Fundamentals of Algorithms Test 3 November 13, 2009 –                         Closed Book, Closed Notes
Please Answer all Questions in the Spaces Provided
NAME______________________________
1. Modexp: Compute 86328 mod 1013
8632 mod 1013 = 8632 mod 1013 = 214
8634 mod 1013 = 1002 mod 1013 = 211
8638 mod 1013 = 9192 mod 1013 = 962
86316 mod 1013 =282 mod 1013 = 575
28 = 16+8+4 => 86328 mod 1013 = (86316 mod 1013) (8638 mod 1013) (8634 mod 1013)

= ((575) (962) (211)) mod 1013 = 116714650 mod 1013 = 842
2. Fermat: Use the Fermat primality test to test whether 29 is prime by checking the base a=2.
We compute a(p-1) mod p = 2(29-1)mod 29 = 228mod 29

22 mod 29 = 22 mod 29 = 4
24 mod 29 = 42 mod 29 = 16
28 mod 29 = 162 mod 29 = 24
216 mod 29 =242 mod 29 = 25
28 = 16+8+4 => 228 mod 29 = (216 mod 29) (28 mod 29) (24 mod 29)

= ((25) (24) (16)) mod 29 = 9600 mod 29 = 1

Therefore 29 passes the Fermat primality test to the base 2 and is probably prime.
3. RSA:  Suppose an enemy government proclaims its public RSA key as n=91, e=29. Signals intelligence intercepts a communication to this government and asks you to decrypt it. The message intercepted consists of 3 numbers:
  74 
81 
63
Assuming the standard encoding (A=1, B=2, C=3, etc) what does this message decode to?
The first step is to factor the modulus(n) which is 91 and we get n=pq=91 = 13*7.
So p=13,q=7.
Hence the totient = (p-1)(q-1) = (13-1)(7-1) = 72.

Our next step is to determine d the secret key using the fact that (d)(e) mod totient = 1 and we know that e=29 and totient = 72.

Here we can simply try different values of d until we get one that works. (There is an efficient way of doing this using the Extended Euclidean Algorithm but we don’t need to do this for this example).

Trying different values of d we notice that (29)(5) = 145 = 1 mod 72 so d=5.

Once we have the secret key we obtain the plaintext by applying m= cd mod n
745 mod 111 = 16

815 mod 111 = 9

635 mod 111 = 7
Using the standard encoding this translates to

“PIG”
4. Additions: Let a(n) denote the number of additions required to compute the nth Fibonacci number recursively. Prove by induction that a(n) = F(n+1) -1 where F(n+1) is the (n+1)th Fibonacci number.

We note that a(n) can be described by the recurrence a(n) = a(n-1) + a(n-2) + 1, a(0)=0, a(1)=0

We prove the formula a(n) = F(n+1)-1 by induction

Base case: n=0,n=1

a(0)=0=f(1)-1

a(1)=0=f(2)-1

IH: a(k) = f(k+1)-1
TS: a(k+1) = f(k+2)-1

Taking the left side of TS:

a(k+1) = a(k) + a(k-1) +1 (using the recurrence formula)

                          =  f(k+1)-1 + f(k) -1 +1  (using the IH)

                          = f(k+2) -1 QED

5. Binet: Prove by induction Binet’s formula that F(n) = (an-bn)/√5
where a = (1+√5)/2,  b = (1-√5)/2 and F(n) is the nth Fibonacci number.
The following facts might prove useful: 
a2 = a+1, 
b2=b+1
Base case: n=0, n=1;

(a0 – b0)/√5 =0

(a1 – b1)/√5 = 1

IH: f(k) = (ak – bk)/√5

TS: f(k+1) = (a(k+1) – b(k+1))/√5

Taking the left hand side of TS
f(k+1) = f(k) + f(k-1) (recurrence equation)

                    = (ak – bk)/√5 + (a(k-1) – b(k-1))/√5 (using the IH)

                    = (ak + a(k-1) – [bk) + b(k-1)])/√5 (rearranging)
          = (a(k-1)[a+1] – [b(k-1)(b+1)])/ √5 (factoring)

         = (a(k-1)[a2] – [b(k-1)(b2)])/ √5 (using a2 = a+1, b2=b+1)

        = (a(k+1) – b(k+1))/√5 QED
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