
How to (Re)Invent Girard’s Method∗

Robert Harper

Spring, 2021

1 Introduction

In Harper (2020) I showed how to reinvent Tait’s Method, the starting point for the general theory
of logical relations, a central method in type theory. There I remarked that extending the method
to account for polymorphism (second-order quantification) is not obvious. The difficulty is that a
form of circularity, called impredicativity, inheres in the notion of type quantification. The difficulty
was overcome by Girard using what is now known as (wait for it) Girard’s Method. The purpose
of this note is to show how one might reinvent his method by considering again the termination of
head reduction for System F of variable types.

2 Polymorphic Types

The syntax of System F is given by the following grammar:

A ::= X | 2 | A1 → A2 | ∀X.A

M ::= x | yes | no | λA(x . M) | ap(M1,M2) | ΛX.M | Ap(M,A)

Here X is a type variable and x is a term variable, the former ranging over types, the latter over
terms of a type.

A type variable context, ∆, is a finite set of declarations X1 type, . . . Xn type, and a term variable
context is a finite set of declarations x1 :A1, . . . , xn :An, with no variable declared more than once.
The statics is given by two judgments, ∆ ⊢ A type, stating that A is a well-formed type relative to
assumptions ∆, and Γ ⊢∆ M : A, stating that M is of type A under assumptions ∆ and Γ. The
inductive definitions of these judgments are given in Figure 1. These definitions are arranged so
that contraction and exchange (in either context) is implicitly admissible by virtue of considering
sets of assumptions, and weakening and substitution may be shown to be admissible by induction
on derivations.

Lemma 1. The following substitution and weakening principles are admissible:

1. If ∆ ⊢ A type, then ∆, X type ⊢ A type.

2. If Γ ⊢∆ N : B, then Γ ⊢∆,X type N : B.
∗Copyright © Robert Harper. All Rights Reserved.

1

var

Γ, x :A ⊢∆ x : A

yes

Γ ⊢∆ yes : 2

no

Γ ⊢∆ no : 2

lam
Γ, x :A1 ⊢∆ M2 : A2

Γ ⊢∆ λA1(x . M2) : A1 → A2

app
Γ ⊢∆ M1 : A2 → A Γ ⊢∆ M2 : A2

Γ ⊢∆ ap(M1,M2) : A

Lam
Γ ⊢∆,X type M : A

Γ ⊢∆ ΛX.M : ∀X.A

App
Γ ⊢∆ M : ∀X.B ∆ ⊢ A type

Γ ⊢∆ Ap(M,A) : [A/X]B

Figure 1: Statics of System F

yes

yes final

no

no final

app
M1 7−−→ M ′

1

ap(M1,M2) 7−−→ ap(M ′
1,M2)

app-lam

ap(λA2(x . M),M2) 7−−→ [M2/x]M

App
M 7−−→ M ′

Ap(M,A) 7−−→ Ap(M ′, A)

App-Lam

Ap(ΛX.M,A) 7−−→ [A/X]M

Figure 2: Dynamics of System F

3. If ∆ ⊢ A type and ∆, X type ⊢ B type, then ∆ ⊢ [A/X]B type.

4. If ∆ ⊢ A type and Γ ⊢∆,X type N : B, then [A/X]Γ ⊢∆ [A/X]N : [A/X]B.

5. If Γ ⊢∆ M : A and Γ, x :A ⊢∆ N : B, then Γ ⊢∆ [M/x]N : B.

The dynamics is inductively defined by the rules in Figure 2. It defines weak head reduction
for closed terms (those with neither free type variables nor free ordinary variables). The reason to
include the special base type 2 of answers is to provide a directly observable notion of the outcome
of a computation, either yes or no, which can be interpreted as an accept/reject signal. Complete
programs are therefore defined to be closed terms of type 2; from a machine-theoretic viewpoint
complete programs consist of the program per se together with its input (encoded as terms). Note
well that types are never evaluated or simplified in any way during execution!

Lemma 2 (Preservation). If ⊢∅ M : A and M 7−−→ M ′, then ⊢∅ M
′ : A.

