyped methods.

The remainder of the article is organized as follows: In Section 2, we present
a variant of the LF type theory and investigate its elementary syntactic prop-
erties. It can be seen to be equivalent to the original LF proposal with βη-
conversion at the end of our development. In Section 3, we present an algorithm
for testing equality that uses an approximate typing relation and exploits ex-
tensionality. In Section 4, we show that the algorithm is complete via a Kripke-
logical relation argument using approximate types. This is complemented by
a corresponding soundness proof for the algorithm on well-typed terms in
Section 5. In Section 6, we exploit the soundness and completeness of the al-
gorithm to obtain decidability for all judgments of the LF type theory with an
extensional equality. In Section 7, we show how to extract quasi-canonical forms
from our conversion algorithm. They differ from long βη-normal forms in that
objects carry no type labels. We show that this is sufficient for adequacy theo-
rems in the logical framework since such type labels are determined uniquely
modulo definitional equality. In the conclusion in Section 8, we discuss some
limitations of our technique and mention some further work.

2. A VARIANT OF THE LF TYPE THEORY

Syntactically, our formulation of the LF type theory follows the original
proposal by Harper et al. [1993], except that we omit type-level λ-abstraction.
This simplifies the proof of the soundness theorem considerably, since we can
prove the injectivity of products (Lemma 2.12) at an early stage. In practice,
this restriction has no impact since types in normal form never contain
type-level λ-abstractions. This observation has been formalized by Geuvers
and Barendsen [1999].

2.1 Syntax

Kinds K ::= type | �x:A. K
Families A ::= a | A M | �x:A1. A2

Objects M ::= c | x | λx:A. M | M1 M2

Signatures � ::= · | �, a:K | �, c:A
Contexts � ::= · | �, x:A
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We use K for kinds, A, B, C for type families, M , N , O for objects, �, � for
contexts and � for signatures. We also use the symbol “kind” to classify the
valid kinds. We consider terms that differ only in the names of their bound
variables as identical. We write [N/x]M , [N/x]A and [N/x]K for capture-
avoiding substitution. Signatures and contexts may declare each constant and
variable at most once. For example, when we write �, x:A we assume that x is
not already declared in �. If necessary, we tacitly rename x before adding it to
the context �.

2.2 Substitutions

In the logical relations argument, we require a notion of simultaneous
substitution.

Substitutions σ ::= · | σ, M/x.

We assume that no variable is defined more than once in any substitution which
can be achieved by appropriate renaming where necessary. We do not develop
a notion and theory of well-typed substitutions, since it is unnecessary for our
purposes. However, when applying a substitution σ to a term M we maintain
the invariant that all free variables in M occur in the domain of σ , and similarly
for families and kinds.

We write id� for the identity substitution on the context �. We use the no-
tation M [σ ], A[σ ] and K [σ ] for the simultaneous substitution by σ into an
object, family, or kind. It is defined by simultaneous induction on the structure
of objects, families, and kinds.

x[σ ] = M where M/x in σ

c[σ ] = c
(λx:A. M )[σ ] = λx:A[σ ]. M [σ, x/x]

(M N )[σ ] = M [σ ] N [σ ]

a[σ ] = a
(A M )[σ ] = A[σ ] M [σ ]

(�x:A. B)[σ ] = �x:A[σ ]. B[σ, x/x]

type[σ ] = type
(�x:A. K )[σ ] = �x:A[σ ]. K [σ, x/x].

Extending the substitution σ to (σ, x/x) may require some prior renaming of
the variable x in order to satisfy our assumption on substitutions.

2.3 Judgments

The LF type theory is defined by the following judgments.

� � sig � is a valid signature
�� � ctx � is a valid context

� �� M : A M has type A
� �� A : K A has type K

ACM Transactions on Computational Logic, Vol. 6, No. 1, January 2005.



On Equivalence and Canonical Forms in the LF Type Theory • 67

� �� K : kind K is a valid kind
� �� M = N : A M equals N at type A
� �� A = B : K A equals B at kind K
� �� K = L : kind K equals L

For the judgment �� � ctx, we presuppose that � is a valid signature. For
the remaining judgments of the form � �� J , we presuppose that � is a valid
signature and that � is valid in �. For the sake of brevity, we omit the signa-
ture � from all judgments but the first, since it does not change throughout a
derivation.

If J is a typing or equality judgment, then we write J [σ ] for the obvious
substitution of J by σ . For example, if J is M : A, then J [σ ] stands for the
judgment M [σ ] : A[σ ].

2.4 Typing Rules

Our formulation of the typing rules is similar to the second version given by
Harper et al. [1993]. In preparation for the various algorithms we presuppose
and inductively preserve the validity of contexts involved in the judgments,
instead of checking these properties at the leaves. This is a matter of expediency
rather than necessity.

Signatures

� · sig

� � sig · �� K : kind

� �, a:K sig

� � sig · �� A : type

� �, c:A sig
.

From now on, we fix a valid signature � and omit it from the judgments.

Contexts

� · ctx

� � ctx � � A : type

� �, x:A ctx
.

From now on, we presuppose that all contexts in judgments are valid, instead
of checking it explicitly. This means, for example, that we have to verify the
validity of the type labels in λ-abstractions before adding them to the context.

Objects

x:A in �

� � x : A

c:A in �

� � c : A

� � M1 : �x:A2. A1 � � M2 : A2

� � M1 M2 : [M2/x]A1

� � A1 : type �, x:A1 � M2 : A2

� � λx:A1. M2 : �x:A1. A2

� � M : A � � A = B : type

� � M : B
.
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Families
a:K in �

� � a : K

� � A : �x:B. K � � M : B

� � A M : [M/x]K

� � A1 : type �, x:A1 � A2 : type

� � �x:A1. A2 : type

� � A : K � � K = L : kind

� � A : L
.

Kinds

� � type : kind

� � A : type �, x:A � K : kind

� � �x:A. K : kind
.

2.5 Definitional Equality

The rules for definitional equality are written with the presupposition that
a valid signature � is fixed and that all contexts � are valid. The intent is
that equality implies validity of the objects, families, or kinds involved (see
Lemma 2.7). In the original formulation of LF [Harper et al. 1993] equality is
defined as the least equivalence relation containing all instances (well-typed
or not) of βη reduction. Here instead we define equality directly by an induc-
tive definition based on parallel conversion together with the principle of ex-
tensionality. We believe this is a robust foundation that is easily extended to
more expressive type theories. Moreover, this formulation allows the equality
judgment to be relatively independent from the typing judgment, thereby sim-
plifying the completeness proof of our algorithm. It does not otherwise appear
to be essential. The use of extensionality on the other hand is central.

Characteristically for parallel conversion, reflexivity is admissible
(Lemma 2.2) which significantly simplifies the completeness proof for the
algorithm to check equality. We enclose admissible rules are in [brackets].
Some of the typing premises in the rules are redundant, but for technical
reasons we cannot prove this until validity has been established. Such premises
are enclosed in {braces}. Alternatively, it may be sufficient to check validity
of the contexts at the leaves of the derivations (the cases for variables and
constants), a technique used both in the original presentation of LF [Harper
et al. 1993] and Pure Type Systems [Barendregt 1992].

Simultaneous Congruence

x:A in �

� � x = x : A

c:A in �

� � c = c : A
� � M1 = N1 : �x:A2. A1 � � M2 = N2 : A2

� � M1 M2 = N1 N2 : [M2/x]A1

� � A′
1 = A1 : type {� � A1 : type}

� � A′′
1 = A1 : type �, x:A1 � M2 = N2 : A2

� � λx:A′
1. M2 = λx:A′′

1. N2 : �x:A1. A2

.
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Extensionality

{� � M : �x:A1. A2} � � A1 : type
{� � N : �x:A1. A2} �, x:A1 � M x = N x : A2

� � M = N : �x:A1. A2
.

Parallel Conversion

{� � A1 : type} �, x:A1 � M2 = N2 : A2 � � M1 = N1 : A1

� � (λx:A1. M2) M1 = [N1/x]N2 : [M1/x]A2
.

Equivalence

� � M = N : A

� � N = M : A

� � M = N : A � � N = O : A

� � M = O : A[
� � M : A

� � M = M : A

]
.

Type Conversion

� � M = N : A � � A = B : type

� � M = N : B
.

Family Congruence

a:K in �

� � a = a : K

� � A = B : �x:C. K � � M = N : C

� � A M = B N : [M/x]K

� � A1 = B1 : type {� � A1 : type} �, x:A1 � A2 = B2 : type

� � �x:A1. A2 = �x:B1. B2 : type
.

Family Equivalence

� � A = B : K

� � B = A : K

� � A = B : K � � B = C : K

� � A = C : K[
� � A : K

� � A = A : K

]
.

Kind Conversion

� � A = B : K � � K = L : kind

� � A = B : L
.
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Kind Congruence

� � type = type : kind

� � A = B : type {� � A : type} �, x:A � K = L : kind

� � �x:A. K = �x:B. L : kind
.

Kind Equivalence

� � K = L : kind

� � L = K : kind

� � K = L : kind � � L = L′ : kind

� � K = L′ : kind[
� � K : kind

� � K = K : kind

]
.

2.6 Elementary Properties of Typing and Definitional Equality

We establish some elementary properties of the judgments pertaining to the
interpretation of contexts. There is an alternative route to these properties by
first introducing a notion of substitution and well-typed substitution.

First, we establish weakening for all judgments of the type theory. We use J
to stand for any of the relevant judgments of the type theory in order to avoid
repetitive statements. We extend the notation of substitution to all judgments
of the type theory in the obvious way. For example, if J is N : B then [M/x]J
is [M/x]N : [M/x]B.

LEMMA 2.1 (WEAKENING). If �, �′ � J, then �, x:A, �′ � J.

PROOF. By straightforward induction over the structure of the given
derivation.

Note that exchange for independent hypotheses and contraction are also ad-
missible, but we elide the statement of these properties here since they are
not needed for the results in this article. Next, we show that reflexivity is
admissible.

