Fundamentals of Algorithms Fall 2009 HW 3
       DUE: October 1 4pm, 2009
1. Running Time: 
(a) Please solve exercises 1.4.2 #1 and 1.4.2 #2 in the textbook. 
1.4.2 #1  The following functions are ordered from fastest growing to slowest growing:

n!, 2^n, 2^(n-1), (3/2)^n, n- n^2+5n^3,  n^3+ log n, n^3,  n^2,  n log n,  n, sqrt(n),  (log n)^2,  log n, log log n, 6
         1.4.2 #2  Please show which function is faster growing between the following two functions:

a.(n^2-n)/2 and 6n

  (n^2-n)/2
b. n+2sqrt(n) and n^2

n^2
c. n+nlog(n) and n*sqrt(n)

n*sqrt(n)

d. n^2 + 3n + 4 and n^3

n^3

e. n log(n) and n*sqrt(n)/2
n*sqrt(n)/2
f. n + log(n) and sqrt(n)

 n + log(n)

g. 2log(n)^2 and log n +1

2log(n)^2

h. 4nlog(n) + n and (n^2-n)/2

(n^2-n)/2

(b)  Order the following function from slowest growing to fastest growing: n^3, lg n, 2^n, n, n^2, n lg n
lg n, n, n lg n, n^2, n^3, 2^n

2. Permutation Sort: Consider the following (very naïve) algorithm for sorting n numbers:

(i) Try every possible permutation of n numbers.

(ii) Test if the permutation is sorted. If yes then stop, else keep going

What is the worst case running time of this algorithm (in terms of number of comparisons)?

(n-1)*n! (for each of n! permutations it takes n-1 comparisons to check if it is sorted).

3. Karatsuba:
(a)  Suppose we multiply two 1024 digit numbers using the “normal” algorithm and Karatsuba’s algorithm. How many single digit multiplications will we do in each case?
Normal algorithm for multiplication running takes n^2 single digit multiplications= 1024^2 = 2^20 = 1,048,576

Karatsuba’s algorithm takes exactly n^lg3 multiplications when n is a power of 2 = 2^(10 lg 3) = 3^10

= 59049.

(b) Implement integer multiplication using the naïve algorithm and Karatsuba’s algorithm. Compare the running times of both algorithm by multiplying two 1024 digit numbers.
NOT SHOWN

4. Damina’s Party: Damina is planning a blow out party! She intends to invite ALL of her friends. But Damina is very popular and happens to have a LOT of friends. But for some reason her cell phone plan only allows her to call TWO people per day (I know!).
(a) If Damina has N friends, how many days will it take her to invite all of her friends?

N/2

          Fortunately Damina is rather clever and is determined to design a more efficient

          algorithm to speed up the friend-inviting process. She hits upon the following idea:

(i) She will call 2 of her friends and pass each of them a list of (1/2) the remaining names.

(ii) These friends will then each call 2 friends and pass each of them a list with (1/2) of THEIR remaining names.

(iii) This process will continue until all the names have been called.

(b) How many friends will Damina have invited by the tth day?

Friends invited = 2+4+8+16+…+2^t = 2(1+2+4+8+…+2^(t-1)) = 2(2^t-1) (geometric series). 
(c) How many days will it take for Damina to invite all N of her friends?

2(2^t-1)=N

2^t = (N/2+1)

t = lg(N/2+1) days

(d) Suppose N=510, how many days will both methods take?
First method = N/2 = 510/2 = 255 days
Second method = lg(510/2+1) = 8 days

5. Matrix Multiplication: Suppose you multiply two n X n matrices by the “normal” method. How many single digit multiplications does it take?
n^3

In 1969 Volker Strassen invented an algorithm for matrix multiplication whose running time is governed by the following formula:

T(n) = 7 T(n/2) T(1)=1

Solve the recurrence to find a closed form formula for T(n).
For this case we can just plug in values and see if a pattern emerges.

