Fundamentals of Algorithms Test 4 November 17, 2010 60 min                         Closed Book, Closed Notes
Please Answer all Questions in the Spaces Provided
NAME______________________________
1. (10 pts) Why RSA is considered a secure form of encryption?

(a) Calculating d*e mod totient is too time consuming

(b) No algorithm is known for quickly factoring large numbers X
(c) The public key is not available to everyone

(d) c^d mod n cannot be computed without using Wolfram Alpha

2. (10 pts) If we encrypt each letter of the plain text one a time to form the cipher text (as we have been doing in class so far), RSA is NOT vulnerable to frequency analysis.

(a) False X
(b) True

3. (10 pts) Algorithm A has running time O(n^2). Algorithm B has running time O(2^n). Suppose both algorithms take 1 hour on input of size 1000. Which algorithm will take longer on input of size 1,000,000?

(a) Algorithm A

(b) Algorithm B X
(c) Both will take the same amount of time

4. (10 pts) What is the worst case running time of the following sorting algorithms?

	
	Insertion Sort
	Selection Sort
	Bubble Sort
	Merge Sort

	Worst Case Running Time
	O(n2)
	O(n2)
	O(n2)
	O(nlogn)


5. (10 pts) In the Greedy Coloring algorithm, the order in which you visit the nodes DOES affect the solution that you obtain.

(a) False

(b) True X
6. (10 pts) Which of the following are NP complete Problems? (Tick the appropriate choices)

(a) Graph Coloring X
(b) Sorting 
(c) Bin Packing X
(d) Knapsack X
(e) Matrix Multiplication 
(f) Travelling Salesman Problem X
7. (10 pts) For each of the following running times label it “L” if it is logarithmic time or faster, “P” if it is slower than logarithmic time but faster than exponential time and “E” if it is exponential time or slower.
(a) O(2^n) E
(b) O(n log(n) P
(c) O(log log (n)) L
(d) O(n*2^n) E
(e) O(log n) L
(f) O(n^4) P
8. (10 pts) Prove by induction that the recurrence T(2k)=2T(2k-1)+2k, T(2)=2 has closed form solution  T(2k) = (2k)*k
BC: k=1
       T(21) = 21*1 = 2

IH: T(2k)  = 2k*k

TS: T(2k+1) = 2k+1*k+1

Taking LHS of TS

T(2k+1) = 2T(2k) + 2k+1 (Based on the recurrence formula)

= 22k*k + 2k+1  (Using the IH)
= 2k+1 (k+1) (Simplifying)
9. (10 pts) Consider the following function
int f(int n){

  if(n<=3){

    return 1;

  }else{

    return f(n-1) + f(n-2) + f(n-3) + f(n-4);

  }

}

         Let a(n) be the number of additions done by this program on input n. 

(a) Derive a recurrence relation for a(n).

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + 3
(b) Find a closed form solution for a(n) in term of f(n)

a(n) = f(n) - 1
(c) Prove by induction that the formula you found in part (b) is correct.

BC:  n=0,1,2,3
         a(n) = 0

f(n) – 1 = 1 – 1 = 0

               IH: a(k) = f(k) -1


   TS: a(k+1) = f(k+1) – 1

a(k+1) = a(k) + a(k-1) + a(k-2) + a(k-3) + 3
= f(k) – 1 + f(k-1) – 1 + f(k-2) –1 + f(k-3) -1 + 3
= f(k) + f(k-1) + f(k-2) + f(k-3) – 1

= f(k+1) – 1 QED

10.  (10 pts) For each of the following, indicate whether f = O(g) , f = Ω(g) or f = Θ(g) 

For example (i) 2n – 6 = Θ(5n – 4) (ii) n2 = O(2n) (iii) n = Ω(lg n)

If f = Θ(g), then only indicating this will give you full marks.

	f(n)
	g(n)
	Answer

	31n + 6
	99n - 500
	f = Θ(g)

	n1/2
	n2/73
	f = Ω(g)

	log(7n)
	log(8n)
	f = Θ(g)

	n1.5
	n log n
	f = Ω(g)

	sqrt(n) 
	(log n)3
	f = Ω(g)

	n2n
	3n
	f = O(g)

	2lg n
	n
	f = Θ(g)
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