LEMMA 2.2 (REFLEXIVITY)

(1) If � � M : A, then � � M = M : A.
(2) If � � A : K , then � � A = A : K .
(3) If � � K : kind, then � � K = K : kind.

PROOF. By induction over the structure of the given derivations. In
each case, the result follows immediately from the available induction
hypotheses.

Next, we prove the central substitution property.

LEMMA 2.3 (SUBSTITUTION PROPERTY). Assume �, x:A, �′ is a valid context. If
� � M : A and �, x:A, �′ � J, then �, [M/x]�′ � [M/x]J.
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PROOF. By straightforward inductions over the structure of the given
derivations.

The next lemma applies in a number of the proofs in the remainder of this
section.

LEMMA 2.4 (CONTEXT CONVERSION). Assume �, x:A is a valid context and � �
B : type. If �, x:A � J and � � A = B : type, then �, x:B � J.

PROOF. Direct, taking advantage of weakening and substitution.

�, x:B � x : B By rule (variable)
� � B = A : type By symmetry from assumption
�, x:B � x : A By rule (type conversion)
�, x ′:A � [x ′/x]J By renaming from assumption
�, x:B, x ′:A � [x ′/x]J By weakening
�, x:B � [x/x ′][x ′/x]J By substitution property
�, x:B � J By definition of substitution

Besides substitution, we require functionality for the typing judgments. Note
that a stronger version of functionality for equality judgments must be post-
poned until validity (Lemma 2.7) has been proven. We state this in a slightly
more general form than required below in order to prove it inductively. In the
statement of functionality and throughout the remainder of the article, we tac-
itly assume that the given contexts are valid.

LEMMA 2.5 (FUNCTIONALITY FOR TYPING). Assume � � M = N : A, � � M :
A, and � � N : A.

(1) If �, x:A, �′ � P : B, then �, [M/x]�′ � [M/x]P = [N/x]P : [M/x]B.
(2) If �, x:A, �′ � B : K , then �, [M/x]�′ � [M/x]B = [N/x]B : [M/x]K .
(3) If �, x:A, �′ � K : kind, then �, [M/x]�′ � [M/x]K = [N/x]K : kind .

PROOF. By a straightforward induction on the given derivation D in each
case. We show some representative cases.

Case

D = �, x:A, �′ � x : A

� � M = N : A Assumption
�, [M/x]�′ � M = N : A By weakening

Case

D =
y :B in � or �′

�, x:A, �′ � y : B

y :B in � or y :[M/x]B in [M/x]�′ By definition of substitution
�, [M/x]�′ � y = y : [M/x]B By rule
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Case

D =
D1

�, x:A, �′ � P1 : �y :B2. B1

D2
�, x:A, �′ � P2 : B2

�, x:A, �′ � P1 P2 : [P2/ y]B1

�, [M/x]�′ � [M/x]P1 = [N/x]P1 : �y :[M/x]B2. [M/x]B1 By i.h. on D1
�, [M/x]�′ � [M/x]P2 = [N/x]P2 : [M/x]B2 By i.h. on D2
�, [M/x]�′ � ([M/x]P1) ([M/x]P2) = ([N/x]P1) ([N/x]P2)

: [([M/x]P2)/ y]([M/x]B1) By rule
�, [M/x]�′ � [M/x](P1 P2) = [N/x](P1 P2) : [M/x]([P2/ y]B1)

By properties of substitution

Case

D =
D1

�, x:A, �′ � B1 : type
D2

�, x:A, �′, y :B1 � P2 : B2

�, x:A, �′ � λy :B1. P2 : �y :B1. B2

�, [M/x]�′ � [M/x]B1 = [N/x]B1 : type By i.h. on D1
�, [M/x]�, y :[M/x]B1 � [M/x]P2 = [N/x]P2 : [M/x]B2 By i.h. on D2
�, [M/x]� � [M/x]B1 : type By substitution property
�, [M/x]� � [M/x]B1 = [M/x]B1 : type By reflexivity
�, [M/x]� � [N/x]B1 = [M/x]B1 : type By symmetry
�, [M/x]� � λy :[M/x]B1. P2 = λy :[N/x]B1. [N/x]P2 : �y :[M/x]B1. [M/x]B2

By rule

Case

D =
D1

�, x:A, �′ � P : C
D2

�, x:A, �′ � C = B : type

�, x:A, �′ � P : B

�, [M/x]�′ � [M/x]P = [N/x]P : [M/x]C By i.h. on D1
�, [M/x]�′ � [M/x]C = [M/x]B : type By substitution property
�, [M/x]�′ � [M/x]P = [N/x]P : [M/x]B By rule (type conversion)

We have to postpone the general inversion properties until validity
(Lemma 2.7) has been proven. However, we need the simpler property of in-
version on products in order to prove validity.

LEMMA 2.6 (INVERSION ON PRODUCTS)

(1) If � � �x:A1. A2 : K , then � � A1 : type, and �, x:A1 � A2 : type.
(2) If � � �x:A. K : kind, then � � A : type and �, x:A � K : kind.

PROOF. Part (1) follows by induction on the given derivation since it is stated
for general kinds K . Part (2) is immediate by inversion.

Now we have the necessary properties to prove the critical validity property.
Recall our general assumption that all signatures are valid.
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LEMMA 2.7 (VALIDITY)

(1) If � � M : A, then � � A : type.
(2) If � � M = N : A, then � � M : A, � � N : A, and � � A : type.
(3) If � � A : K , then � � K : kind.
(4) If � � A = B : K , then � � A : K , � � B : K , and � � K : kind .
(5) If � � K = L : kind, then � � K : kind and � � L : kind .

PROOF. By a straightforward simultaneous induction on derivations. Func-
tionality for typing (Lemma 2.5) is required to handle the case of applications.
The typing premises on the rule of extensionality ensure that strengthening is
not required.

Case

E =
E1

� � M1 = N1 : �x:A2. A1

E2
� � M2 = N2 : A2

� � M1 M2 = N1 N2 : [M2/x]A1

� � M1 : �x:A2. A1
� � N1 : �x:A2. A1
� � �x:A2. A1 : type By i.h. on E1
� � M2 : A2
� � N2 : A2
� � A2 : type By i.h. on E2
�, x:A2 � A1 : type By inversion on products (Lemma 2.6)
� � [M2/x]A1 : type By substitution property
� � M1 M2 : [M2/x]A1 By rule
� � N1 N2 : [N2/x]A1 By rule
� � [M2/x]A1 = [N2/x]A1 : type By functionality (Lemma 2.5)
� � N1 N2 : [M2/x]A1 By symmetry and type conversion

With the central validity property, we can show a few other syntactic results.
The first of these is that functionality holds even for the equality judgments.
Since this can be proven directly, we state it in the more restricted form in
which it is needed subsequently.

LEMMA 2.8 (FUNCTIONALITY FOR EQUALITY). Assume � � M = N : A.

(1) If �, x:A � O = P : B, then � � [M/x]O = [N/x]P : [M/x]B.
(2) If �, x:A � B = C : K , then � � [M/x]B = [N/x]C : [M/x]K .
(3) If �, x:A � K = L : kind, then � � [M/x]K = [N/x]L : kind .

PROOF. Direct, using validity, substitution, and functionality for typing. We
show only the proof of part (1).

�, x:A � O = P : B Assumption
� � M = N : A Assumption
� � M : A By validity
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� � N : A By validity
� � [M/x]O = [M/x]P : [M/x]B By substitution
�, x:A � P : B By validity
� � [M/x]P = [N/x]P : [M/x]B By functionality for typing (Lemma 2.5)
� � [M/x]O = [N/x]P : [M/x]B By rule (transitivity)

At the level of objects it is also possible to derive functionality by introducing
λ-abstractions, applications, and parallel conversion. However, this is not pos-
sible at the level of families, since there is no corresponding λ-abstraction.

The second consequence of validity is a collection of inversion properties
which generalize inversion of products (Lemma 2.6).

LEMMA 2.9 (TYPING INVERSION)

(1) If � � x : A, then x:B in � and � � A = B : type for some B.
(2) If � � c : A, then c:B in � and � � A = B : type for some B.
(3) If � � M1 M2 : A, then � � M1 : �x:A2. A1, � � M2 : A2 and � �

[M2/x]A1 = A : type for some A1 and A2.
(4) If � � λx:A. M : B, then � � B = �x:A. A′ : type, � � A : type, and

�, x:A � M : A′ for some A′.
(5) If � � �x:A1. A2 : K , then � � K = type : kind, � � A1 : type and

�, x:A1 � A2 : type.
(6) If � � a : K , then a:L in � and � � K = L : kind for some L.
(7) If � � A M : K , then � � A : �x:A1. K2, � � M : A1, and � � K =

[M/x]K2 : kind for some A1 and K2.
(8) If � � �x:A1. K2 : kind, then � � A1 : type and �, x:A1 � K2 : kind .

PROOF. By a straightforward induction on typing derivations. Validity is
needed in most cases in order to apply reflexivity.

We can now show that some of the typing premises in the inference rules are
redundant.

LEMMA 2.10 (REDUNDANCY OF TYPING PREMISES). The indicated typing pre-
mises in the rules of parallel conversion, family congruence, and kind congruence
are redundant.

PROOF. Straightforward from validity.

LEMMA 2.11 (EQUALITY INVERSION)

(1) If � � A = �x:B1. B2 : type or � � �x:B1. B2 = A : type, then A =
�x:A1. A2 for some A1 and A2 such that � � A1 = B1 : type and �, x:A1 �
A2 = B2 : type.

(2) If � � K = type : kind or � � type = K : kind, then K = type.
(3) If � � K = �x:B1. L2 : kind or � � �x:B1. L2 = K : kind, then K =

�x:A1. K2 such that � � A1 = B1 : type and �, x:A1 � K2 = L2 : kind.
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PROOF. By induction on the given equality derivations. There are some sub-
tle points in the proof of part (1), so we show two cases. Note that adding a
family-level λ would prevent proving this result at such an early stage.

