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Consider the simply typed lambda calculus with a base type b containing any number of uninterpreted
constants ci.

A := b | A→ A

M := ci | x | λx:A.M |M M

Γ ` ci : b Γ, x:A ` x : A

Γ, x:A `M : B

Γ ` λx:A.M : A→ B
Γ `M : A→ B Γ ` N : A

Γ `M N : B

(λx:A.M)N →β [N/x]M

M →β M
′

λx:A.M →β λx:A.M ′
M →β M

′

M N →β M
′ N

N →β N
′

M N →β M N ′

We say a term M is normalizing, Norm(M), if it has some terminating sequence of →β reductions. In
this note, we reinvent the proof that all well-typed terms are normalizing.
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Conjecture 1.1. If Γ `M : C, then Norm(M).

Proof. By induction on the derivation of Γ `M : C.

• Case Const. Want to show Norm(ci), which is true.

• Case Var. Want to show Norm(x), which is true.

• Case Lam. Want to show Norm(λx:A.M), given Norm(M). We simply perform the same sequence of
reductions under the binder.

• Case App. Want to show Norm(M N), given Norm(M) and Norm(N). ???

We certainly need to use the fact that M is well-typed in order to prove it is normalizing, because some
terms in the untyped lambda calculus terms are not normalizing; for example, (λx.x x) (λx.x x).

So the simplest thing which could possibly work is to induct on the typing derivation, and show that each
typing rule yields a normalizing term. But this fails in the App case, because (a priori) both terms could be
normalizing without the application being normalizing—this is the case for the untyped term above.

In the App case, we need the additional information that terms at function type take normalizing argu-
ments to normalizing results. Therefore, we patch the theorem statement so that it demands normalization
at base type, but “normalization-preservation” (or “hereditary normalization”) at higher type. The resulting
inductive hypothesis is called a logical predicate.
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Definition 2.1.
HNC(−) is a predicate on terms Γ `M : C, defined by induction on C:

• HNb(M) iff Norm(M).

• HNA→B(M) iff for any N such that HNA(N), HNB(M N).

Conjecture 2.2. If Γ `M : C, then HNC(M).

Proof. By induction on the derivation of Γ `M : C.

• Case Const. Want to show Norm(ci), which is true.

• Case Var. Want to show HNA(x). ???

• Case Lam. Want to show HNA→B(λx:A.M), given HNB(M). It suffices to show that, for any HNA(N),
HNB((λx:A.M)N). ???

• Case App. Want to show HNB(MN), given HNA→B(M) and HNA(N). This follows from the definition
of HNA→B(M), for the given N .

This time, we attempt to prove that all well-typed terms are hereditarily normalizing. We defined HN in
order to make the App case go through, but unfortunately we broke the Var and Lam cases.

For Var, we know that HNb(x), but we don’t know anything about variables at function type. For Lam,
we know (λx:A.M) N reduces to [N/x]M , but we don’t know anything about substitution instances of M .
(In fact, we also don’t know that HNB([N/x]M) implies HNB((λx:A.M)N).)

The root of both of these problems is that we don’t know anything about the free variables in a term,
either Γ, x:A ` x : A or Γ, x:A `M : B. For Lam, we need to know that substituting a HN term for x yields
a HN term. The same is trivially true for Var: substituting a HN term for x would yield that same HN term.

Because our contexts are unordered, it doesn’t make sense to ask this property just for the “last” variable
in the context; we need to demand that any substitution of HN terms for Γ yields an HN term. So we change
the inductive hypothesis yet again, and expect that the theorem will now go through.
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Definition 3.1.
HNC(−) is a predicate on terms · `M : C, defined by induction on C:

• HNb(M) iff Norm(M).

• HNA→B(M) iff for any N such that HNA(N), HNB(M N).

HNΓ(−) is a predicate on substitutions γ : · → Γ, which holds when for each x:A ∈ Γ, HNA(γ̂(x)).

Conjecture 3.2. If Γ `M : C, then for any γ such that HNΓ(γ), HNC(γ̂(M)).

Proof. By induction on the derivation of Γ `M : C.

• Case Const. Want to show Norm(γ̂(ci)). But γ̂(ci) is ci, and Norm(ci).

• Case Var. Want to show HNA(γ̂(x)). This is implied by the hypothesis HNΓ,x:A(γ).