T(1)=1

T(2)=7T(1) = 7

T(4)=7T(2)=7^2

T(8)=7T(4)=7^3

T(16)=7T(8)=7^4

T(32)=7T(16)=7^5

Clearly T(2^k)=7^k

Setting n=2^k then 7^k = (2^lg7)^k = (2^k)^lg7 = n^lg7

Hence T(n)=n^lg 7
6. Fibonacci: Let Fn be the nth Fibonacci number.

(a) Prove that for sufficiently large n, Fn > (3/2)n
Proof By Induction
Base Cases n=11,12
F11=89, 1.5^11 = 86.5, therefore it is true for n=11.
F12=144, 1.5^12 = 129.75, therefore it is true for n=12.
Inductive Hypothesis: Suppose the statement is true for some n=k:

F_k > 1.5^k

To Show: F_(k+1) > 1.5^(k+1)

Starting from the IH

F_k>1.5^k

Adding F_(k-1) to both sides

F_k + F_(k-1) > 1.5^k +F_(k-1)

F_(k+1) > 1.5^k +1.5^(k-1)  (by the IH)
             = [3/2+1]1.5^(k-1) (factoring 1.5^(k-1))
             =(5/2)*(3/2)^(k-1) 
             = (10/9)*(3/2)^(k+1) (because 5/2 = (10/9) *(3/2)^2)

              > (3/2)^(k+1) (10/9 > 1)
              Therefore F_(k+1) > (3/2)^(k+1) QED
(b) Prove that Fn < 2n.

Proof By Induction

Base case n=0

F_0 = 0, 2^0 = 1, there the statement is true for n=1.

IH: F_k < 2^k

TS: F_(k+1) < 2^(k+1)

Taking the left hand side of TS:

F_(k+1) = F_k + F_(k-1)
               < 2^k + 2^(k-1) (by the IH)
               = 2^(k-1)[2+1] (factoring 2^(k-1))
               = 3*2^(k-1) 
               < 4*2^(k-1) 
                = 2^(k+1)
Therefore F_(k+1) < 2^(k+1) QED
7. Binary Trees: 
(a) Prove that a binary tree of height h has at most 2h leaves.
We proceed by induction on the height of the tree.

Base case: height =0, there is just 1 node L=1 and the statement is satisfied.

IH: Suppose that a binary tree of height h has at most 2^h leaves for some h

TS: Binary tree of height h+1 has at most 2^(h+1) leaves

Inductive Step: Take a binary tree of height h+1. The root of the tree has at most 2 children which each have a maximum height of h and by the Inductive Hypothesis, each of the children has at most 2^h leaves.

Hence the total number of leaves of a tree of height h+1 is at most 2*2^h = 2^(h+1) QED
(b) Prove that a tree with L leaves must have height at least ┌lg L┐.

We simply use the results of part (a). Since a tree of height h has at most 2^h leaves:
L < 2^h

Taking the logarithm of both sides

       ┌lg L┐< h since height must be integral.

     Hence for a  binary tree with L leaves, the height will be at least ┌lg L┐
8. Factorial: 

(a) Prove that 2n < n! (for n >= 4)
This is easiest to see by comparing the expressions 2 * 2 * 2 … 2 and n * (n-1)*(n-2) … (3)(2)(1)
For each n greater than 4,  2^n increases by a constant factor while n! increases by a larger factor, hence 2^n < n! for all n >= 4.

(b) Prove that (n/2) n/2 < n!
Again we compare the expressions (n/2)(n/2(n/2)… and * (n-1)*(n-2) … (3)(2)(1)

Comparing element by element starting from the left each term in (n/2)^(n/2) is smaller than the corresponding term in n! hence (n/2) n/2 < n!
(c) Prove that n! < nn
Same idea as in parts (a) and (b), if we compare the expressions n*n*n… and n*(n-1)…(3)(2)(1)
then each element of n^n is larger or equal to the corresponding elt in n! and hence  nn  >n! 

9. Master Theorem: Find a closed from expression for T(n)
All the following recurrences may be easily solved by plugging in values and observing the pattern.