Case

E =
E1

� � A = C : type
E2

� � C = �x:B1. B2 : type

� � A = �x:B1. B2 : type

C = �x:C1. C2 for some C1 and C2 such that
� � C1 = B1 : type and
�, x:C1 � C2 = B2 : type By i.h. (1) on E2
A = �x:A1. A2 for some A1 and A2 such that
� � A1 = C1 : type and
�, x:A1 � A2 = C2 : type By i.h. (1) on E1
� � A1 = B1 : type By rule (transitivity)
�, x:A1 � C2 = B2 : type By context conversion (Lemma 2.4)
�, x:A1 � A2 = B2 : type By rule (transitivity)

Case

E =
E1

� � A = �x:B1. B2 : K
E2

� � K = type : kind

� � A = �x:B1. B2 : type

K = type By i.h. (2) on E2
A = �x:A1. A2 for some A1 and A2 such that
� � A1 = B1 : type and
�, x:A1 � A2 = B2 : type By i.h. (1) on E1

LEMMA 2.12 (INJECTIVITY OF PRODUCTS)

(1) If � � �x:A1. A2 = �x:B1. B2 : type, then � � A1 = B1 : type and
�, x:A1 � A2 = B2 : type.

(2) If � � �x:A1. K2 = �x:B1. L2 : kind, then � � A1 = B1 : type and
�, x:A1 � K2 = L2 : kind.

PROOF. Immediate by equality inversion (Lemma 11).

3. ALGORITHMIC EQUALITY

The algorithm for deciding equality can be summarized as follows:

(1) When comparing objects at function type, apply extensionality.
(2) When comparing objects at base type, reduce both sides to weak head-

normal form and then compare heads directly and, if they are equal, each
corresponding pair of arguments according to their type.

Since this algorithm is type-directed in case (1) we need to carry types. Un-
fortunately, this makes it difficult to prove correctness of the algorithm in the
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presence of dependent types, because transitivity is not an obvious property.
The informal description above already contains a clue to the solution: we do
not need to know the precise type of the objects we are comparing, as long as
we know that they are functions.

We therefore define a calculus of simple types and an erasure function ()−

that eliminates dependencies for the purpose of this algorithm. The same idea is
used later in the definition of the Kripke logical relation to prove completeness
of the algorithm.

We write α to stand for simple base types and we have two special type
constants, type− and kind−, for the equality judgments at the level of types and
kinds.

Simple Kinds κ ::= type− | τ → κ

Simple Types τ ::= α | τ1 → τ2
Simple Contexts � ::= · | �, x:τ

We use τ, θ , δ for simple types and �, � for contexts declaring simple types
for variables. We also use kind− in a similar role to kind in the LF type theory.

We write A− for the simple type that results from erasing dependencies in A,
and similarly K −. We translate each constant type family a to a base type a−

and extend this to all type families. We extend it further to contexts by applying
it to each declaration.

(a)− = a−

(A M )− = A−

(�x:A1. A2)− = A−
1 → A−

2

(type)− = type−

(�x:A. K )− = A− → K −

(kind)− = kind−

(·)− = ·
(�, x:A)− = �−, x:A−

We need the property that the erasure of a type or kind remains invariant
under equality and substitution.

LEMMA 3.1 (ERASURE PRESERVATION)

(1) If � � A = B : K , then A− = B−.
(2) If � � K = L : kind, then K − = L−.
(3) If �, x:A � B : K , then B− = [M/x]B−.
(4) If �, x:A � K : kind, then K − = [M/x]K −.

PROOF. By induction over the structure of the given derivations.

We now present the algorithm in the form of three judgments.

M
whr−→ M ′ (M weak head reduces to M ′). Algorithmically, we assume M is
given and compute M ′ (if M is head reducible) or fail.
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� � M ⇐⇒ N : τ (M is equal to N at simple type τ ). Algorithmically, we as-
sume �, M , N , and τ are given and we simply succeed or fail. We only apply
this judgment if M and N have the same type A and τ = A−.

� � M ←→ N : τ (M is structurally equal to N ) Algorithmically, we assume
that �, M and N are given and we compute τ or fail. If successful, τ will
be the approximate type of M and N .

Note that the structural and type-directed equality are mutually recursive,
while weak head reduction does not depend on the other two judgments.

Weak Head Reduction

(λx:A1. M2) M1
whr−→ [M1/x]M2

M1
whr−→ M ′

1

M1 M2
whr−→ M ′

1 M2

.

Type-Directed Object Equality

M
whr−→ M ′ � � M ′ ⇐⇒ N : α

� � M ⇐⇒ N : α

N
whr−→ N ′ � � M ⇐⇒ N ′ : α

� � M ⇐⇒ N : α

� � M ←→ N : α

� � M ⇐⇒ N : α

�, x:τ1 � M x ⇐⇒ N x : τ2

� � M ⇐⇒ N : τ1 → τ2
.

Structural Object Equality

x:τ in �

� � x ←→ x : τ

c:A in �

� � c ←→ c : A−

� � M1 ←→ N1 : τ2 → τ1 � � M2 ⇐⇒ N2 : τ2

� � M1 M2 ←→ N1 N2 : τ1
.

We mirror these judgments at the level of families. Due to the absence of
λ-abstraction at this level, the kind-directed and structural equality are rather
close. However, in the later development and specifically the proof that logically
related terms are algorithmically equal (Theorem 4.2), the distinction is still
convenient.

Kind-Directed Family Equality

� � A ←→ B : type−

� � A ⇐⇒ B : type−
�, x:τ � A x ⇐⇒ B x : κ

� � A ⇐⇒ B : τ → κ

� � A1 ⇐⇒ B1 : type− �, x:A−
1 � A2 ⇐⇒ B2 : type−

� � �x:A1. A2 ⇐⇒ �x:B1. B2 : type− .

Structural Family Equality

a:K in �

� � a ←→ a : K −
� � A ←→ B : τ → κ � � M ⇐⇒ N : τ

� � A M ←→ A N : κ
.
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Algorithmic Kind Equality

� � type ⇐⇒ type : kind−

� � A ⇐⇒ B : type− �, x:A− � K ⇐⇒ L : kind−

� � �x:A. K ⇐⇒ �x:B. L : kind− .

The algorithmic equality satisfies some straightforward structural proper-
ties. Weakening is required in the proof of its correctness. It does not appear
that exchange, contraction, or strengthening are needed in our particular ar-
gument, but these properties can all be easily proven. Note that versions of
the logical relations proofs nonetheless apply in the linear, strict, and affine
λ-calculi.

LEMMA 3.2 (WEAKENING OF ALGORITHMIC EQUALITY). For each algorithmic
equality judgment J, if �, �′ � J, then �, x:τ, �′ � J.

PROOF. By straightforward induction over the structure of the given
derivations.

The algorithm is essentially deterministic in the sense that when comparing
terms at base type we have to weakly head-normalize both sides and compare
the results structurally. This is because terms that are weakly head reducible
will never be considered structurally equal.

LEMMA 3.3 (DETERMINACY OF ALGORITHMIC EQUALITY)

(1) If M
whr−→ M ′ and M

whr−→ M ′′, then M ′ = M ′′.
(2) If � � M ←→ N : τ , then there is no M ′ such that M

whr−→ M ′.
(3) If � � M ←→ N : τ , then there is no N ′ such that N

whr−→ N ′.
(4) If � � M ←→ N : τ and � � M ←→ N : τ ′, then τ = τ ′.
(5) If � � A ←→ B : κ and � � A ←→ B : κ ′, then κ = κ ′.

PROOF. The first part and parts (4) and (5) are immediate by structural
induction. We only show the second part, since the third part is symmetric.
Assume

S
� � M ←→ N : τ and

W
M

whr−→ M ′

for some M ′. We now show by simultaneous induction over S and W that these
assumptions are contradictory. Whenever we have constructed a judgment such
there is no rule that could conclude this judgment, we say we obtain a contra-
diction by inversion.

Case

S = x:τ in �

� � x ←→ x : τ
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x
whr−→ M ′ Assumption (W)

Contradiction By inversion

Case. Structural equality of constants is impossible as in the case for
variables.

Case

S =
S1

� � M1 ←→ N1 : τ2 → τ1

T2
� � M2 ⇐⇒ N2 : τ2

� � M1 M2 ←→ N1 N2 : τ1

Here we distinguish two subcases for the derivation W of M1 M2
whr−→ M ′.

Subcase:

W =
(λx:A1. M ′

1) M2
whr−→ [M2/x]M ′

1

M1 = (λx:A1. M ′
1) Assumption

� � M1 ←→ N1 : τ2 → τ1 Assumption (S1)
Contradiction By inversion

Subcase:

W =
W1

M1
whr−→ M ′

1

M1 M2
whr−→ M ′

1 M2

� � M1 ←→ N1 : τ2 → τ1 Assumption (S1)
Contradiction By ind. hyp. on W1 and S1

The completeness proof requires symmetry and transitivity of the algorithm.
This would introduce some difficulty if the algorithm employed precise instead
of approximate types. This is one reason why both the algorithm and later the
logical relation are defined using approximate types only.

LEMMA 3.4 (SYMMETRY OF ALGORITHMIC EQUALITY)

(1) If � � M ⇐⇒ N : τ , then � � N ⇐⇒ M : τ .
(2) If � � M ←→ N : τ , then � � N ←→ M : τ .
(3) If � � A ⇐⇒ B : κ, then � � B ⇐⇒ A : κ.
(4) If � � A ←→ B : κ, then � � B ←→ A : κ.
(5) If � � K ⇐⇒ L : kind−, then � � L ⇐⇒ K : kind−.

PROOF. By simultaneous induction on the given derivations.

LEMMA 3.5 (TRANSITIVITY OF ALGORITHMIC EQUALITY)

(1) If � � M ⇐⇒ N : τ and � � N ⇐⇒ O : τ , then � � M ⇐⇒ O : τ .
(2) If � � M ←→ N : τ and � � N ←→ O : τ , then � � M ←→ O : τ .
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(3) If � � A ⇐⇒ B : κ and � � B ⇐⇒ C : κ, then � � A ⇐⇒ C : κ.
(4) If � � A ←→ B : κ and � � B ←→ C : κ, then � � A ←→ C : κ.
(5) If � � K ⇐⇒ L : kind− and � � L ⇐⇒ L′ : kind−, then � � K ⇐⇒ L′ :

kind−.