• Case Lam. Want to show HNA→B(γ̂(λx:A.M)). It suffices to show that, for any HNA(N),

HNB(γ̂(λx:A.M) N). By the inductive hypothesis, for any γ′ such that HNΓ,x:A(γ′), HNB(γ̂′(M)).

We choose γ′ to extend γ by sending x to N . Clearly HNΓ,x:A(γ′), and γ̂′(M) = [N/x]γ̂(M). (The
result follows if HNB([N/x]γ̂(M)) implies HNB((λx:A.γ̂(M))N).)

• Case App. Want to show HNB(γ̂(M) γ̂(N)). The inductive hypotheses, instantiated at this same γ,
give us HNA→B(γ̂(M)) and HNA(γ̂(N)). The result follows from the definition of HNA→B(γ̂(M)), for
the given γ̂(N).

γ : · → Γ is a total substitution of closed terms for each variable in Γ (that is, a closing substitution for
Γ). We say HNΓ(γ) holds if γ is pointwise HN, and write γ̂(M) for the application of the substitution γ to
the term M .

We choose closing substitutions, rather than arbitrary ones, because they are the simplest choice which
allows the Var and Lam cases to go through, and furthermore, they simplify the definition of HN by allowing
us to consider only closed terms. Our theorem statement is now that all closed substitution instances, by a
HN substitution, of a well-typed term are HN.

Now the proof actually works, again modulo a lemma in the Lam case that being HN is preserved when
moving backwards through a β reduction. The Const and App cases are essentially the same as they were,
but Var and Lam work because we strengthened the inductive hypothesis to require that all open terms map
HN substitutions to HN closed terms. (Previously, we didn’t actually make any demands of the free variables
of an open term.) Because Lam is the only rule in which the context changes above the line, it is the only
case in which we extend the substitution γ.

Unfortunately, this theorem doesn’t imply that all well-typed terms are normalizing, even at base type!
Consider Γ ` x : b. We only know that if HNΓ(γ) then Norm(γ̂(x)), where γ̂(x) is any closed, normalizing term
of type b. (At higher type, the theorem statement doesn’t say anything whatsoever about normalization, so
we’ll eventually also need to know that HNA→B(M) implies Norm(M). But we will get to this later.)

In summary, we need to know something about substitution instances of open terms for the Lam case,
but we also need the theorem statement to imply open terms are HN in order to prove normalization of
open terms at b. The solution is to consider not only closing substitutions, but any substitutions in another
context ∆.
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Definition 4.1.
HN∆

C (−) is a predicate on terms ∆ `M : C, defined by induction on C:

• HN∆
b (M) iff Norm(M).

• HN∆
A→B(M) iff for any N such that HN∆

A(N), HN∆
B(M N).

HN∆
Γ (−) is a predicate on substitutions γ : ∆→ Γ, which holds when for each x:A ∈ Γ, HN∆

A(γ̂(x)).

Conjecture 4.2. If Γ `M : C, then for any γ : ∆→ Γ such that HN∆
Γ (γ), HN∆

C (γ̂(M)).

Proof. By induction on the derivation of Γ `M : C.

• Case Const. Want to show Norm(γ̂(ci)). But γ̂(ci) is ci, and Norm(ci).

• Case Var. Want to show HN∆
A(γ̂(x)). This is implied by the hypothesis HN∆

Γ,x:A(γ).

• Case Lam. Want to show HN∆
A→B(γ̂(λx:A.M)). It suffices to show that, for any HN∆

A(N),

HN∆
B(γ̂(λx:A.M) N). By the inductive hypothesis, for any γ′ such that HN∆

Γ,x:A(γ′), HN∆
B(γ̂′(M)).

We choose γ′ to extend γ by sending x to N . Clearly HN∆
Γ,x:A(γ′), and γ̂′(M) = [N/x]γ̂(M). (The

result follows if HN∆
B([N/x]γ̂(M)) implies HN∆

B((λx:A.γ̂(M))N).)

• Case App. Want to show HN∆
B(γ̂(M) γ̂(N)). The inductive hypotheses, instantiated at this same γ,

give us HN∆
A→B(γ̂(M)) and HN∆

A(γ̂(N)). The result follows from the definition of HN∆
A→B(γ̂(M)), for

the given γ̂(N).

