Fundamentals of Algorithms Fall 2009 HW 6A
       DUE: November 10 4pm, 2009
1. Naïve Fibonacci: You are a young and innocent programmer and you decide to implement a function fib1(n) that calculates the Fibonacci sequence (here shown in the C programming language):
int fib1(int n){

  if(n<=1){

    return n;

  }else{

    return fib1(n-1) + fib1(n-2);

  }

}

(a) Let a(n) denote the number of additions used by this program on input n. What is a(5)?
(b) Derive a recurrence relation for a(n).
(c) Find a closed form solution for a(n) in term of Fibonacci numbers.

(d) Prove by induction the formula you found in part (c) is correct.

2. Smarter Fibonacci: As a wiser and smarter programmer you decide that there is a better way to calculate Fibonacci number and you come up with the following implementation: 
int fib2(int n){

  int i;

  int curr;

  int f1=0;

  int f2=1;; 
  if(n<=1){

    return n;

  }

  for(i=1;i<n;i++){

    curr=f1+f2;

    f1=f2;

    f2=curr;

  } 
  return curr;

}

(a) Let b(n) denote the number of additions used by this program on input n. What is b(10)?

(b) Derive a recurrence relation for b(n).
(c) Find a closed form solution for b(n).
(d) Prove the formula from part (c) by induction.
3. Binet’s Formula: 
It turns out that the nth Fibonacci number can be expressed in closed form as

(phi^n – (1-phi)^n)/sqrt(5), where phi = (1 + sqrt(5))/2

Prove that this is true by induction. You may find the identity phi^2=phi+1 to be useful.