PROOF. By simultaneous inductions on the structure of the given deriva-
tions. In each case, we may appeal to the induction hypothesis if one of the two
derivations is strictly smaller, while the other is either smaller or the same.
The proof requires determinacy (Lemma 3.3). We only show some cases in the
proof of property (1); others are direct. Assume we are given

TL
� � M ⇐⇒ N : τ and

TR
� � N ⇐⇒ O : τ

We have to construct a derivation of � � M ⇐⇒ O : τ . We distinguish cases
for TL and TR . In case one of them is the extensionality rule, the other must be
too, and the result follows easily from the induction hypothesis. We show the
remaining cases.

Case

TL = M
whr−→ M ′

T ′
L

� � M ′ ⇐⇒ N : α

� � M ⇐⇒ N : α

where TR is arbitrary.

� � M ′ ⇐⇒ O : α By ind. hyp. (1) on T ′
L and TR

� � M ⇐⇒ O : α By rule (whr left)

Case

TR = O
whr−→ O ′

T ′
R

� � N ⇐⇒ O ′ : α

� � N ⇐⇒ O : α

where TL arbitrary.

� � M ⇐⇒ O ′ : α By ind. hyp. (1) on TL and T ′
R

� � M ⇐⇒ O : α By rule (whr right)

Case

TL = N
whr−→ N ′

T ′
L

� � M ⇐⇒ N ′ : α

� � M ⇐⇒ N : α

, TR = N
whr−→ N ′′

T ′
R

� � N ′′ ⇐⇒ O : α

� � N ⇐⇒ O : α

N ′ = N ′′ By determinacy of weak head reduction (Lemma 3.3(1))
� � M ⇐⇒ O : α By ind. hyp. (1) on T ′

L and T ′
R .

Case

TL = N
whr−→ N ′

T ′
L

� � M ⇐⇒ N ′ : α

� � M ⇐⇒ N : α

and TR =
SR

� � N ←→ O : α

� � N ⇐⇒ O : α
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This case is impossible by determinacy of algorithmic equality (Lemma 3.3(2)).

Case

TL =
SL

� � M ←→ N : α

� � M ⇐⇒ N : α

and TR = N
whr−→ N ′

T ′
R

� � N ′ ⇐⇒ O : α

� � N ⇐⇒ O : α

This case is impossible by determinacy of algorithmic equality (Lemma 3.3(3)).

Case

TL =
SL

� � M ←→ N : α

� � M ⇐⇒ N : α

and TR =
SR

� � N ←→ O : α

� � N ⇐⇒ O : α

� � M ←→ O : α By ind. hyp. (2) on SL and SR
� � M ⇐⇒ O : α By rule

4. COMPLETENESS OF ALGORITHMIC EQUALITY

In this section, we develop the completeness theorem for the type-directed
equality algorithm. That is, if two terms are definitionally equal, the algorithm
will succeed. The goal is to present a flexible and modular technique which can
be adapted easily to related type theories, such as the one underlying the lin-
ear logical framework [Cervesato and Pfenning 2002; Vanderwaart and Crary
2002], one based on ordered logic [Polakow and Pfenning 1999; Polakow 2001],
or one including subtyping [Pfenning 1993] or proof irrelevance and intensional
types [Pfenning 2001]. Other techniques presented in the literature, particu-
larly those based on a notion of η-reduction, do not seem to adapt well to these
richer theories.

The central idea is to proceed by an argument via logical relations defined
inductively on the approximate type of an object, where the approximate type
arises from erasing all dependencies in an LF type.

The completeness direction of the correctness proof for type-directed equality
states:

If � � M = N : A, then �− � M ⇐⇒ N : A−.

One would like to prove this by induction on the structure of the derivation for
the given equality. However, such a proof attempt fails at the case for applica-
tion. Instead we define a logical relation � � M = N ∈ [[τ ]] that provides a
stronger induction hypothesis so that both

(1) if � � M = N : A, then �− � M = N ∈ [[A−]], and
(2) if �− � M = N ∈ [[A−]], then �− � M ⇐⇒ N : A−,

can be proved.
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4.1 A Kripke Logical Relation

We define a Kripke logical relation inductively on simple types. At base type, we
require the property we eventually would like to prove. At higher types, we
reduce the property to those for simpler types. We also extend it further to
include substitutions, where it is defined by induction over the structure of the
matching context.

We say that a context �′ extends � (written �′ ≥ �) if �′ contains all decla-
rations in � and possibly more.

(1) � � M = N ∈ [[α]] iff � � M ⇐⇒ N : α.
(2) � � M = N ∈ [[τ1 → τ2]] iff for every �′ extending � and for all M1 and N1

such that �′ � M1 = N1 ∈ [[τ1]], we have �′ � M M1 = N N1 ∈ [[τ2]].
(3) � � A = B ∈ [[type−]] iff � � A ⇐⇒ B : type−.
(4) � � A = B ∈ [[τ → κ]] iff for every �′ extending � and for all M and N

such that �′ � M = N ∈ [[τ ]], we have �′ � A M = B N ∈ [[κ]].
(5) � � σ = θ ∈ [[·]] iff σ = · and θ = ·.
(6) � � σ = θ ∈ [[�, x:τ ]] iff σ = (σ ′, M/x) and θ = (θ ′, N/x), where � � σ ′ =

θ ′ ∈ [[�]] and � � M = N ∈ [[τ ]].

Four general structural properties of the logical relations that we can show
directly by induction are exchange, weakening, contraction, and strengthening.
We will use only weakening.

LEMMA 4.1 (WEAKENING OF THE LOGICAL RELATIONS). For all logical relations
R, if �, �′ � R, then �, x:θ , �′ � R.

PROOF. By induction on the structure of the definition of R (either simple
type, kind, or context). We show only the proof for the relation on types: If
�, �′ � M ∈ [[τ ]], then �, x:θ , �′ � M = N ∈ [[τ ]].

Case. τ = α.

�, �′ � M = N ∈ [[α]] Assumption
�, �′ � M ⇐⇒ N : α By definition of [[α]]
�, x:θ , �′ � M ⇐⇒ N : α By weakening (Lemma 3.2)
�, x:θ , �′ � M = N ∈ [[α]] By definition of [[α]]

Case. τ = τ1 → τ2.

�, �′ � M = N ∈ [[τ1 → τ2]] Assumption
�+, x:θ , �′

+ � M1 = N1 ∈ [[τ1]]
for arbitrary �+ ≥ � and �′

+ ≥ �′ New assumption
(�+, x:θ , �′

+) ≥ (�, �′) By definition of ≥
�+, x:θ , �′

+ � M M1 = N N1 ∈ [[τ2]] By definition of [[τ1 → τ2]] and assumption
�, x:θ , �′ � M = N ∈ [[τ1 → τ2]] By definition of [[τ1 → τ2]]

4.2 Logically Related Terms Are Algorithmically Equal

It is straightforward to show that logically related terms are considered identi-
cal by the algorithm. This proof always proceeds by induction on the structure
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of the type. A small insight may be required to arrive at the necessary gen-
eralization of the induction hypothesis. Here, this involves the statement that
structurally equal terms are logically related. This has an important conse-
quence we will need later on, namely that variables and constants are logically
related to themselves.

THEOREM 4.2 (LOGICALLY RELATED TERMS ARE ALGORITHMICALLY EQUAL)

(1) If � � M = N ∈ [[τ ]], then � � M ⇐⇒ N : τ .
(2) If � � A = B ∈ [[κ]], then � � A ⇐⇒ B : κ.
(3) If � � M ←→ N : τ , then � � M = N ∈ [[τ ]].
(4) If � � A ←→ B : κ, then � � A = B ∈ [[κ]].

PROOF. By simultaneous induction on the structure of τ .

Case. τ = α, part (1).

� � M = N ∈ [[α]] Assumption
� � M ⇐⇒ N : α By definition of [[α]]

Case. κ = type−, part (2).

� � A = B ∈ [[type−]] Assumption
� � A ⇐⇒ B : type− By definition of [[type−]]

Case. τ = α, part (3).

� � M ←→ N : α Assumption
� � M ⇐⇒ N : α By rule
� � M = N ∈ [[α]] By definition of [[α]]

Case. κ = type−, part (4).

� � A ←→ B : type− Assumption
� � A ⇐⇒ B : type− By rule
� � A = B ∈ [[type−]] By definition of [[type−]]

Case. τ = τ1 → τ2, part (1).

� � M = N ∈ [[τ1 → τ2]] Assumption
�, x:τ1 � x ←→ x : τ1 By rule
�, x:τ1 � x = x ∈ [[τ1]] By i.h. (3) on τ1
�, x:τ1 � M x = N x ∈ [[τ2]] By definition of [[τ1 → τ2]]
�, x:τ1 � M x ⇐⇒ N x : τ2 By i.h. (1) on τ2
� � M ⇐⇒ N : τ1 → τ2 By rule

Case. κ = τ1 → κ2, part (2).

� � A = B ∈ [[τ1 → κ2]] Assumption
�, x:τ1 � x ←→ x : τ1 By rule
�, x:τ1 � x = x ∈ [[τ1]] By i.h. (3) on τ1
�, x:τ1 � A x = B x ∈ [[κ2]] By definition of [[τ1 → κ2]]
�, x:τ1 � A x ⇐⇒ B x : κ2 By i.h. (2) on κ2
� � A ⇐⇒ B : τ1 → κ2 By rule
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Case. τ = τ1 → τ2, part (3).

� � M ←→ N : τ1 → τ2 Assumption
�+ � M1 = N1 ∈ [[τ1]] for an arbitrary �+ ≥ � New assumption
�+ � M1 ⇐⇒ N1 : τ1 By i.h. (1) on τ1
�+ � M ←→ N : τ1 → τ2 By weakening (Lemma 3.2)
�+ � M M1 ←→ N N1 : τ2 By rule
�+ � M M1 = N N1 ∈ [[τ2]] By i.h. (3) on τ2
� � M = N ∈ [[τ1 → τ2]] By definition of [[τ1 → τ2]]

Case. κ = τ1 → κ2, part (4).