Now the theorem states that all substitution instances, by a HN substitution, of a well-typed term are
HN. The proof goes through as before, so now we can turn our attention to the lemma that if the result of
a β reduction is HN, then so is the redex.

Let’s think about proving that lemma. It is obvious at base type, where HN is normalization. At A→ B,
we will need to prove if HN∆

A→B([N/x]M) then HN∆
A→B((λx:A.M) N). This assumption tells us that, for

any N ′ with HN∆
A(N ′), HN∆

B(([N/x]M)N ′). We need to show HN∆
B(((λx:A.M)N)N ′).

Ideally we would apply the inductive hypothesis here, but the β reduction isn’t occurring at the root. We
can solve this by strengthening the theorem to say that HN is preserved by reverse leftmost β reductions—
that is, either at the root or on the left side of an application (recursively). This notion is called weak head
reduction, and is defined as follows:

(λx:A.M)N →wh [N/x]M

M →wh M
′

M N →wh M
′ N
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Definition 5.1.
HN∆

C (−) is a predicate on terms ∆ `M : C, defined by induction on C:

• HN∆
b (M) iff Norm(M).

• HN∆
A→B(M) iff for any N such that HN∆

A(N), HN∆
B(M N).

HN∆
Γ (−) is a predicate on substitutions γ : ∆→ Γ, which holds when for each x:A ∈ Γ, HN∆

A(γ̂(x)).

Lemma 5.2. If ∆ `M : C, ∆ `M ′ : C, M →wh M
′, and HN∆

C (M ′), then HN∆
C (M).

Proof. By induction on C.

• Case b. Want to show Norm(M), given Norm(M ′) and M →wh M
′. It is easy to see that if M →wh M

′

then M →β M
′, so we obtain a terminating sequence of reductions for M by prepending the one for

Norm(M ′) by M →β M
′.

• Case A → B. Want to show HN∆
A→B(M). Show for any N such that HN∆

A(N), HN∆
B(M N). But

M N →wh M
′ N , so this follows by the induction hypothesis at B.

Theorem 5.3. If Γ `M : C, then for any γ : ∆→ Γ such that HN∆
Γ (γ), HN∆

C (γ̂(M)).

The head expansion lemma goes through without any difficulty, using the notion of weak head reduction
defined on the previous page. (We explicitly require that M and M ′ have the same type only to avoid
proving a preservation lemma.) Then the main theorem is proven exactly as before, with an appeal to this
lemma in the necessary place.

Since our goal is actually to prove that all terms are normalizing, we need to show that HN terms are
normalizing. Can we prove this? At base type, this is the definition of HN. At A→ B, we only know that for
any N , if HN∆

A(N) then Norm(M N). Can we choose N in such a way that Norm(M N) implies Norm(M)?
Since we need such an N at every type A, our only real option is a variable x. Luckily, as we will check
shortly, Norm(M x) does imply Norm(M). (One might wonder why we didn’t avoid this entire difficulty by
defining HN∆

A→B(M) to mean that M normalizes to a lambda term. Since M is an open term, this isn’t
actually true; it could be a variable, for example.)

There may not already be a variable x:A ∈ ∆. We can weaken ∆ and use HN∆,x:A
A (x), but then the

context doesn’t match HN∆
A→B(M), so we can’t conclude that M x is HN (at which context?).

We can solve this by changing the definition of HN one final time: HN∆
A→B(M) iff for any weakening ∆′

of ∆, and any N such that HN∆′

A (N), HN∆′

B (M N). For the App case to work, we also need to change the
theorem to state that for γ : ∆→ Γ, γ̂(M) is HN in any weakening of ∆. We will write ∆′ ≥ ∆ when ∆′ is
obtained by zero or more weakenings of ∆. ≥, or context extension, is a preorder.

To summarize, our plan is to:

1. Change the definition of HN and redo the proofs;

2. Prove that Norm(M x) implies Norm(M); and

3. Prove that HN∆
C (M) implies Norm(M).
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Definition 6.1.
HN∆

C (−) is a predicate on terms ∆ `M : C, defined by induction on C:

• HN∆
b (M) iff Norm(M).

• HN∆
A→B(M) iff for any ∆′ ≥ ∆ and any N such that HN∆′

A (N), HN∆′

B (M N).

HN∆
Γ (−) is a predicate on substitutions γ : ∆→ Γ, which holds when for each x:A ∈ Γ, HN∆

A(γ̂(x)).

