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1 Introduction

The definition of the LF logical framework given in Harper et al. (1993) is in the familiar declarative
form that defines simultaneously the valid kinds, families, and objects,! and equivalent kinds, fam-
ilies, and objects. This formulation is declarative in that the classification of a family by a kind or
an object by a type is posited to be invariant under equivalence of the classifier. This requirement
has two consequences:

1. The rules are no longer syntax-directed, there being two rules for each construct, its principal
rule and the invariance rule.

2. A type checker must include an equivalence checker so as to ensure invariance.

It is possible to implement LF in this manner, without significant difficulty. The main idea is to
integrate equivalence checking into the typing rules, thereby recovering syntax-directedness, and to
implement an equivalence checker for families and objects.

The adequacy of an LF encoding relates the canonical forms of certain LF types to the syntactic
objects of the formalism in question. Stating this precisely requires a precise definition of the
canonical forms of a type, which are, informally, the long Sn-normal forms of its elements. It is a
small matter to extend the equivalence checking algorithm mentioned above to compute a witness
to each equivalence, a canonical form equivalent to the compared terms. And that suffices for
adequacy.

But then, if the encodings are all given by canonical forms, why are non-canonical forms con-
sidered at all? If the canonical forms of LF could be defined directly, then such a definition would
suffice for adequacy, and, moreover, simplify implementation by eliminating the need for equivalence
checking entirely. The snag in this argument is that defining the canonical forms of a type or kind
requires substitution of the argument of an application into the codomain of a dependent function
type. Unfortunately, canonical forms are not stable under substitution, at least not as it is normally
defined. For example, an object of the form x M is canonical, as long as M is, and so is Axz.N, if N
is, but (Ax.N) M is certainly not canonical.

But all is not lost. The trick is to replace the familiar definition of substitution, which works on
raw terms, by hereditary, or canonizing, substution, which makes use of types (Harper and Licata,
2007). Roughly speaking, hereditary substitution re-canonizes on the fly when faced with the
situation just described: the result of the substitution is not (Az.N) M, but rather (the canonization
of) [M/z|N, which is in canonical form. To make this work requires additional information beyond

!Classes, sorts, and objects in the terminology of Harper (2021)



the mere terms themselves, namely the type of the substituting term, M, which is also the type of
in N. Using this information it is then possible to show that hereditary substitution is well-defined,
and thus to justify the formulation of LF in canonical form.

2 LF in Canonical Form

Given an appropriate definition of substitution, it is easy to give syntax-directed rules defining the
following judgments:

e Canonical kinds: 'y, K |
e Canonical families of canonical kind K: I' s A | K

Neutral families of canonical kind K: I'tyy AT K

Canonical objects of canonical type A: T'Fx M | A

Neutral objects of canonical type A: ' M T A

The context I' consists of neutral assumptions z 1 A, where A is a canonical type, and, similarly,
the signature ¥ associates canonical kinds and types to constants.

These judgments are inductively defined by the rules in Figures 1, 2, and 3. These rules make
use of hereditary substitution, which is considered in the next section, indexed by the spine of a
type, written A°. These will both be defined in the next section.

3 Hereditary Substitution

The rules defining canonical LF given in the preceding section make use of hereditary substitution
of a canonical object for a variable in a canonical kind or type. Because objects may occur in kinds
and types, this necessitates also defining hereditary substitution of a canonical object for a variable
in another canonical object. Because canonical types can be neutral families, and canonical objects
can be neutral objects, it is also necessary to define substitution of neutral objects into canonical
kinds, neutral families and neutral objects.

Thus, altogether we have the following forms of hereditary substitution, differentiated by whether
the target is canonical or neutral:

o [M/z]}. K, object into kind;
o [M/x]!.A, object into family;
e [M/x]%.N, object into object.

The superscript asterisk can be either ¢ or n. For kinds, only c is possible, there being no neutral
kinds. For families and objects, both ¢ and n are possible, for a total of five forms of substitution.
The subscript « is the spine, or dependency erasure, of the type of M, defined as follows:

a a
Ap(A, M)° & A°
(a; AlﬁAg)oéA?—) 5



In effect all instances of a family are regarded as base types differentiated only by the head con-
stant, and not the arguments. Having removed objects from types, the dependent function type
degenerates to a simple function type.

Hereditary substitution is inductively defined by the rules given in Figures 4, 5, and 6.

Lemma 1 (Substitution is Well-Defined). Suppose that I' Fx, M | A.
1. IfT',x 1 AFx N | B, then there exists N' such that [M/x]5.N = N'.
2. IfT,xt Abxs B | K, then there exists A" such that [M/z]%.B = B’.
3. IfT',xt Abs K |, then there exists K' such that [M/z]%. K = K'.

Proof Sketch. For the induction these statements must be augmented with corresponding statements
governing neutral target families, and neutral source and target objects.

The critical case is rule APOC, in which substitution into the neutral principal argument results
in a canonical form, a A-abstraction. The third premise of the rule invokes hereditary substitution
on the body of that function, at the spine of its domain type. The critical point is that A must be
structurally smaller than A°, even though P can be arbitrarily larger than ap(N, M;).

Thus, a lexicographic induction with principal index being the spine of the type of the object and
secondary induction being the structure of the target, suffices to ensure that hereditary substitution
is well-defined. O

Exercise 1. Complete the proof of the well-definedness of hereditary substitution.

Exercise 2. Eztend the canonical LF to account for unit and dependent product types, including
the definition of hereditary substitution.
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Figure 1: Canonical Kinds
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Figure 2: Neutral and Canonical Families
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Figure 3: Neutral and Canonical Objects



References

Robert Harper. An equational logical framework for type theories. (Unpublished manuscript.),
March 2021. URL https://www.cs.cmu.edu/ rwh/courses/chtt/notes/slf.pdf.

Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. Journal of
Functional Programming, 17(4-5):613-673, 2007. doi: 10.1017/S0956796807006430.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40:194-204, 1993.



TYK PIK
[M/:U]CAoAl - A{l [M/x]fquQ - Ké

[M /z]$0s0rt = sort [M/x)%ox1 : Ay — Ko = x1: A] — K}

Figure 4: Hereditary Substitution into Kinds
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Figure 5: Hereditary Substitution into Families
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Figure 6: Hereditary Substitution into Objects