� � A ←→ B : τ1 → κ2 Assumption
�+ � M1 = N1 ∈ [[τ1]] for an arbitrary �+ ≥ � New assumption
�+ � M1 ⇐⇒ N1 : τ1 By i.h. (1) on τ1
�+ � A ←→ B : τ1 → κ2 By weakening (Lemma 3.2)
�+ � A M1 ←→ B N1 ∈ κ2 By rule
�+ � A M1 = B N1 ∈ [[κ2]] By i.h. (4) on κ2
� � A = B ∈ [[τ1 → κ2]] By definition of [[τ1 → κ2]]

4.3 Definitionally Equal Terms Are Logically Related

The other part of the logical relations argument states that two equal terms
are logically related. This requires a sequence of lemmas regarding algorithmic
equality and the logical relation.

LEMMA 4.3 (CLOSURE UNDER HEAD EXPANSION)

(1) If M
whr−→ M ′ and � � M ′ = N ∈ [[τ ]], then � � M = N ∈ [[τ ]].

(2) If N
whr−→ N ′ and � � M = N ′ ∈ [[τ ]], then � � M = N ∈ [[τ ]].

PROOF. Each part follows by induction on the structure of τ . We show only
the first, since the second is symmetric.

Case. τ = α.

M
whr−→ M ′ Assumption

� � M ′ = N ∈ [[α]] Assumption
� � M ′ ⇐⇒ N : α By definition of [[α]]
� � M ⇐⇒ N : α By rule (whr)
� � M = N ∈ [[α]] By definition of [[α]]

Case. τ = τ1 → τ2.

M
whr−→ M ′ Assumption

� � M ′ = N ∈ [[τ1 → τ2]] Assumption
�+ � M1 = N1 ∈ [[τ1]] for �+ ≥ � New assumption
�+ � M ′ M1 = N N1 ∈ [[τ2]] By definition of [[τ1 → τ2]]

M M1
whr−→ M ′ M1 By rule

ACM Transactions on Computational Logic, Vol. 6, No. 1, January 2005.



On Equivalence and Canonical Forms in the LF Type Theory • 85

�+ � M M1 = N N1 ∈ [[τ2]] By i.h. on τ2
� � M = N ∈ [[τ1 → τ2]] By definition of [[τ1 → τ2]]

LEMMA 4.4 (SYMMETRY OF THE LOGICAL RELATIONS)

(1) If � � M = N ∈ [[τ ]], then � � N = M ∈ [[τ ]].
(2) If � � A = B ∈ [[κ]], then � � B = A ∈ [[κ]].
(3) If � � σ = θ ∈ [[�]], then � � θ = σ ∈ [[�]].

PROOF. By induction on the structure of τ , κ, and �, using Lemma 3.4. We
show some representative cases.

Case. τ = α.

� � M = N ∈ [[α]] Assumption
� � M ⇐⇒ N : α By definition of [[α]]
� � N ⇐⇒ M : α By symmetry of type-directed equality (Lemma 3.4)
� � N = M ∈ [[α]] By definition of [[α]]

Case. τ = τ1 → τ2.

� � M = N ∈ [[τ1 → τ2]] Assumption
�+ � N1 = M1 ∈ [[τ1]] for �+ ≥ � New assumption
�+ � M1 = N1 ∈ [[τ1]] By i.h. on τ1
�+ � M M1 = N N1 ∈ [[τ2]] By definition of [[τ1 → τ2]]
�+ � N N1 = M M1 ∈ [[τ2]] By i.h. on τ2
� � N = M ∈ [[τ1]] By definition of [[τ1 → τ2]]

LEMMA 4.5 (TRANSITIVITY OF THE LOGICAL RELATIONS)

(1) If � � M = N ∈ [[τ ]] and � � N = O ∈ [[τ ]], then � � M = O ∈ [[τ ]].
(2) If � � A = B ∈ [[κ]] and � � B = C ∈ [[κ]], then � � A = C ∈ [[κ]].
(3) If � � σ = θ ∈ [[�]] and � � θ = δ ∈ [[�]], then � � σ = δ ∈ [[�]].

PROOF. By induction on the structure of τ , κ, and �, using Lemma 3.5. We
show some representative cases.

Case. τ = α. Then the properties follows from the definition of [[α]] and the
transitivity of type-directed equality (Lemma 3.5).

� � M = N ∈ [[α]] Assumption
� � N = O ∈ [[α]] Assumption
� � M ⇐⇒ N : α By definition of [[α]]
� � N ⇐⇒ O : α By definition of [[α]]
� � M ⇐⇒ O : α By transitivity of type-directed equality (Lemma 3.5)
� � M = O ∈ [[α]] By definition of [[α]]

Case. τ = τ1 → τ2.

� � M = N ∈ [[τ1 → τ2]] Assumption
� � N = O ∈ [[τ1 → τ2]] Assumption
�+ � M1 = O1 ∈ [[τ1]] for �+ ≥ � New assumption
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�+ � M M1 = N O1 ∈ [[τ2]] By definition of [[τ1 → τ2]]
�+ � O1 = M1 ∈ [[τ1]] By symmetry (Lemma 4.4)
�+ � O1 = O1 ∈ [[τ1]] By i.h. on τ1
�+ � N O1 = O O1 ∈ [[τ2]] By definition of [[τ1 → τ2]]
�+ � M M1 = O O1 ∈ [[τ2]] By i.h. on τ2
� � M = O ∈ [[τ1 → τ2]] By definition of [[τ1 → τ2]]

LEMMA 4.6 (DEFINITIONALLY EQUAL TERMS ARE LOGICALLY RELATED)

(1) If � � M = N : A and � � σ = θ ∈ [[�−]], then � � M [σ ] = N [θ ] ∈ [[A−]].
(2) If � � A = B : K and � � σ = θ ∈ [[�−]], then � � A[σ ] = B[θ ] ∈ [[K −]].

PROOF. By induction on the derivation D of definitional equality, using the
prior lemmas in this section. For this argument, some subderivations of the
equality judgment are unnecessary (in particular, those establishing the valid-
ity of certain types). We elide those premises and write “· · ·” instead.

Case

D = x:A in �

� � x = x : A

� � σ = θ ∈ [[�−]]
� � M = N ∈ [[A−]] for M/x in σ and N/x in θ By definition of [[�−]]
� � x[σ ] = x[θ ] ∈ [[A−]] By definition of substitution

Case

D = c:A in �

� � c = c : A

� � c ←→ c : A− By rule
� � c = c ∈ [[A−]] By Theorem 4.2(3)
� � c[σ ] = c[θ ] ∈ [[A−]] By definition of substitution

Case

D =
D1

� � M1 = N1 : �x:A2. A1

D2
� � M2 = N2 : A2

� � M1 M2 = N1 N2 : [M2/x]A1

� � M1[σ ] = N1[θ ] ∈ [[A−
2 → A−

1 ]] By i.h. on D1
� � M2[σ ] = N2[θ ] ∈ [[A−

2 ]] By i.h. on D2
� � (M1[σ ])(M2[σ ]) = (N1[θ ])(N2[θ ]) ∈ [[A−

1 ]] By definition of [[τ2 → τ1]]
� � (M1 M2)[σ ] = (N1 N2)[θ ] ∈ [[A−

1 ]] By definition of substitution

Case

D = . . .

D2
�, x:A1 � M2 = N2 : A2

� � λx:A′
1. M2 = λx:A′′

1. N2 : �x:A1. A2
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�+ � M1 = N1 ∈ [[A−
1 ]] for �+ ≥ � New assumption

�+ � σ = θ ∈ [[�−]] By weakening (Lemma 4.1)
�+ � (σ, M1/x) = (θ , N1/x) ∈ [[�−, x:A−

1 ]] By definition of [[�, x:τ ]]
�+ � M2[σ, M1/x] = N2[θ , N1/x] ∈ [[A−

2 ]] By i.h. on D2
�+ � (λx:A′

1[σ ]. M2[σ, x/x]) M1 = N2[θ , N1/x] ∈ [[A−
2 ]]

By closure under head expansion (Lemma 4.3)
�+ � (λx:A′

1[σ ]. M2[σ, x/x]) M1 = (λx:A′′
1[θ ]. N2[θ , x/x]) N1 ∈ [[A−

2 ]]
By closure under head expansion (Lemma 4.3)

�+ � ((λx:A′
1. M2)[σ ]) M1 = ((λx:A′′

1. N2)[θ ]) N1 ∈ [[A−
2 ]]

By properties of substitution
� � (λx:A′

1. M2)[σ ] = (λx:A′′
1. N2)[θ ] ∈ [[A−

1 → A−
2 ]] By definition of [[τ1 → τ2]]

Case

D = . . .

D2
�, x:A1 � M x = N x : A2

� � M = N : �x:A1. A2

�+ � M1 = N1 ∈ [[A−
1 ]] for �+ ≥ � New assumption

�+ � σ = θ ∈ [[�−]] By weakening (Lemma 4.1)
�+ � (σ, M1/x) = (θ , N1/x) ∈ [[�−, x:A−

1 ]] By definition of [[�, x:τ ]]
�+ � (M x)[σ, M1/x] = (N x)[θ , N1/x] ∈ [[A−

2 ]] By i.h. on D2
�+ � M [σ ] M1 = N [θ ] N1 ∈ [[A−

2 ]] By properties of substitution
� � M [σ ] = N [θ ] ∈ [[A−

1 → A−
2 ]] By definition of [[τ1 → τ2]]

Case

D = . . .