Lemma 6.2. If ∆ `M : C, ∆ `M ′ : C, M →wh M
′, and HN∆

C (M ′), then HN∆
C (M).

Proof. By induction on C.

• Case b. Want to show Norm(M), given Norm(M ′) and M →wh M
′. It is easy to see that if M →wh M

′

then M →β M
′, so we obtain a terminating sequence of reductions for M by prepending the one for

Norm(M ′) by M →β M
′.

• Case A → B. Want to show HN∆
A→B(M). Show for any ∆′ ≥ ∆ and N such that HN∆′

A (N),

HN∆′

B (M N). But M N →wh M
′ N , so this follows by the induction hypothesis at B.

Theorem 6.3. If Γ `M : C, then for any γ : ∆→ Γ and ∆′ ≥ ∆ such that HN∆′

Γ (γ), HN∆′

C (γ̂(M)).

Proof. By induction on the derivation of Γ `M : C.

• Case Const. Want to show HN∆′

b (γ̂(ci)). But γ̂(ci) is ci, and Norm(ci).

• Case Var. Want to show HN∆′

A (γ̂(x)). This is implied by the hypothesis HN∆′

Γ,x:A(γ), since ∆′ ≥ ∆′.

• Case Lam. Want to show HN∆′

A→B(γ̂(λx:A.M)). Show for any ∆′′ ≥ ∆′ and N such that HN∆′′

A (N),

HN∆′′

B (γ̂(λx:A.M) N). By head expansion, it suffices to show HN∆′′

B ([N/x]γ̂(M)). Let us denote γ
extended by x 7→ N by γ′.

Notice that if HN∆′

Γ (γ) then HN∆′′

Γ (γ), because at all types C, HN∆′

C (−) implies HN∆′′

C (−). Therefore,
we can instantiate the inductive hypothesis at ∆′′ (by transitivity of context extension) and γ′, implying

what we wanted to show: HN∆′′

B (γ̂′(M)).

• Case App. Want to show HN∆′

B (γ̂(M N)). The inductive hypothesis for N (at ∆′ ≥ ∆) says that

HN∆′

A (γ̂(N)). The inductive hypothesis for M says that HN∆′

A→B(γ̂(M)), which implies HN∆′

B (γ̂(M)N ′)

for any HN∆′

A (N ′). Choosing N ′ = γ̂(N) finishes this case.

Now HN demands that terms of type A→ B send HN arguments from any larger context, to HN results
in that context. As discussed on the previous page, this allows us to always apply such terms to a variable
in order to prove normalization.

The head expansion lemma is essentially unchanged from last time. The proof of the main theorem has
some additional subtleties, but the core ideas are the same. Notice that we use both the reflexivity and
transitivity of ≥, in the Var and Lam cases respectively.

Now let’s prove Norm(M x) implies Norm(M), and HN∆
C (M) implies Norm(M).
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Definition 7.1.
HN∆

C (−) is a predicate on terms ∆ `M : C, defined by induction on C:

• HN∆
b (M) iff Norm(M).

• HN∆
A→B(M) iff for any ∆′ ≥ ∆ and any N such that HN∆′

A (N), HN∆′

B (M N).

HN∆
Γ (−) is a predicate on substitutions γ : ∆→ Γ, which holds when for each x:A ∈ Γ, HN∆

A(γ̂(x)).

Lemma 7.2. If ∆ `M : C, ∆ `M ′ : C, M →wh M
′, and HN∆

C (M ′), then HN∆
C (M).

Theorem 7.3. If Γ `M : C, then for any γ : ∆→ Γ and ∆′ ≥ ∆ such that HN∆′

Γ (γ), HN∆′

C (γ̂(M)).

Lemma 7.4. If Norm(M x) then Norm(M).

Proof. By induction on the derivation of Norm(M x).

• Case (λx:A.N) x →β N . Want to show Norm(λx:A.N), given Norm(N). Perform the same sequence
of reductions under the binder.

• Case λx:A.N →β λx:A.N ′. Cannot apply.

• Case M x →β M
′ x. Want to show Norm(M), given M →β M

′ and Norm(M ′ x). By the induction
hypothesis, Norm(M ′). But then Norm(M) by prepending this sequence with M →β M

′.