3 Termination Proof

The most obvious strategy for proving termination is as a direct generalization of Tait’s Method for
the simply typed λ-calculus. Because type variables range over types, it is natural to consider all

2

closed instances of types by substitution of closed types for type variables as follows:

Theorem 3. If Γ ⊢∆ M : A, then for any closing substitution δ : ∆ for type variables and
any hereditarily terminating closing substitution γ : Γ for term variables, the instance γ̂(δ̂(M))
is hereditarily terminating of type δ̂(A).

Assuming that hereditary termination at type 2 implies termination, the desired result of ter-
mination of complete programs follows directly.

This is well and good, provided that an appropriate generalization of hereditary termination can
be given that accounts for polymorphic types. The obvious definition builds on the same principle
that type variables range over closed types. Thus, a closed term M is hereditarily terminating at
type ∀X.B iff Ap(M,A) is hereditarily terminating at type [A/X]B for every closed type A. This
seems natural enough, and would suffice for the above theorem, if only hereditary termination were
properly defined by this criterion.

It is not.
The trouble is that in the case of Tait’s Method hereditary termination at a type A is defined

by induction on the structure of A. And here’s the rub: a substitution instance [A/X]B of a type
B with a free type variable X in it can be larger (in any known sense) than B itself, and hence than
∀X.B. For example, if A = ∀X.X → X, then [A/X](X → X) = A → A, which is strictly larger
than A. Not only is it structurally larger, but the instance also has more occurrences of the type
quantifier than does the original term, in contrast to the first-order quantifier whose instances have
fewer, even though they may be larger in size.

What to do?
One move is to engage in what Lakatos (2015) calls “monster barring,” which is to rule out the

counterexamples. The standard method is to introduce a form of type stratification in which simple
types do not involve any quantification, whereas polytypes extend simple types to include quantified
types. The trick is then to demand that type variables range only over simple types, so that [A/X]B
is smaller than B whenever A is simple, for the simple reason that the instance has one fewer type
quantifier. The language with this restriction is said to be predicative, rather than impredicative.
Restricting to the predicative fragment is enough to salvage Tait’s Method more or less intact.

But it does so at the expense of reducing the expressive power of the language. For example, no
longer are type constructors, such as product types, definable by their universal properties—exactly
because the universal conditions demand for their force on quantification over all other types with
specified structure, rather than just the small ones. On the other hand, who says these types ought
to be defined by their universal properties, rather than just being characterized by them? Well,
no one. And indeed the whole of dependent type theory is based on embracing predicativity, and
defining all type constructors independently, and then showing that their universal properties hold.
After all, even the impredicative encodings do not achieve universality: the unicity conditions must
be imposed by other means, so nothing is truly lost by avoiding the encodings.

Be that as it may, let us press on and consider an alternative to monster barring, namely
proving a much stronger property of terms that implies the desired syntactic criterion needed for
the main result. The trick is to think of the property “M is hereditarily terminating at type A” as
a specification of the behavior of M under head reduction. Tait’s Method breaks the termination
proof into two parts: (1) assigning a specification to a type by structural induction, and (2) showing
that a well-typed term behaves according to the induced specification.

Although types induce specifications, there is nothing to say that the only specifications are
those induced by types. For example, in the presence of a type of natural numbers, the type N → N

3

induces the specification “when applied to a computation of an N, yields a computation of an N.”
And every term of this type satisfies that specification. But one may also consider a specification of
functions of this type such as “when applied to a computation of a prime, yields a computation of
a perfect square.” This property is well-defined, and some programs even satisfy it, but it is not a
specification that is induced by the static type discipline. In fact there are uncountably many such
specifications laying around in the world, but only countably many of them are induced by types.