(a) T(n) =  T(n/2) T(1)=1
T(1) = 1

T(2)=1

T(4)=1

T(8)=1

Therefore T(n)=1

(b) T(n) = 2 T(n/2) T(1)=1
T(1) = 1

T(2)=2
T(4)=4
T(8)=8

Therefore T(n)=n
(c) T(n) = 4 T(n/2) T(1)=1
 T(1) = 1

T(2)=4

T(4)=16

T(8)=64

Therefore T(n)=n^2
(d) T(n) = 8 T(n/2) T(1)=1
 T(1) = 1

T(2)=8

T(4)=64

T(8)=512

Therefore T(n)=n^3

(e) T(n) = 2k T(n/2) T(1)=1
 T(1) = 1

T(2)=2^k

T(4)=2^2k

T(8)=2^3k

Therefore T(n)=n^k

10. Divide and Conquer:
(a) Give a complete analysis of the running time of Merge Sort and prove that it takes O (nlgn) comparisons (you may assume n=2k to simplify the analysis).

The most straightforward approach is to state a recurrence equation and then solve it.
For a list of size n, merge sort will divide the list in two, recursively sort each half and then merge the two lists. For simplicity we will say we can do the merging with n comparisons.

Then the number of comparison for sorting a list of size n can be stated as T(n) = 2T(n/2)+n.

Also to simplify things a bit we will state our base case as T(2)=2 (as opposed to the more natural T(2)=1).
So now we just have to solve the recurrence T(n)=2T(n/2)+n, T(2)=2
We can fairly easily solve this by plugging in values and guessing the pattern.

T(2)=2 = 2*1

T(4)=8 = 4*2

T(8)=24=8*3

T(16)=64 = 16*4

T(32)=160=32*5

It is easy to verify that T(n) = n*lg n satisfies this recurrence.
This can be verified by induction. Setting n=2^k for simplicity:
Base case: T(2)=2

IH: T(2^k) = (2^k)*k

TS: T(2^(k+1))=(2^(k+1))*(k+1)

Taking the left hand side of TS:

T(2^(k+1)) = 2T(2^k)+2^(k+1) (plugging into the recurrence)
                   = 2k2^k+2^(k+1)  (using the IH)
                    = k*2^(k+1)+2^(k+1)  
                    = 2^(k+1)*(k+1) QED
(b) Give a complete analysis of the running time of Karatsuba’s algorithm and prove that it uses O (nlg3) multiplications of single digits (you may assume n=2k to simplify the analysis).

As in part (a) the main issue is to state a recurrence and then solve it.

Karatsuba’s algorithm works by splitting the two numbers to be multiplied into two halves each and then multiplying those halves using 3 multiplications (by reusing one of the multiplications).

Hence stated as a recurrence the number of multiplications T(n) is

T(n) = 3T(n/2). T(1)=1

As before we can plug in values and guess

T(1)=1

T(2)=3

T(4)=9

T(8)=27

T(16)=81

It is easy to see that the pattern is T(2^k)= 3^k 

Now 3^k = (2^lg 3)^k=(2^k)^lg 3

If we set n=2^k then we have T(n)= n^ lg 3

Again we can verify this by induction.
Base case T(1)=1

IH: T(2^k) =3^k

TS:T(2^(k+1))=3^(k+1)

Taking the left hand side of TS:

T(2^(k+1)) = 3(T(2^k))  (using the recurrence equation)
                   = 3(3^k)  (by the IH)
                   = 3^(k+1) QED

(c) Show that sorting an array of n numbers will take Ω (nlgn) comparisons.

We consider sorting in the decision tree model, thus we will try to bound the minimum height of any decision tree for sorting n numbers.

(1) There are n! permutations of n numbers, hence any decision tree will have to have at least n! leaves to account for all the possible results of sorting n numbers.

(2) Using the results of question 7(b) we note that a binary tree with L leaves must have height at least ┌lg L┐ In this case L=n! so the tree must have height ┌lg n!┐
(3) Using results from question 8 we note that n! > (n/2)^(n/2) 

Taking logs of both sides we then have  lg(n!)  > (n/2)lg(n/2) = Ω (nlgn) 
So the height of the decision tree must be at least Ω (nlgn) and any comparison algorithm will require at least Ω (nlgn)  comparisons QED.