• Case M x→β M N ′. Cannot apply, since x does not reduce.

• Case Irreducible. Then M must also be irreducible, so Norm(M).

Conjecture 7.5. If HN∆
C (M) then Norm(M).

Proof. By induction on C.

• Case b. Want to show Norm(M), which is the definition of HN∆
b (M).

• Case A→ B. Want to show Norm(M), given HN∆
A→B(M). For any N and ∆′ ≥ ∆ such that HN∆′

A (N),

HN∆′

B (M N). Choose N = x and ∆′ = ∆, x:A. (But we don’t know HN∆,x:A
A (x)! If we did, then by

the inductive hypothesis at B, Norm(M x), which by the previous lemma implies Norm(M).)

In order to prove that Norm(M x) implies Norm(M), we have to carefully define Norm(−). We say
that Norm(M) if either M →β M ′ and Norm(M ′), or M is irreducible. The lemma then follows from a
straightforward induction on the derivation of Norm(M x).

In the proof of HN∆
C (M) implies Norm(M), we hit a subtle, unforeseen roadblock: we don’t know that

HN∆,x:A
A (x)! The main theorem only tells us that any HN substitution instance of x is HN. We can try

applying the identity substitution id∆,x:A, but then we need to show that HN∆,x:A
∆,x:A(id∆,x:A); in particular,

we need HN∆,x:A
A (x), which is what we were trying to show.

Instead, we will directly prove that variables are HN. (One consequence of this is that identity substi-
tutions are HN, which means for any ∆ ` M : C, HN∆

C (M).) As usual, this proof would immediately fail
at higher type, since we will only know that HN∆

B(x N) for HN∆
A(N). Instead, we prove that any k-fold

application of x to normalizing terms is HN. (Why to normalizing terms instead of HN terms? Otherwise
the proof does not even go through at base type!)

If we also had product types in this language, then HN∆
A×B(M) would mean that both projections of M

are HN, and we would instead need to prove that any any sequence of function applications and projections
of x is HN. Such a sequence is called an evaluation context.
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Definition 8.1.
HN∆

C (−) is a predicate on terms ∆ `M : C, defined by induction on C:

• HN∆
b (M) iff Norm(M).

• HN∆
A→B(M) iff for any ∆′ ≥ ∆ and any N such that HN∆′

A (N), HN∆′

B (M N).

HN∆
Γ (−) is a predicate on substitutions γ : ∆→ Γ, which holds when for each x:A ∈ Γ, HN∆

A(γ̂(x)).

Lemma 8.2. If ∆ `M : C, ∆ `M ′ : C, M →wh M
′, and HN∆

C (M ′), then HN∆
C (M).

Theorem 8.3. If Γ `M : C, then for any γ : ∆→ Γ and ∆′ ≥ ∆ such that HN∆′

Γ (γ), HN∆′

C (γ̂(M)).

Lemma 8.4. If Norm(M x) then Norm(M).

Conjecture 8.5. If for 0 ≤ i < k, ∆ ` Ni : Ai and Norm(Ni), then for any x:A0 → · · · → Ak−1 → C ∈ ∆,
HN∆

C (x N0 . . . Nk−1).

Proof. By induction on C.

• Case b. Want to show Norm(x N0 . . . Nk−1), which is true.

• Case A → B. Want to show HN∆
A→B(x N0 . . . Nk−1). Show for any ∆′ ≥ ∆ and HN∆′

A (N) that

HN∆′

B (x N0 . . . Nk−1 N). (But HN∆′

A (N) isn’t helpful! If we instead knew Norm(N), then we could
apply the inductive hypothesis to N0, . . . , Nk−1, N .)

Conjecture 8.6. If HN∆
C (M) then Norm(M).

Proof. By induction on C.

• Case b. Want to show Norm(M), which is the definition of HN∆
b (M).

• Case A→ B. Want to show Norm(M), given HN∆
A→B(M). For any N and ∆′ ≥ ∆ such that HN∆′

A (N),

HN∆′

B (M N). Choose N = x and ∆′ = ∆, x:A. (But we don’t know HN∆,x:A
A (x)! If we did, then by

the inductive hypothesis at B, Norm(M x), which by the previous lemma implies Norm(M).)