Girard’s Method exploits this discrepancy.
It is fine to say that types induce specifications of behavior, but what is a behavioral specification

in general? The answer, in the present context, is any property that is closed under head expansion,
which is to say that if M satisfies the property, and M ′ 7−−→ M , then M ′ does as well. Although
closure under reverse execution may seem like an odd requirement, a moment’s thought reveals that
it is simply the expression of a natural condition on specifications, namely that they are determined
by how a program behaves, rather than on the details of what is is. For example, the property of a
term stating that it “contains three type quantifiers” is not closed under head expansion, and so is
not a valid specification. On the other hand, the prime-to-square property is a valid specification,
because it speaks only of how a function acts when applied, rather than what it is.

The crucial move made by Girard is to enlarge the range of significance of a type variable from
being all closed type expressions, which is circular, to all possible behavioral specifications, which is
not. The remarks made earlier about the size of a substitution instance of a type being larger than
the type is irrelevant to Girard’s method. It achieves this by instead accepting that the collection of
“all possible specifications” is well-defined. This might seem innocuous to someone used to accepting
all sorts of set constructions, but it is well to understand why it might be considered dubious.
Because the termination of System F implies the consistency of a strong logical system called second-
order arithmetic, Gödel’s Theorem tells us that the termination proof must use methods that go
beyond mere behavioral specifications. And, indeed, Girard’s Method does just this, by posulating
a set of all possible specifications, which in the jargon of the field are called type candidates.

It is now possible to outline the technical means by which Girard proves termination for System
F.1

A candidate for a closed type A is a set of closed terms of type A that is itself closed under
head expansion. For each type A it is essential to postulate that the set of all candidates for
A is well-defined (even though it is more dubious than the termination property to be proved).
Thus, hereditary termination at an type A with free type variables must be defined relative to an
assignment of type candidates to those type variables.

More precisely, a type substitution δ for ∆, written δ : ∆, is an assignment of a closed type to
each type variable declared in ∆. A candidate assignment η for δ : ∆, written η ⊆ δ : ∆, is an
assignment of a candidate for type δ(X) to each type variable X declared in ∆. For ∆ ⊢ A type,
δ : ∆, and M : δ̂(A), define M to be hereditarily terminating at type A relative to η ⊆ δ : ∆ by
induction on the structure of A as follows:

1. If A = 2, then M is hereditarily terminating at type A (rel. η ⊆ δ : ∆) iff M terminates (with
either yes or no).

2. If A = X, a type variable, then M is hereditarily terminating at type A (rel. η ⊆ δ : ∆) iff
M ∈ η(X) ⊆ δ(X), the candidate assigned to X.

1As with Tait’s Method, his actual proof was of strong normalization, but termination of closed terms under weak
head reduction is enough to lay bare the critical moves in the game.

4

3. If A = A1 → A2, then M is hereditarily terminating at type A (rel. η ⊆ δ : ∆) iff for all
M1 hereditarily terminating at A1 (rel. η ⊆ δ : ∆), the application ap(M,M1) is hereditarily
terminating at A2 (rel. η ⊆ δ : ∆).

4. If A = ∀X.B, then M is hereditarily terminating at type A (rel. η ⊆ δ : ∆) iff for all closed
types C and all candidates C for type C, the application Ap(M,C) is hereditarily terminating
at type B (rel. η[X 7→ C] ⊆ δ[X 7→ C] : ∆, X type).

Thus the candidate assignment “cuts the knot” by providing an abstract meaning for type variables
consistent with their concrete meaning given by a type substitution. Type quantification imposes
a strong requirement that a term of this type must be hereditarily terminating for any candidate
assignment for the quantified type variable, not just the canonical one associated to a given instance.

Lemma 4. The property of hereditary termination at type A relative to a candidate assignment η
is well-defined, and is itself a candidate for A relative to η.

Proof. Hereditary termination is defined by induction on the structure of types. Because it speaks
only of the behavior of terms under head reduction, hereditary termination is itself easily seen to
be closed under head expansion, and so is among the candidates considered for interpretation of a
type variable.

With this construction in hand, it is straightforward to prove, a la Tait, that every instance of
every term inhabits the candidate associated to its type, relative to an assignment of candidates to
the free type variables.