D2
�, x:A1 � M2 = N2 : A2

D1
� � M1 = N1 : A1

� � (λx:A1. M2) M1 = [N1/x]N2 : [M1/x]A2

� � σ = θ ∈ [[�−]] Assumption
� � M1[σ ] = N1[θ ] ∈ [[A−

1 ]] By i.h. on D1
� � (σ, M1[σ ]/x) = (θ , N1[θ ]/x) ∈ [[�−, x:A−

1 ]] By definition of [[�, x:τ1]]
� � M2[σ, M1[σ ]/x] = N2[θ , N1[θ ]/x] ∈ [[A−

2 ]] By i.h. on D2
� � [M1[σ ]/x](M2[σ, x/x]) = N2[θ , N1[θ ]/x] ∈ [[A−

2 ]]
By properties of substitution

� � (λx:A1[σ ]. M2[σ, x/x])(M1[σ ]) = N2[θ , N1[θ ]/x] ∈ [[A−
2 ]]

By closure under head expansion (Lemma 4.3)
� � ((λx:A1. M2) M1)[σ ] = ([N1/x]N2)[θ ] ∈ [[A−

2 ]] By properties of substitution
� � ((λx:A1. M2) M1)[σ ] = ([N1/x]N2)[θ ] ∈ [[[M1/x]A−

2 ]]
By erasure preservation (Lemma 3.1)

Case

D =
D′

� � N = M : A

� � M = N : A
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� � σ = θ ∈ [[�−]] Assumption
� � θ = σ ∈ [[�−]] By symmetry (Lemma 4.4)
� � N [θ ] = M [σ ] ∈ [[A−]] By i.h. on D′

� � M [σ ] = N [θ ] ∈ [[A−]] By symmetry (Lemma 4.4)

Case

D =
D1

� � M = O : A
D2

� � O = N : A

� � M = N : A

� � σ = θ ∈ [[�−]] Assumption
� � θ = σ ∈ [[�−]] By symmetry (Lemma 4.4)
� � θ = θ ∈ [[�−]] By transitivity (Lemma 4.5)
� � M [σ ] = O[θ ] ∈ [[A−]] By i.h. on D1
� � O[θ ] = N [θ ] ∈ [[A−]] By i.h. on D2
� � M [σ ] = N [θ ] ∈ [[A−]] By transitivity (Lemma 4.5)

Case

D =
D1

� � M = N : B � � B = A : type

� � M = N : A

� � M [σ ] = N [θ ] ∈ B− By i.h. on D1
� � M [σ ] = N [θ ] ∈ A− By erasure preservation (Lemma 3.1)

Case. � � a = a : K . As for constants c.

Case. � � A1 M2 = B1 N2 : [M2/x]K1. As for applications M1 M2.

Case

D =
D1

� � A1 = B1 : type
D2

�, x:A1 � A2 = B2 : type

� � �x:A1. A2 = �x:B1. B2 : type

� � A1[σ ] = B1[θ ] ∈ [[type−]] By i.h. on D1
� � A1[σ ] ⇐⇒ B1[θ ] : type− By definition of [[type−]]
�, x:A−

1 � x ←→ x : A−
1 By rule

�, x:A−
1 � x = x ∈ [[A−

1 ]] By Theorem 4.2(3)
�, x:A−

1 � (σ, x/x) = (θ , x/x) ∈ [[�−, x:A−
1 ]] By definition of [[�, x:τ1]]

�, x:A−
1 � A2[σ, x/x] = B2[θ , x/x] ∈ [[type−]] By i.h. on D2

�, x:A−
1 � A2[σ, x/x] ⇐⇒ B2[θ , x/x] : type− By definition of [[type−]]

� � �x:A1[σ ]. A2[σ, x/x] ⇐⇒ �x:B1[θ ]. B2[θ , x/x] : type− By rule
� � �x:A1[σ ]. A2[σ, x/x] = �x:B1[θ ]. B2[θ , x/x] ∈ [[type−]]

By definition of [[type−]]
� � (�x:A1. A2)[σ ] = (�x:B1. B2)[θ ] ∈ [[type−]] By definition of substitution

Case. Family symmetry rule. As for the object-level symmetry.

Case. Family transitivity rule. As for the object-level transitivity.

Case. Kind conversion rule. As for type conversion rule.
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LEMMA 4.7 (IDENTITY SUBSTITUTIONS ARE LOGICALLY RELATED)

�− � id� = id� ∈ [[�−]].

PROOF. By definition of [[�−]] and part (3) of Theorem 4.2.

THEOREM 4.8 (DEFINITIONALLY EQUAL TERMS ARE LOGICALLY RELATED).

(1) If � � M = N : A, then �− � M = N ∈ [[A−]].
(2) If � � A = B : K , then �− � A = B ∈ [[K −]].

PROOF. Directly by Lemmas 4.6 and 4.7.

COROLLARY 4.9 (COMPLETENESS OF ALGORITHMIC EQUALITY)

(1) If � � M = N : A, then �− � M ⇐⇒ N : A−.
(2) If � � A = B : K , then �− � A ⇐⇒ B : K −.

PROOF. Directly by Theorem 4.8 and Theorem 4.2.

5. SOUNDNESS OF ALGORITHMIC EQUALITY

In general, the algorithm for type-directed equality is not sound. However, when
applied to valid objects of the same type, it is sound and relates only equal terms.
This direction requires a number of lemmas established in Section 2.6, but is
otherwise mostly straightforward.

LEMMA 5.1 (SUBJECT REDUCTION). If M
whr−→ M ′ and � � M : A, then � �

M ′ : A and � � M = M ′ : A.

PROOF. By induction on the definition of weak head reduction, making use
of the inversion and substitution lemmas.

Case

W =
(λx:A1. M2) M1

whr−→ [M1/x]M2

� � (λx:A1. M2) M1 : A Assumption
� � λx:A1. M2 : �x:B1. B2
� � M1 : B1
� � [M1/x]B2 = A : type By inversion (Lemma 2.9)
� � A1 : type
�, x:A1 � M2 : A2
� � �x:A1. A2 = �x:B1. B2 : type By inversion (Lemma 2.9)
� � A1 = B1 : type
�, x:A1 � A2 = B2 : type By injectivity of products (Lemma 2.12)
� � [M1/x]M2 : [M1/x]A2 By substitution (Lemma 2.3)
� � [M1/x]A2 = [M1/x]B2 : type By substitution (Lemma 2.3)
� � [M1/x]A2 = A : type By transitivity
� � [M1/x]M2 : A By rule (type conversion)
� � A1 : type Copied from above
�, x:A1 � M2 = M2 : A2 By reflexivity
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� � M1 = M1 : A1 By reflexivity
� � (λx:A1.M2) M1 = [M1/x]M2 : [M1/x]A2 By rule (parallel conversion)
� � (λx:A1.M2) M1 = [M1/x]M2 : A By rule (type conversion)

Case

W =
W1

M1
whr−→ M ′

1

M1 M2
whr−→ M ′

1 M2

� � M1 M2 : A Assumption
� � M1 : �x:A2. A1
� � M2 : A2
� � [M2/x]A1 = A : type By inversion (Lemma 2.9)
� � M ′

1 : �x:A2. A1 By i.h. on W1
� � M ′

1 M2 : [M2/x]A1 By rule (application)
� � M ′

1 M2 : A By rule (type conversion)
� � M1 = M ′

1 : �x:A2. A1 By inductive hypothesis
� � M2 = M2 : A2 By reflexivity
� � M1 M2 = M ′

1 M2 : [M2/x]A1 By rule (simultaneous congruence)
� � M1 M2 = M ′

1 M2 : A By rule (type conversion)

For the soundness of algorithmic equality, we need subject reduction and
validity (Lemma 2.7).

THEOREM 5.2 (SOUNDNESS OF ALGORITHMIC EQUALITY)

(1) If � � M : A and � � N : A and �− � M ⇐⇒ N : A−, then � � M = N : A.
(2) If � � M : A and � � N : B and �− � M ←→ N : τ , then � � M = N : A,

� � A = B : type and A− = B− = τ .
(3) If � � A : K and � � B : K and �− � A ⇐⇒ B : K −, then � � A = B : K .
(4) If � � A : K and � � B : L and �− � A ←→ B : κ, then � � A = B : K ,

� � K = L : kind and K − = L− = κ.
(5) If � � K : kind and � � L : kind and �− � K ⇐⇒ L : kind−, then

� � K = L : kind.

PROOF. By induction on the structure of the given derivations for algorithmic
equality, using validity and inversion on the typing derivations.

Case

T =
x:τ in �−

�− � x ←→ x : τ

� � x : A Assumption
� � x : B Assumption
x:C in �, � � C = A : type, � � C = B : type By inversion (Lemma 2.9)
� � A = B : type By symmetry and transitivity
� � x = x : C By rule
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� � x = x : A By type conversion
A− = B− = C− = τ By erasure preservation (Lemma 3.1)

Case. T ends in an equality of constants. Like the previous case.
Case

T =
T1

�− � M1 ←→ N1 : τ2 → τ1

T2
�− � M2 ⇐⇒ N2 : τ2

�− � M1 M2 ←→ N1 N2 : τ1

� � M1 M2 : A Assumption
� � N1 N2 : B Assumption
� � M1 : �x:A2. A1,
� � M2 : A2, and
� � [M2/x]A1 = A : type By inversion (Lemma 2.9)
� � �x:A2. A1 : type By validity (Lemma 2.7)
� � A2 : type
�, x:A2 � A1 : type By inversion (Lemma 2.9)
� � N1 : �x:B2. B1,
� � N2 : B2, and
� � [N2/x]B1 = B : type By inversion (Lemma 2.9)
� � �x:B2. B1 : type By validity (Lemma 2.7)
� � B2 : type
�, x:B2 � B1 : type By inversion
� � M1 = N1 : �x:A2. A1,
� � �x:A2. A1 = �x:B2. B1 : type, and
(�x:A2. A1)− = (�x:B2. B1)− = τ2 → τ1 By i.h. on T1
� � A2 = B2 : type and
�, x:A2 � A1 = B1 : type By injectivity of products (Lemma 2.12)
� � N2 : A2 By symmetry and type conversion
� � M2 = N2 : A2 By i.h. on T2
� � M1 M2 = N1 N2 : [M2/x]A1 By rule
� � M1 M2 = N1 N2 : A By type conversion
� � [M2/x]A1 = [N2/x]B1 : type By family functionality
A− = A−