The theorem statement looks complicated, but it just says that any k-fold application of a variable to
normalizing terms is HN. At base type, we can normalize the application by normalizing each argument
in turn. At higher type, we only know that applying the k-fold application to a HN argument yields a HN
result. If we knew that argument was normalizing, then the inductive hypothesis would say that the resulting
(k + 1)-fold application of x is HN.

We need to know that HN terms are normalizing in order to prove variables are HN, and we need to
know that variables are HN in order to prove that HN terms are normalizing. The solution is to prove both
of these facts simultaneously, so we have both facts at smaller types as our inductive hypotheses.
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Definition 9.1.
HN∆

C (−) is a predicate on terms ∆ `M : C, defined by induction on C:

• HN∆
b (M) iff Norm(M).

• HN∆
A→B(M) iff for any ∆′ ≥ ∆ and any N such that HN∆′

A (N), HN∆′

B (M N).

HN∆
Γ (−) is a predicate on substitutions γ : ∆→ Γ, which holds when for each x:A ∈ Γ, HN∆

A(γ̂(x)).

Lemma 9.2. If ∆ `M : C, ∆ `M ′ : C, M →wh M
′, and HN∆

C (M ′), then HN∆
C (M).

Theorem 9.3. If Γ `M : C, then for any γ : ∆→ Γ and ∆′ ≥ ∆ such that HN∆′

Γ (γ), HN∆′

C (γ̂(M)).

Lemma 9.4. If Norm(M x) then Norm(M).

Theorem 9.5.

1. If for 0 ≤ i < k, ∆ ` Ni : Ai and Norm(Ni), then for any x:A0 → · · · → Ak−1 → C ∈ ∆,
HN∆

C (x N0 . . . Nk−1).

2. If HN∆
C (M) then Norm(M).

Proof. By induction on C.

• Case b.

1. Want to show Norm(xN0 . . . Nk−1). Reduce each Ni in turn; afterwards, no other reduction rule
applies, so this reduction sequence terminates.

2. Want to show Norm(M), which is the definition of HN∆
b (M).

• Case A→ B.

1. Want to show HN∆
A→B(x N0 . . . Nk−1). Show for any ∆′ ≥ ∆ and HN∆′

A (N) that

HN∆′

B (x N0 . . . Nk−1 N). By the second inductive hypothesis on N , Norm(N). Then apply
the first inductive hypothesis to N0, . . . , Nk−1, N .

2. Want to show Norm(M), given HN∆
A→B(M). By the first inductive hypothesis with k = 0,

HN∆,x:A
A (x). Then, because ∆, x:A ≥ ∆, HN∆,x:A

B (M x). By the second inductive hypothesis,
Norm(M x), which by the previous lemma implies Norm(M).

Corollary 9.6. If Γ `M : A, then Norm(M).

Proof. The fundamental theorem, specialized to idΓ (which is HN because HNΓ
A(x) for each x:A ∈ Γ) and

Γ ≥ Γ, says that HNΓ
A(M). It follows from the previous theorem that Norm(M).

At last, the proof is complete.
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Full proof

In the proof that follows, we will need several auxiliary definitions. Weak head reduction,→wh, is a restriction
of →β to only leftmost β redexes.

(λx:A.M)N →wh [N/x]M

M →wh M
′

M N →wh M
′ N

We say that a context ∆′ is an extension of a context ∆, written ∆′ ≥ ∆, if it can be obtained from ∆
by a series of weakenings; that is, if ∆ is a subset of ∆′ when regarded as sets.

Definition 10.1 (Hereditary normalization).
HN∆

A(−) is a predicate on terms ∆ `M : A, defined by induction on A:

• HN∆
b (M) iff Norm(M).

• HN∆
A→B(M) iff for any ∆′ ≥ ∆ and any N such that HN∆′

A (N), HN∆′

B (M N).

HN∆
Γ (−) is a predicate on substitutions γ : ∆→ Γ, which holds when for each x:A ∈ Γ, HN∆

A(γ̂(x)).

Lemma 10.2 (Head expansion). If ∆ `M : C, ∆ `M ′ : C, M →wh M
′, and HN∆

C (M ′), then HN∆
C (M).

Proof. By induction on C.

• Case b. Want to show Norm(M), given Norm(M ′) and M →wh M
′. It is easy to see that if M →wh M

′

then M →β M
′, so we obtain a terminating sequence of reductions for M by prepending the one for

Norm(M ′) by M →β M
′.

