Statement of Purpose

Mathematical proofs often come out the result of the combination of two com-
plementary techniques: computation and deduction. Computation involves the
symbolic manipulation of expressions, which are transformed according to some
specified equivalences. Deduction is the process of deriving logical consequences
from a set of initial postulates, through the application of some fixed rules of
inference.

Unfortunately in the past many applications of logic to computer science failed
to realize the importance of a balanced interaction of both these processes, and
instead showed a strong bias toward the one or the other. A case in point is
Logic Programming (LP), a discipline born to provide a logical underpinning to
programming languages design. Perhaps the most successful byproduct of LP is
the Prolog language and its derivatives, which base their operational model on
depth-first proof search over a restricted class of first-order formulae (e.g. Horn
clauses, Hereditary Harrop formulae). Applied to real-life problems, which of-
ten required algebraic data structures such as numbers or strings, the purely
deduction-based approach used by Prolog soon exhibited its many limitations,
and required, in early implementations, the introduction of extra-logical con-
structs. The use of these constructs make the analysis of the behavior and
properties of Prolog programs much harder, nullifying most of the advantages
promised by the LP approach.

A more satisfactory solution to this situation was offered at the beginning of
this decade by a set of programming techniques, grouped under the name of
Constraint Logic Programming (CLP), which finally recognized the importance
of introducing algebraic computation as part of the operational semantic of
Prolog. From a theoretical viewpoint, CLP lays its foundation on the studying of
Term Rewriting and equational reasoning. In practice, CLP is implemented by
employing very efficient decision procedures to solve frequently-occurring classes
of equational problems; problems that fall outside the scope of these procedures
are kept as dormant constraints until they can be furtherly simplified.

Parallel to CLP, the 90s have seen other exciting developments of logic pro-
gramming, and, among these Higher-Order Logic Programming (HO-LP). The
seminal work of Martin Lof demonstrated how Constructive Type Theory can
be effectively used as foundation of mathematics. This inspired the development
of HO-CLP languages such as Lambda-Prolog and Elf. These languages offer
several advantages over their first-order counterparts. The use of a type system
makes the task of isolating meaningless expressions easier, and therefore leads to
earlier detection of many common programming mistakes. Lambda-abstraction
provides a convenient way to represent the notion of bound variable, that is
used pervasively in mathematics. Built-in S-reduction offers a computational
component in an otherwise purely deductive programming paradigm. Finally,



the expressiveness offered by their sophisticated type structure allow one to for-
malize other deductive systems within these languages, and therefore be used
as Logical Frameworks.

Unfortunately HO-LP languages, borrowing much of their operational seman-
tic model from Prolog, inherit most of its limitations too. In these past few
years, very exciting applications of these languages have surfaced (such as, for
example, Necula’s proof-carrying code technique for security in a mobile code
environment) but they were hampered by similar problems to those mentioned
before for Prolog. It is my thesis that the way to address these must go through
the study of Higher-Order Term Rewriting, as the basis for the development of
CLP-techniques for HO-LP languages.

The theoretical work done in the course of my Ph.D. studies can be divided in
two parts.

In the first one, I analyzed an extension to LF where types can also be con-
verted modulo an equational theory. As the LF calculus is very sensitive to
changes in the type conversion relation used, all the confluence properties of
B-reduction and (restricted) n-expansion, and existence of normal forms needed
to be re-examined. I showed that my extension is conservative, and all the usual
properties continue to hold, albeit in a weaker form.

In the second part, I introduced a notion of rewriting for this setting. Since
in a dependently typed calculus terms are allowed to appear inside types, a
naive definition, extending the one given by Nipkow for simply-typed calculi,
is inapplicable, as it may lead to situations where rewriting invalidates the
typed of an expression. Hence, I turned my attention to the study of special
preorders, called dependence relations, that allow us to extract type information
that is implicit in a LF signature, and use it to restrict rewriting to well-behaved
instances.

Dependence relations turned out also to be useful when studying confluence of
rewriting, which was shown to be, as usual, reducible to checking some special
rewriting configurations known as critical pairs. Together with a general Critical
Pair Criterion, I proved a specialized version, where fewer critical pairs need to
be checked thanks to the type information conveyed by these preorders.

There are at least two directions toward which this research could evolve. The
first is further application of CLP-techniques to Lambda-Prolog and EIf. It
would be interesting to see to what novel techniques can be defined to make
best use of the properties of these languages, or to what extent the existing one
lift to this higher-order setting.

Another interesting direction of research is further study of Higher-Order Term
Rewriting. Many important classes of Term Rewriting System are not covered
by the results presented in my Ph.D. dissertation, including rewriting modulo
associative and associative-commutative operators, and conditional rewriting.



The latter seems of particular importance, in light of Prolog extensions such
as Frihwirth’s Constraint Handling Rules, that allow Prolog programmers to
define their own constraint solvers by means of writing conditional rewrite rules.