For ∆ ⊢ A type, δ : ∆, and η ⊆ δ : ∆, write M ∈ A [η] to mean that M is hereditarily terminating
at type A (rel. η ⊆ δ : ∆). (Thus, in this notation, Lemma 4 states that the predicate − ∈ A [η]
is a reducibility candidate.) Define γ : Γ to mean that γ is a substitution of closed terms of type
declared Γ, and define γ ∈ Γ [η], where γ : Γ, to mean that for every variable in Γ of type A, if
γ(x) = M , then M ∈ A [η]. Finally, define Γ ≫∆ M ∈ A to mean that if δ : ∆, η ⊆ δ : ∆, and
γ ∈ Γ [η], then γ̂(δ̂(M)) ∈ A [η].

Theorem 5 (Girard). If Γ ⊢∆ M : A, then Γ ≫∆ M ∈ A.

The notation is a bit daunting, but the theorem merely states that a well-typed term satisfies
the behavioral property of hereditary termination. It is an immediate corollary that if M : 2 is a
complete program, then either M 7−−→∗ yes or M 7−−→∗ no, as was to be proved.

4 Proof of Main Theorem

Lemma 6 (Compositionality). Suppose ∆, X type ⊢ B type and ∆ ⊢ A type. Then

M ∈ [A/X]B [η] iff M ∈ B [η[X 7→ − ∈ A [η]]]

for any candidate assignment η.

Proof. By induction on the structure of B.

1. B = X: Then [A/X]B = A.

By definition M ∈ [A/X]B [η] iff M ∈ A [η] iff M ∈ X [η[X 7→ − ∈ A [η]]].

5

2. B = Y ̸= X: Then [A/X]B = B.

By definition M ∈ [A/X]B [η] iff M ∈ B [η] iff M ∈ B [η[X 7→ − ∈ A [η]]].

3. B = B1 → B2: Then [A/X]B = [A/X]B1 → [A/X]B2.

Suppose M ∈ [A/X]B [η] so as to show M ∈ B [η[X 7→ − ∈ A [η]]].

To this end suppose that
M1 ∈ B1 [η[X 7→ − ∈ A [η]]],

and show
ap(M,M1) ∈ B2 [η[X 7→ − ∈ A [η]]].

By induction M1 ∈ [A/X]B1 [η], and so by assumption ap(M,M1) ∈ [A/X]B2 [η]. But then
by induction ap(M,M1) ∈ B2 [η[X 7→ − ∈ A [η]]], as required.

The converse is proved similarly.

4. B = ∀Y.B′ with Y ̸= X: Then [A/X]B = ∀Y.[A/X]B′, because A is closed.

Suppose M ∈ [A/X]B [η] so as to show M ∈ B [η[X 7→ − ∈ A [η]]]. Suppose C type and let C
be a reducibility candidate for C, it is enough to show

Ap(M,C) ∈ B′ [η[X 7→ − ∈ A [η]][Y 7→ C]].

By assumption and by the definition of hereditary termination at polymorphic type

Ap(M,C) ∈ [A/X]B′ [η[Y 7→ C]].

But then by induction

Ap(M,C) ∈ B′ [η[Y 7→ C][X 7→ − ∈ A [η[Y 7→ C]]]].

Because A cannot involve Y the predicates − ∈ A [η[Y 7→ C]] and − ∈ A [η] are equivalent,
which suffices for the result.

The converse is proved similarly.

In what follows if ∆ ⊢ A type, abbreviate δ̂(A) by Â whenever δ : ∆ is evident, and, similarly,
if ∆ ⊢ Γ ctx, write Γ̂ for δ̂(Γ), the extension of δ̂ to term contexts. If Γ ⊢∆ M : A, write M̂ for
γ̂(δ̂(M)) when δ : ∆ and γ : Γ̂ are evident.

Proof of main theorem. Proceed by induction on the derivation of Γ ⊢∆ M : A.

1. Rule var: Then Γ = Γ′, x :A and M = x.

Suppose δ : ∆, η ⊆ δ : ∆, γ : Γ̂, and γ ∈ Γ [η]. Show that γ̂(δ̂(M)) ∈ A [η], which is to say
that γ(x) ∈ A [η].

