Fundamentals of Algorithms Fall 2009 HW 6A
       DUE: November 10 4pm, 2009
1. Naïve Fibonacci: You are a young and innocent programmer and you decide to implement a function fib1(n) that calculates the Fibonacci sequence (here shown in the C programming language):
int fib1(int n){

  if(n<=1){

    return n;

  }else{

    return fib1(n-1) + fib1(n-2);

  }

}

(a) Let a(n) denote the number of additions used by this program on input n. What is a(5)?
We can define a(n) by the recursive formula

a(n) = a(n-1)+a(n-2)+1, a(0)=0,a(1)=0.

If we then evaluate a(5) using this equation we get a(5) = 7
(b) Derive a recurrence relation for a(n).
a(n) = a(n-1) + a(n-2) + 1

(c) Find a closed form solution for a(n) in term of Fibonacci numbers.

a(n) = f(n+1) -1

(d) Prove by induction the formula you found in part (c) is correct.

Base case, n=0,n=1
a(0)=0=f(1)-1

a(1)=0=f(2)-1

IH: a(k) = f(k+1)-1

TS: a(k+1) = f(k+2)-1

Taking the left side of TS:
a(k+1) = a(k) + a(k-1) +1 (using the recurrence formula)

                          =  f(k+1)-1 + f(k) -1 +1  (using the IH)
                          = f(k+2) -1 QED

2. Smarter Fibonacci: As a wiser and smarter programmer you decide that there is a better way to calculate Fibonacci number and you come up with the following implementation: 
int fib2(int n){

  int i;

  int curr;

  int f1=0;

  int f2=1;; 
  if(n<=1){

    return n;

  }

  for(i=1;i<n;i++){

    curr=f1+f2;

    f1=f2;

    f2=curr;

  } 
  return curr;

}

(a) Let b(n) denote the number of additions used by this program on input n. What is b(10)?

As before we try to derive a recurrence equation:
b(0) = 0;b(1)=0; b(n) = b(n-1)+1;

Working through the recurrence we find that b(10) = 9
(b) Derive a recurrence relation for b(n).
 b(0) = 0;b(1)=0; b(n) = b(n-1)+1;

(c) Find a closed form solution for b(n).
b(n) = n - 1

(d) Prove the formula from part (c) by induction.
Base case n=2

b(2) = b(1)+1 = 1 = 2-1

IH: b(k) = k-1

TS: b(k+1) = k

Taking the left hand side of the TS

b(k+1) = b(k) + 1 (using the recurrence formula)

                           = k-1 + 1 = k (using the IH)
3. Binet’s Formula: 
It turns out that the nth Fibonacci number can be expressed in closed form as

f(n) = (φn – (1-φ)n)/√5, where φ = (1 + √5)/2

Prove that this is true by induction. You may find the identity φ2=φ+1 to be useful.

Base case: n=0, n=1;

(φ0 – (1-φ)0)/√5 =0

(φ1 – (1-φ)1)/√5 =  (2φ-1)/√5 = 1

IH: f(k) = (φk – (1-φ)k)/√5
TS: f(k+1) = (φ(k+1) – (1-φ)(k+1))/√5
Taking the left hand side of TS
f(k+1) = f(k) + f(k-1) (recurrence equation)

                    = (φk – (1-φ)k)/√5 + (φ(k-1) – (1-φ)(k-1))/√5 (using the IH)
                    = (φk + φ(k-1) – [(1-φ)k) + (1-φ)(k-1)])/√5
(1) First we take φk + φ(k-1) 

                   = φ(k-1)[φ+1]

                   = Φ(k-1)(φ2) (using φ2 = φ+1)

                   = φ(k+1)
Therefore φk + φ(k-1) = φ(k+1)
(2) Then we take (1-φ)k) + (1-φ)(k-1)
                     = (1-φ)(k-1)[1 - φ +1] 

                     = (1-φ)(k-1) [1 – 2φ + φ + 1]

                     = (1-φ)(k-1) [1 – 2φ + φ2] (using φ2 = φ+1)

                     = (1-φ)(k-1) (1-φ)2 ( because (1-x)2 = 1 – 2x + x2)
                     = (1-φ)(k+1)
Therefore (1-φ)k) + (1-φ)(k-1) = (1-φ)(k+1)
Combining (1) and (2):

         (φk + φ(k-1) – [(1-φ)k) + (1-φ)(k-1)])/√5 

         = (φ(k+1) – (1-φ)(k+1))/√5 QED