1 = B−
1 = B− = τ1 By erasure preservation

Case

T =
W

M
whr−→ M ′

T ′

�− � M ′ ⇐⇒ N : P−

�− � M ⇐⇒ N : P−

� � M : P Assumption
� � N : P Assumption
� � M ′ : P By subject reduction (Lemma 5.1)
� � M ′ = N : P By i.h. on T ′

� � M = M ′ : P By subject reduction (Lemma 5.1)
� � M = N : P By transitivity
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Case. Reduction on the right-hand side follows similarly.
Case

T =
S

�− � M ←→ N : P−

�− � M ⇐⇒ N : P−

� � M : P Assumption
� � N : P Assumption
� � M = N : P By i.h. on S

Case

T =
T2

�−, x:τ1 � M x ⇐⇒ N x : τ2

�− � M ⇐⇒ N : τ1 → τ2

� � M : �x:A1. A2 Assumption
� � N : �x:A1. A2 Assumption
� � �x:A1. A2 : type By assumption
� � A1 : type
�, x:A1 � A2 : type By inversion (Lemma 2.9)
A−

1 = τ1 and A−
2 = τ2 Assumption and definition of ()−

�, x:A1 � M x : A2 By weakening and rule
�, x:A1 � N x : A2 By weakening and rule
�, x:A1 � M x = N x : A2 By i.h. on T2
� � M = N : �x:A1. A2 By extensionality rule

COROLLARY 5.3 (LOGICALLY RELATED TERMS ARE DEFINITIONALLY EQUAL)

(1) If � � M : A, � � N : A, and �− � M = N ∈ [[A−]] , then � � M = N : A.
(2) If � � A : K , � � B : K , and �− � A = B ∈ [[K −]], then � � A = B : K .

PROOF. Direct from the assumptions and prior theorems. We show the proof
for the first case.

�− � M = N ∈ [[A−]] Assumption
�− � M ⇐⇒ N : A− By Theorem 4.2
� � M = N : A By Theorem 5.2

6. DECIDABILITY OF DEFINITIONAL EQUALITY AND TYPE-CHECKING

In this section, we show that the judgment for algorithmic equality constitutes
a decision procedure on valid terms of the same type. This result is then lifted
to yield decidability of all judgments in the LF type theory.

The first step is to show that equality is decidable for terms that are algo-
rithmically equal to themselves. Note that this property does not depend on
the soundness or completeness of algorithmic equality—it is a purely syntactic
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result. The second step uses completeness of algorithmic equality and reflex-
ivity to show that every well-typed term is algorithmically equal to itself.
These two observations, together with soundness and completeness of algo-
rithmic equality, yield the decidability of definitional equality for well-typed
terms.

We say an object is normalizing iff it is related to some term by the type-
directed equivalence algorithm. More precisely, M is normalizing at simple
type τ iff � � M ⇐⇒ M ′ : τ for some term M ′. Note that by symmetry and
transitivity of the algorithms, this implies that � � M ⇐⇒ M : τ . A term
M is structurally normalizing iff it is related to some term by the structural
equivalence algorithm. That is, M is structurally normalizing iff � � M ←→
M ′ : τ for some M ′. A similar definition applies to families and kinds. Equality
is decidable on normalizing terms.

LEMMA 6.1 (DECIDABILITY FOR NORMALIZING TERMS)

(1) If � � M ⇐⇒ M ′ : τ and � � N ⇐⇒ N ′ : τ , then it is decidable whether
� � M ⇐⇒ N : τ .

(2) If � � M ←→ M ′ : τ1 and � � N ←→ N ′ : τ2, then it is decidable whether
� � M ←→ N : τ3 for some τ3.

(3) If � � A ⇐⇒ A′ : κ and � � B ⇐⇒ B′ : κ, then it is decidable whether
� � A ⇐⇒ B : κ.

(4) If � � A ←→ A′ : κ1 and � � B ←→ B′ : κ2, then it is decidable whether
� � A ←→ B : κ3 for some κ3.

(5) If � � K ⇐⇒ K ′ : kind− and � � L ⇐⇒ L′ : kind−, then it is decidable
whether � � K ⇐⇒ L : kind−.

PROOF. We only sketch the proof of the first two properties—the others are
similar. First note that � � M ⇐⇒ N : τ iff � � M ′ ⇐⇒ N : τ iff � � M ⇐⇒
N ′ : τ iff � � M ′ ⇐⇒ N ′ : τ , so decidability of one implies decidability of
the others with equal results. Given this observation, we prove parts (1) and
(2) by simultaneous structural inductions on the given derivations. The critical
lemma is the determinacy of algorithmic equality (Lemma 3.3).

Now we can show decidability of equality via reflexivity and completeness of
algorithmic equality.

THEOREM 6.2 (DECIDABILITY OF ALGORITHMIC EQUALITY)

(1) If � � M : A and � � N : A, then it is decidable whether �− � M ⇐⇒ N :
A− .

(2) If � � A : K and � � B : K , then it is decidable whether �− � A ⇐⇒ B : K −.
(3) If � � K : kind and � � L : kind , then it is decidable whether �− � K ⇐⇒

L : kind−.

PROOF. We show only the proof of part (1) since the others are analogous.
By reflexivity of definitional equality (Lemma 2.2) and the completeness of

algorithmic equality (Corollary 4.9), both M and N are normalizing. Hence, by
Lemma 6.1, algorithmic equivalence is decidable.
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COROLLARY 6.3 (DECIDABILITY OF DEFINITIONAL EQUALITY)

(1) If � � M : A and � � N : A, then it is decidable whether � � M = N : A.
(2) If � � A : K and � � B : K , then it is decidable whether � � A = B : K .
(3) If � � K : kind and � � L : kind , then it is decidable whether � � K = L :

kind .

PROOF. By soundness and completeness it suffices to check algorithmic
equality which is decidable by Theorem 6.2.

We now present an algorithmic version of type-checking that uses algorith-
mic equality as an auxiliary judgment. This is a purely bottom-up type-checker;
more complicated strategies can also be justified with our results, but are be-
yond the scope of this article.

Objects

x:A in �

� � x ⇒ A

c:A in �

� � c ⇒ A

� � M1 ⇒ �x:A′
2. A1 � � M2 ⇒ A2 �− � A′

2 ⇐⇒ A2 : type−

� � M1 M2 ⇒ [M2/x]A1

� � A1 ⇒ type �, x:A1 � M2 ⇒ A2

� � λx:A1. M2 ⇒ �x:A1. A2
.

Families

a ⇒ K in �

� � a ⇒ K

� � A ⇒ �x:B′. K � � M ⇒ B �− � B′ ⇐⇒ B : type−

� � A M ⇒ [M/x]K

� � A1 ⇒ type �, x:A1 � A2 ⇒ type

� � �x:A1. A2 ⇒ type
.

Kinds

� � type ⇒ kind

� � A ⇒ type �, x:A � K ⇒ kind

� � �x:A. K ⇒ kind
.

Similar rules exist for checking validity of signatures and contexts.

LEMMA 6.4 (CORRECTNESS OF ALGORITHMIC TYPE-CHECKING)

(1) (Soundness) If � � M ⇒ A, then � � M : A.
(2) (Completeness) If � � M : A, then � � M ⇒ A′ for some A′ such that

� � A = A′ : type .
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PROOF

Part (1) follows by induction on the structure of the algorithmic derivation,
using validity (Theorem 2.7), soundness of algorithmic equality (Theorem 5.2)
and the rule of type conversion.

Part (2) follows by induction on the structure of the typing derivation, using
transitivity of equality, inversion on type equality, and completeness of algo-
rithmic equality.

THEOREM 6.5 (DECIDABILITY OF TYPE-CHECKING)

(1) It is decidable if � is valid.
(2) Given a valid �, M, and A, it is decidable whether � � M : A.
(3) Given a valid � , A, and K , it is decidable whether � � A : K .
(4) Given a valid � and K , it is decidable whether � � K : kind .

PROOF. Since the algorithmic typing rules are syntax-directed and algorith-
mic equality is decidable (Theorem 6.2), there either exists a unique A′ such
that � � M ⇒ A′ or there is no such A′. By correctness of algorithmic type-
checking we then have � � M : A iff � � A′ = A : type, which is decidable by
Theorem 6.3.

The correctness of algorithmic type-checking also allows us to show strength-
ening, and a stronger form of the extensionality rule.

THEOREM 6.1 (STRENGTHENING). For each judgment J of the type theory, if
�, x:A, �′ � J and x /∈ FV (�′) ∪ FV (J ), then �, �′ � J.

PROOF. Strengthening for the algorithmic version of type-checking follows
by a simple structural induction, taking advantage of obvious strengthening for
algorithmic equality. Strengthening for the original typing rules then follows by
soundness and completeness of algorithmic typing. Strengthening for equality
judgments follows from completeness (Corollary 4.9), soundness (Theorem 5.2),
and strengthening for the typing judgment.

COROLLARY 6.2 (STRONG EXTENSIONALITY). The typing premises for M and N
in the extensionality rule are redundant. That is, the following strong form of
extensionality is admissible is admissible, provide x /∈ FV (M ) ∪ FV (N ):

� � A1 : type �, x:A1 � M x = N x : A2

� � M = N : �x:A1. A2
.

PROOF. By inversion and strengthening.

�, x:A1 � M x : A2 By validity
�, x:A1 � M : �x:B1. B2,
�, x:A1 � x : B1, and �, x:A1 � B2 = A2 : type By inversion (Lemma 2.9)
� � A1 = B1 : type By inversion and strengthening
� � �x:B1. B2 = �x:A1. A2 : type By rule
�, x:A1 � M : �x:A1. A2 By rule (type conversion)
� � M : �x:A1. A2 By strengthening
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� � N : �x:A1. A2 Similarly
� � M = N : �x:A1. A2 By extensionality

7. QUASI-CANONICAL FORMS

The representation techniques of LF mostly rely on compositional bijections be-
tween the expressions (including terms, formulas, deductions, etc.) of the object
language and canonical forms in a meta-language, where canonical forms are η-
long and β-normal forms. So if we are presented with an LF object M of a given
type A and we want to know which object-language expression M represents,
we convert it to canonical form and apply the inverse of the representation
function.

