Fundamentals of Algorithms Homework 0 DUE August 24, 2010 4pm 1. Use proof by induction to show that 1^2 + 2^2 + 3^2 + ...+ n^2 = 1/6(n)(n+1)(2n+1) (100 points) SOLUTION: Base Case : n =1; 1^2 = (1/6) (1) (2) (3) Inductive Hypothesis: n = k; 1^2 + 2^2 + 3^2 .... k^2 = (1/6) (k) (k+1) (2k+1) To Show : n = k + 1; 1^2 + 2^2 + 3^2 .... k^2 + (k+1)^2 = (1/6) (k+1)( k+2) (2k+3) Starting from the IH: 1^2 + 2^2 + 3^2 .... k^2 = (1/6) (k) (k+1) (2k+1) (IH) 1^2 + 2^2 + 3^2 .... k^2 + ( k+1)^2 = (1/6) (k) (k+1) (2k+1) + (k + 1)^2 (adding (k+1)^2 to both sides) = (k+1)[(1/6)k(2k+1) + k + 1] (factoring k+1) = (k+1)[(2/6)k^2 + (1/6)k + k + 1] = (k+1)[(2k^2 + k + 6k + 6)/6] = (k+1)[(2k^2 + 7k + 6)/6] = (1/6)(k+1)(k+2)(2k+3) QED