This follows immediately from the assumption γ ∈ Γ [η].

2. Rules yes and no:

Immediate by definition of hereditary termination at type 2.

6

3. Rule lam: Then M = λA1(x . M2), A = A1 → A2, and Γ, x : A1 ⊢∆ M2 : A2. Note that
M̂ = λÂ1

(x . M̂2), and Â = Â1 → Â2.

Suppose δ : ∆, η ⊆ δ : ∆, γ : Γ̂, and γ ∈ Γ [η]. To show that M̂ ∈ A [η], suppose M1 ∈ A1 [η]
and show that ap(M̂,M1) ∈ A2 [η].

Let Γ′ be Γ, x : A1, and let γ′ be γ[x 7→ M1], so that γ′ : Γ′ and γ′ ∈ Γ′ [η]. Note that
γ̂′(δ̂(M2)) = [M1/x]M̂2.

By induction hypothesis γ̂′(M2) ∈ A2 [η], which is to say [M1/x]M̂2 ∈ A2 [η]; the result follows
by closure under the head expansion

ap(M̂,M1) 7−−→ [M1/x]M̂2.

4. Rule app: Then M = ap(M1,M2), Γ ⊢∆ M1 : A2 → A, and Γ ⊢∆ M2 : A2.

Suppose δ : ∆, η ⊆ δ : ∆, γ : Γ̂, and γ ∈ Γ [η] to show that M̂ ∈ A [η].

By the first inductive hypothesis M̂1 ∈ A2 → A [η], and by the second M̂2 ∈ A2 [η].

The result follows immediately from the definition of hereditary termination at function type.

5. Rule Lam: Then M = ΛX.N , A = ∀X.B, so that M̂ = ΛX.N̂ and Â = ∀X.B̂ (recall that
δ : ∆ is closed), and also Γ ⊢∆,X type N : B.

To show M̂ ∈ A [η], it suffices to consider any C type and any candidate C for C, and show
that Ap(M̂, C) ∈ B [η[X 7→ C]].

This follows easily by induction and closure under the head expansion Ap(ΛX.N̂, C) 7−−→

[C/X]N̂ , noting that δ̂([C/X]N) = ̂δ[X 7→ C](N) and η[X 7→ C] ⊆ δ[X 7→ C] : ∆, X type.

6. Rule App: Then M = Ap(N,C), A = [C/X]B, Γ ⊢∆ N : ∀X.B, and ∆ ⊢ C type.

Suppose that δ : ∆, η ⊆ δ : ∆, γ : Γ̂, and note that M̂ = Ap(N̂ , Ĉ), and Â = [Ĉ/X]B̂, and
N̂ : ∀X.B̂ and Ĉ type.

Suppose that γ ∈ Γ [η] so as to show that M̂ ∈ [C/X]B [η]. By compositionality it is enough
to show M̂ ∈ B [η[X 7→ − ∈ C [η]]].

It follows from the assumptions that

η[X 7→ − ∈ C [η]] ⊆ δ[X 7→ Ĉ] : ∆, X type

because − ∈ C [η] is a candidate for type Ĉ.

But then by the inductive hypothesis N̂ ∈ ∀X.B [η], and so by the definition of hereditary
termination at quantified type

Ap(N̂ , Ĉ) ∈ B [η[X 7→ − ∈ C [η]]],

which was to be shown.

7

References

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University Press,
1989.

Robert Harper. How to (re)invent Tait’s method. Unpublished lecture note, Spring 2020. URL
https://www.cs.cmu.edu/~rwh/courses/chtt/pdfs/tait.pdf.

I. Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge Philosophy
Classics. Cambridge University Press, 2015. ISBN 9781316425336. URL https://books.google.
com/books?id=zb8qDgAAQBAJ. J. Worrall and E. Zahar, eds.

W. Tait. Intentional interpretations of functionals of finite type i. Journal of Symbolic Logic, 32:
198–212, 1967.

8