This leads to the question on how to compute the canonical form of a well-
typed object M of type A in an appropriate context �. Generally, we would like to
extract this information from a derivation that witnesses that M is normalizing,
that is, a derivation that shows that M is algorithmically equal to itself. This
idea cannot be applied directly in our situation, since a derivation �− � M ⇐⇒
M : A− yields no information on the type labels of the λ-abstractions in M .
Fortunately, these turn out to be irrelevant: if we have an object M of a given
type A which is in canonical form, possibly with the exception of some type
labels, then the type labels are actually uniquely determined up to definitional
equality.

We formalize this intuition by defining quasi-canonical forms (and the aux-
iliary notion of quasi-atomic forms) in which type-labels have been deleted. A
quasi-canonical form can easily be extracted from a derivation that shows that
a term is normalizing. Quasi-canonical forms are sufficient to prove adequacy
theorems for the representation, since the global type of a quasi-canonical form
is sufficient to extract an LF object unique up to definitional equality applied
to type labels. The set of quasi-canonical (QC) and quasi-atomic (QA) terms are
defined by the following grammar:

Quasi-canonical objects ¯̄M ::= M̄ | λx. ¯̄M
Quasi-atomic objects M̄ ::= x | c | M̄ ¯̄M

It is a simple matter to instrument the algorithmic equality relations to
extract a common quasi-canonical or quasi-atomic form for the terms being
compared. The instrumented rules are as follows:

Instrumented Type-Directed Object Equality

M
whr−→ M ′ � � M ′ ⇐⇒ N : α ⇑ ¯̄O

� � M ⇐⇒ N : α ⇑ ¯̄O

N
whr−→ N ′ � � M ⇐⇒ N ′ : α ⇑ ¯̄O

� � M ⇐⇒ N : α ⇑ ¯̄O

� � M ←→ N : α ↓ Ō

� � M ⇐⇒ N : α ⇑ ¯̄O

�, x:τ1 � M x ⇐⇒ N x : τ2 ⇑ ¯̄O

� � M ⇐⇒ N : τ1 → τ2 ⇑ λx. ¯̄O
.
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Instrumented Structural Object Equality

x:τ in �

� � x ←→ x : τ ↓ x

c:A in �

� � c ←→ c : A− ↓ c

� � M1 ←→ N1 : τ2 → τ1 ↓ Ō1 � � M2 ⇐⇒ N2 : τ2 ⇑ ¯̄O2

� � M1 M2 ←→ N1 N2 : τ1 ↓ Ō1
¯̄O2

.

It follows from the foregoing development that we can extract a unique quasi-
canonical form any well-formed term. We now have the following theorem re-
lating quasi-canonical forms to the usual development of the LF type theory.
We write |M | for the result of erasing the type labels from an object M .

THEOREM 7.1 (QUASI-CANONICAL AND QUASI-ATOMIC FORMS)

(1) If � � M1 : A and � � M2 : A and �− � M1 ⇐⇒ M2 : A− ⇓ ¯̄O, then there is
an N such that |N | = ¯̄O, � � N : A, � � M1 = N : A and � � M2 = N : A.

(2) If � � M1 : A1 and � � M2 : A2 and �− � M1 ←→ M2 : τ ⇑ Ō, then
� � A1 = A2 : type, A−

1 = A−
2 = τ and there is an N such that |N | = Ō,

� � N : A1, � � M1 = N : A1 and � � M2 = N : A1.

PROOF. By simultaneous induction on the instrumented equality deriva-
tions. It is critical that we have the types of the objects that are compared (and
not just the approximate type) so that we can use this information to fill in the
missing λ-labels.

Note the N in the theorem above is uniquely determined up to definitional
equality of the type labels, since ¯̄O and Ō determine N in all other respects.
This result shows that all adequacy proofs for LF representation on canonical
forms still hold. In fact, they can be carried out directly on quasi-canonical
forms.

We can also directly state and prove prove adequacy theorems for encod-
ings of logical systems in LF using quasi-canonical forms. It is interesting to
observe that the type labels on λ’s are not necessary for this purpose; in an
adequacy theorem, the type of the bound variable is determined from context.
For example, the following relation sets up a compositional (natural) bijection
between (a) terms and formulas of first-order logic over a given first-order sig-
nature and (b) quasi-canonical forms of types ι and o, respectively, in the signa-
ture of first-order logic. We only show an excerpt, illustrating the idea over the
signature

c f : ι → · · · → ι

c= : ι → ι → o
c∧ : o → o → o
c∀ : (ι → o) → o.

Let � be a context of the form x1:ι, . . . , xn:ι for some n ≥ 0. A correspondence
relation between terms and formulas with (free) variables among the x1, . . . , xn
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and quasi-canonical objects of type ι and o, respectively, over that signature and
context may be defined as follows:

� � x � x : ι

� � t1 � ¯̄M1 : ι . . . � � tn � ¯̄Mn : ι

� � f (t1, . . . , tn) � c f
¯̄M1 . . . ¯̄Mn : ι

� � t1 � ¯̄M1 : ι � � t2 � ¯̄M2 : ι

� � t1=t2 � c= ¯̄M1
¯̄M2 : o

� � φ1 � ¯̄M1 : o � � φ2 � ¯̄M2 : o

� � φ1 ∧ φ2 � c∧ ¯̄M1
¯̄M2 : o

�, x:ι � φ � ¯̄M : o

� � ∀x. φ � c∀ (λx. ¯̄M ) : o
.

THEOREM 7.1 (ADEQUACY FOR SYNTAX OF FIRST-ORDER LOGIC). Let � be a con-
text of the form x1 : ι, . . . , xn : ι for some n ≥ 0.

(1) The relation � � t � M : ι is a compositional bijection between terms t
of first-order logic over variables x1, . . . , xn and quasi-canonical forms M of
type ι relative to �.

(2) The relation � � φ � M : o is a compositional bijection between formulas
φ with free variables among x1, . . . , xn and quasi-canonical forms M of type
o relative to �.

PROOF. We establish by induction over the t and φ that for every term t and
formula φ there exist a unique M and N and derivations of � � t � ¯̄M : ι and
� � φ � ¯̄N : o, respectively. Similarly, we show that for a quasi-canonical ¯̄M
and ¯̄N at type ι and o, respectively, there exists unique related t and φ. This
establishes a bijection. To see that it is compositional, we use an induction over
the structure of terms t and formulas φ.

Adequacy at the level of derivations can be established by analogous means;
some examples are given by Polakow [2001].

8. CONCLUSIONS

We have presented a new, type-directed algorithm for definitional equality in
the LF type theory. This algorithm improves on previous accounts by avoiding
consideration of reduction and its associated meta-theory and by providing a
practical method for testing definitional equality in an implementation. The
algorithm also yields a notion of canonical form, which we call quasi-canonical,
that is suitable for proving the adequacy of encodings in a logical framework.
The omission of type labels presents no difficulties for the methodology of LF,
essentially because abstractions arise only in contexts where the domain type
is known. The formulation of the algorithm and its proof of correctness relies on
the “shapes” of types, from which dependencies on terms have been eliminated.
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Surprisingly, it was the soundness proof for the algorithm, and not its com-
pleteness proof, that presented some technical difficulties. In particular, we
have eliminated family-level λ-abstractions from our formulation of the type
theory in order to prove injectivity of products syntactically.

The type-directed approach scales to richer languages such as those with
unit types, products, and linear types [Vanderwaart and Crary 2002], ordered
types [Polakow and Pfenning 1999; Polakow 2001], and proof irrelevant and
intensional types [Pfenning 2001] precisely because it makes use of type infor-
mation during comparison. For example, one expects that any two variables
of unit type are equal, even though they are structurally distinct head normal
forms. A similar approach is used by Stone and Harper [2000] to study a depen-
dent type theory with singleton kinds and subkinding. There it is impossible
to eliminate dependencies entirely, resulting in a substantially more complex
correctness proof, largely because of the loss of symmetry in the presence of
dependencies. Nevertheless, the fundamental method is the same, and results
in a practical approach to checking definitional equality for a rich type theory.

The blueprint for adapting our methods to new type theories is as follows.
If possible, one should try to formulate the type theory in such a way that
type-level equality is trivial, except for the embedded objects. In that case,
one can prove the substitution properties, functionality, validity, injectivity of
products and subject reduction completely syntactically, as we did here. If not,
and one needs, for example, β-reduction at the level of types, one constructs
a separate logical relation, usually only at the level of types, in order to prove
injectivity of products and other properties from the above list that are no longer
syntactic [Stone and Harper 2000; Vanderwaart and Crary 2002].

Next one defines an algorithm for deciding equality given by two mutually
dependent judgments: one that is type-directed for object constructors and one
that is structural for object destructors. It is critical that this algorithm depend
only on approximate types, without taking account of dependency. Extending
this algorithm has proved to be straightforward in all the mentioned cases.
Soundness of the algorithm remains a syntactic property, relying on validity,
injectivity of products and various inversion principles previously established.

Completeness of the equality algorithm relies on a logical relation defined
on approximate types. In some cases, we can carry the notion of approximation
even further than may be evident at first glance. For example, even if some
hypotheses are linear [Vanderwaart and Crary 2002], ordered [Polakow 2001],
or proof-irrelevant [Pfenning 2001], it generally is not necessary to track this
information, either for the algorithm or the logical relation, essentially because
the algorithm will only be invoked on terms that are already known to be valid.
The construction of the logical relation itself is standard and easily extensible
to other type constructors. The subsequent development of decidability and
quasi-canonical forms is also rather generic and portable.

A major open question is if our technique be extended to handle the full
Calculus of Constructions. We require injectivity of products rather early, which
would seem to be difficult to attain. Furthermore, long normal forms, while still
cleanly definable [Dowek et al. 1993], are not stable under substitutions, which
complicates the type-directed equality algorithm.
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