Fundamentals of Algorithms Test 3 November 13, 2009 –                         Closed Book, Closed Notes
Please Answer all Questions in the Spaces Provided
NAME______________________________
1. Modexp: Compute 99922 mod 1009
9992 mod 1009 = 9992 mod 1009 = 100
9994 mod 1009 = 1002 mod 1009 = 919

9998 mod 1009 = 9192 mod 1009 = 28

99916 mod 1009 =282 mod 1009 = 784
22 = 16+4+2 => 99922 mod 1009 = (99916 mod 1009) (9994 mod 1009) (9992 mod 1009)
= ((784) (919) (100)) mod 1009 = 72049600 mod 1009 = 946
2. Fermat: Use the Fermat primality test to test whether 23 is prime by checking the base a=2.
We compute a(p-1) mod p = 2(23-1)mod 23 = 222mod 23

22 mod 23 = 22 mod 23 = 4
24 mod 23 = 42 mod 23 = 16
28 mod 23 = 162 mod 23 = 3
216 mod 23 =32 mod 23 = 9
22 = 16+4+2 => 222 mod 23 = (216 mod 23) (24 mod 23) (22 mod 23)

= ((9) (16) (4)) mod 23 = 576 mod 23 = 1
Therefore 23 passes the Fermat primality test to the base 2 and is probably prime.
3. RSA:  Suppose an enemy government proclaims its public RSA key as n=111, e=29. Signals intelligence intercepts a communication to this government and asks you to decrypt it. The message intercepted consists of 3 numbers:
  102 
1 
32

Assuming the standard encoding (A=1, B=2, C=3, etc) what does this message decode to?
The first step is to factor the modulus(n) which is 111 and we get n=pq=111 = 3*37.
So p=3,q=37.
Hence the totient = (p-1)(q-1) = (3-1)(37-1) = 72.

Our next step is to determine d the secret key using the fact that (d)(e) mod totient = 1 and we know that e=29 and totient = 72.
Here we can simply try different values of d until we get one that works. (There is an efficient way of doing this using the Extended Euclidean Algorithm but we don’t need to do this for this example).

Trying different values of d we notice that (29)(5) = 145 = 1 mod 72 so d=5.

Once we have the secret key we obtain the plaintext by applying m= cd mod n
1025 mod 111 = 3

15 mod 111 = 1

325 mod 111 = 20
Using the standard encoding this translates to

“CAT”

4. Additions: Let a(n) denote the number of additions required to compute the nth Fibonacci number recursively. Prove by induction that a(n) = F(n+1) -1 where F(n+1) is the (n+1)th Fibonacci number.

We note that a(n) can be described by the recurrence a(n) = a(n-1) + a(n-2) + 1, a(0)=0, a(1)=0
We prove the formula a(n) = F(n+1)-1 by induction

Base case: n=0,n=1

a(0)=0=f(1)-1

a(1)=0=f(2)-1

IH: a(k) = f(k+1)-1
TS: a(k+1) = f(k+2)-1

Taking the left side of TS:

a(k+1) = a(k) + a(k-1) +1 (using the recurrence formula)

                          =  f(k+1)-1 + f(k) -1 +1  (using the IH)

                          = f(k+2) -1 QED

5. Binet: Prove by induction Binet’s formula that f(n) = (φn – (1-φ)n)/√5, where φ = (1 + √5)/2

The following fact might prove useful: φ2=φ+1
Base case: n=0, n=1;

(φ0 – (1-φ)0)/√5 =0

(φ1 – (1-φ)1)/√5 =  (2φ-1)/√5 = 1

IH: f(k) = (φk – (1-φ)k)/√5

TS: f(k+1) = (φ(k+1) – (1-φ)(k+1))/√5

Taking the left hand side of TS
f(k+1) = f(k) + f(k-1) (recurrence equation)

                    = (φk – (1-φ)k)/√5 + (φ(k-1) – (1-φ)(k-1))/√5 (using the IH)

                    = (φk + φ(k-1) – [(1-φ)k) + (1-φ)(k-1)])/√5

(1) First we take φk + φ(k-1) 

                   = φ(k-1)[φ+1]

                   = Φ(k-1)(φ2) (using φ2 = φ+1)

                   = φ(k+1)
Therefore φk + φ(k-1) = φ(k+1)
(2) Then we take (1-φ)k) + (1-φ)(k-1)
                     = (1-φ)(k-1)[1 - φ +1] 

                     = (1-φ)(k-1) [1 – 2φ + φ + 1]

                     = (1-φ)(k-1) [1 – 2φ + φ2] (using φ2 = φ+1)

                     = (1-φ)(k-1) (1-φ)2 ( because (1-x)2 = 1 – 2x + x2)

                     = (1-φ)(k+1)
Therefore (1-φ)k) + (1-φ)(k-1) = (1-φ)(k+1)
Combining (1) and (2):

         (φk + φ(k-1) – [(1-φ)k) + (1-φ)(k-1)])/√5 

         = (φ(k+1) – (1-φ)(k+1))/√5 QED
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