• Case A → B. Want to show HN∆
A→B(M). Show for any ∆′ ≥ ∆ and N such that HN∆′

A (N),

HN∆′

B (M N). But M N →wh M
′ N , so this follows by the induction hypothesis at B.

Theorem 10.3 (Fundamental theorem). If Γ ` M : C, then for any substitution γ : ∆ → Γ and ∆′ ≥ ∆

such that HN∆′

Γ (γ), HN∆′

C (γ̂(M)).

Proof. By induction on the derivation of Γ `M : C.

• Case Const. Want to show HN∆′

b (γ̂(ci)). But γ̂(ci) is ci, and Norm(ci).

• Case Var. Want to show HN∆′

A (γ̂(x)). We know HN∆′

Γ,x:A(γ), which by definition implies HN∆′

A (γ̂(x))
(since ∆′ ≥ ∆′).

• Case Lam. Want to show HN∆′

A→B(γ̂(λx:A.M)). Show for any ∆′′ ≥ ∆′ and N such that HN∆′′

A (N),

HN∆′′

B (γ̂(λx:A.M) N). By head expansion, it suffices to show HN∆′′

B ([N/x]γ̂(M)). Let us denote γ
extended by x 7→ N by γ′.

Notice that if HN∆′

Γ (γ) then HN∆′′

Γ (γ), because at all types C, HN∆′

C (−) implies HN∆′′

C (−). Therefore,
we can instantiate the inductive hypothesis at ∆′′ (by transitivity of context extension) and γ′, implying

what we wanted to show: HN∆′′

B (γ̂′(M)).

• Case App. Want to show HN∆′

B (γ̂(M N)). The inductive hypothesis for N (at ∆′ ≥ ∆) says that

HN∆′

A (γ̂(N)). The inductive hypothesis for M says that HN∆′

A→B(γ̂(M)), which implies HN∆′

B (γ̂(M)N ′)

for any HN∆′

A (N ′). Choosing N ′ = γ̂(N) finishes this case.

Lemma 10.4. If Norm(M x) then Norm(M).

Proof. By induction on the derivation of Norm(M x).
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• Case (λx:A.N) x →β N . Want to show Norm(λx:A.N), given Norm(N). Perform the same sequence
of reductions under the binder.

• Case λx:A.N →β λx:A.N ′. Cannot apply.

• Case M x →β M
′ x. Want to show Norm(M), given M →β M

′ and Norm(M ′ x). By the induction
hypothesis, Norm(M ′). But then Norm(M) by prepending this sequence with M →β M

′.

• Case M x→β M N ′. Cannot apply, since x does not reduce.

• Case Irreducible. Then M must also be irreducible, so Norm(M).

Theorem 10.5.

1. If for 0 ≤ i < k, ∆ ` Ni : Ai and Norm(Ni), then for any x:A0 → · · · → Ak−1 → C ∈ ∆,
HN∆

C (x N0 . . . Nk−1).

2. If HN∆
C (M) then Norm(M).

Proof. By induction on C.

• Case b.

1. Want to show Norm(xN0 . . . Nk−1). Reduce each Ni in turn; afterwards, no other reduction rule
applies, so this reduction sequence terminates.

2. Want to show Norm(M), which is the definition of HN∆
b (M).

• Case A→ B.

1. Want to show HN∆
A→B(xN0 . . . Nk−1). Show for any ∆′ ≥ ∆ and HN∆′

A (N) that HN∆′

B (xN0 . . . Nk−1N).
By the second inductive hypothesis on N , Norm(N). Then apply the first inductive hypothesis to
N0, . . . , Nk−1, N .

2. Want to show Norm(M), given HN∆
A→B(M). By the first inductive hypothesis with k = 0,

HN∆,x:A
A (x). Then, because ∆, x:A ≥ ∆, HN∆,x:A

B (M x). By the second inductive hypothesis,
Norm(M x), which by the previous lemma implies Norm(M).

One consequence is that for any x:A ∈ ∆, HN∆
A(x). In particular, HNΓ

Γ(idΓ).

Corollary 10.6 (Normalization). If Γ `M : A, then Norm(M).

Proof. The fundamental theorem, specialized to idΓ and Γ ≥ Γ, says that HNΓ
A(M). It follows from the

previous lemma that Norm(M).
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