Fundamentals of Algorithms Test 2 September 22, 2010  80 min                         Closed Book, Closed Notes
Please Answer all Questions in the Spaces Provided
NAME______________________________
1. (20 pts) Order the following functions from fastest growing to slowest growing:

	n^(log n)  + n log n
	Fastest Growing
	1
	[2^(2^n)]/(10^1000) – 1000^n

	1,000,000,000 + 1/n
	.
	2
	3^n – n^1000

	3^n – n^1000
	.
	3
	(1.000000000001)^n – n^100

	(1.000000000001)^n – n^100
	.
	4
	n^(log n)  + n log n

	1000n^50 + 1,000,000
	.
	5
	n^300+ log n

	(log n)^200 + 1000sqrt(n)
	.
	6
	1000n^50 + 1,000,000

	(log log log n)^1000000 + 100,000,000
	.
	7
	(log n)^200 + 1000sqrt(n)

	n^300+ log n
	.
	8
	(log n)^1000 + 50,000,000

	(log n)^1000 + 50,000,000
	.
	9
	(log log log n)^1000000 + 100,000,000

	[2^(2^n)]/(10^1000) – 1000^n
	Slowest Growing
	10
	1,000,000,000 + 1/n


2. (20 pts) Give a complete analysis of the running time of Merge Sort and prove that it takes O (nlgn) comparisons (you may assume n=2k to simplify the analysis).

Hint: (1) State the appropriate recurrence equation

         (2) Guess the closed form solution

         (3) Prove the closed form solution you guessed in (2) by induction.
For a list of size n, merge sort will divide the list in two, recursively sort each half and then merge the two lists. For simplicity we will say we can do the merging with n comparisons.

Then the number of comparison for sorting a list of size n can be stated as T(n) = 2T(n/2)+n.

Also to simplify things a bit we will state our base case as T(2)=2 (as opposed to the more natural T(2)=1).

So now we just have to solve the recurrence T(n)=2T(n/2)+n, T(2)=2

We can fairly easily solve this by plugging in values and guessing the pattern.

T(2)=2 = 2*1

T(4)=8 = 4*2

T(8)=24=8*3

T(16)=64 = 16*4

T(32)=160=32*5

It is easy to verify that T(n) = nlg n satisfies this recurrence.

This can be verified by induction. Setting n=2k for simplicity:

Base case: T(2)=2

IH: T(2k) = (2k)*k

TS: T(2k+1)=(2k+1)(k+1)
Taking the left hand side of TS:

T(2k+1) = 2T(2k)+ 2k+1 (plugging into the recurrence)

                   = 2k2k +2k+1 (using the IH)

                    = k*2k+1+ 2k+1
                    = 2k+1 (k+1) QED

3. (10 pts) Karatsuba’s algorithm for multiplying two integers works in a recursive fashion. The running time T(n) of this algorithm can be characterized by the following recurrence equation: 

T(n) = 3T(n/2), T(1)=1

Solve this recurrence equation in terms of n.
You may assume n=2k to simplify the analysis BUT STATE THE ANSWER IN TERMS OF n
Hint: Plug in values and guess the closed form solution
T(1)=1

T(2)=3

T(4)=9

T(8)=27
It is easy to see that the pattern is T(2k)= 3k 

Now 3k = (2lg 3)k=(2k)lg 3
If we set n=2k then we have T(n)= nlg 3
[OPTIONAL] We can easily verify this by induction.

Base case T(1)=1

IH: T(2k) =3k
TS:T(2k+1)= 3k+1
Taking the left hand side of TS:

T(2k+1) = 3(T(2k))  (using the recurrence equation)

                   = 3(3k)  (by the IH)

                   = 3k+1 QED

4. (10 pts) Master Theorem: Find a closed from expression for T(n)
where T(n) = 2p T(n/2) and T(1)=1
Hint: Plug in values and guess the closed form solution.

T(1) = 1
T(2)=2p
T(4)=22p = 4p
T(8)=23p=8p
Therefore T(2k)=2kp

Or T(n) = np
5. (20 pts) Prove by induction that

(1)F(1) + (2)F(2) + (3)F(3) +…+ (n)F(n) = (n)F(n+2) – F(n+3) + 2

for all n>=1 and where F(n) is the nth Fibonacci number. 

Base Case: n =1

(1)(F(1) = (1)F(3) – F(4) + 2 = 1
(1)(1) = (1)(2) – 3 + 2 = 1
1 =1

Inductive Step: n = k

IH: (1)(F(2)) + (2)(F(2)) + (3)(F(3)) + … + (k)F(k) = (k)F(k+2) – F(k+3) + 2
TS: (1)(F(2)) + (2)(F(2)) + … + (k)F(2k) + (k+1)F(k+1)  = (k+1)F(k+3) – F(k+4) +2
Taking TS:

 (k)F(k+2) – F(k+3) + (k+1)F(k+1) + 2
=  (k)F(k+2) – F(k+3) + (k)F(k+1) + F(k+1) + 2
= (k)F(k+3)  - F(k+3) + F(k+1) + 2 [because (k)F(k+2) + (k)F(k+1) = (k)F(k+3)]

= (k)F(k+3) – F(k+2) + 2 [because F(k+1) – F(k+3) = F(k+2) by Fibonacci definition]
= (k)F(k+3) + F(k+3) – F(k+3) – F(k+2) + 2 [adding F(k+3) – F(k+3) doesn’t change anything]

= (k+1)F(k+3) – F(k+4) + 2 [because F(k+3) + F(k+2) = F(k+4)]
QED

6. (20 pts) Prove by induction that

(1)(F(2)) + (2) (F(4)) + (3)(F(6)) + … + (n)F(2n) = (n)F(2n+1) – F(2n)

for all n>=1 and where F(n) is the nth Fibonacci number. 

Base Case: n =1

(1)(F(2) = (1)F(3) – F(2)

(1)(1) = (1)(2) – (1)

1 =1

Inductive Step: n = k

IH: (1)(F(2)) + (2)(F(4)) + (3)(F(6)) + … + (k)F(2k) = (k)F(2k+1) – F(2k)

TS: (1)(F(2)) + (2)(F(4)) + … + (k)F(2k) + (k+1)F(2k+2)  = (k+1)F(2k+3) – F(2k+2)
Adding (k+1)F(2k+2)   to both sides of the IH:

(1)(F(2)) + (2)(F(4)) + … + (k+1)F(2k+2)  =  (k)F(2k+1) – F(2k) + (k+1)F(2k+2)

According to the definition of the Fibonacci sequence

 F(2k) + F(2k+1) = F(2k+2)

Hence by rearranging

– F(2k) = F(2k+1) - F(2k+2)

Substituting F(2k+1) - F(2k+2) for –F(2k) we get

(k)F(2k+1) – F(2k) + (k+1)F(2k+2) 

= (k)F(2k+1) + F(2k+1) - F(2k+2)+ (k+1)F(2k+2)

= (k+1)F(2k+1) + (k+1)F(2k+2) – F(2k+2)

= (k+1)(F(2k+1) + F(2k+2))  - F(2k+2)

= (k+1)F(2k+3) – F(2k+2)

QED
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