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Abstract—Shamir’s (n,k) threshold secret sharing is an impor-
tant component of several cryptographic protocols, such as those
for secure multiparty-computation. These protocols typically
assume the presence of direct communication links from the
dealer to all participants, in which case the dealer can directly
pass the shares of the secret to every participant. In this paper,
we consider the problem of secret sharing when the dealer does
not have direct communication links to all participants, and
instead, they form a general network. We present an algorithm
for secret sharing over networks that satisfy what we call the k-
propagating-dealer condition. The algorithm is communication-
efficient, distributed and deterministic. Interestingly, the solution
constitutes an instance of a network coding problem admitting a
distributed and deterministic solution, and furthermore, handles
the case of nodal-eavesdropping, about which very little appears
to be known in the literature.

In the second part of the paper, we derive information-theoretic
lower bounds on the communication complexity of secret sharing
over any network, which may also be of independent interest.
We show that for networks satisfying the k-propagating-dealer
condition, the communication complexity of our algorithm is
Θ(n), and furthermore, is always within a constant factor of the
lower bound. We also show that, in contrast, existing solutions in
the literature entail a communication-complexity that is super-
linear for a wide class of networks, and is Θ(n2) in the worst
case. Our algorithm thus allows for efficient generalization of
several cryptographic protocols to a large class of networks.

I. INTRODUCTION

Shamir’s classical (n,k) secret sharing scheme [1] is an

essential ingredient of several cryptographic protocols. The

scheme considers a set of (n+1) entities: a dealer and n
participants. The dealer possesses a secret s and wishes to pass

functions (called shares) of this secret to the n participants,

such that the following properties are satisfied:

• k-secret-recovery: the shares of any k participants suffice to

recover the secret s
• (k− 1)-collusion-resistance: the aggregate data gathered by

any (k− 1) nodes reveals no knowledge (in the information-

theoretic sense) about the secret s.

Several cryptographic protocols in the literature require

execution of one or more instances of secret sharing among all

the participants. These include protocols for secure multiparty-

computation [2], secure key management [3], and secure

archival storage [4]. For instance, under the celebrated Ben-

Or-Goldwasser-Wigderson (BGW) protocol [2] for secure-

multiparty function computation, the initialization step re-

quires n instances of secret sharing and every multiplication

operation requires 2n additional instances.

Most protocols including those listed above assume that the

dealer has direct communication links to every participant. In
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this case, the dealer can compute the shares as per Shamir’s

scheme [1] and directly pass the shares to the respective

participants. In several situations, the dealer may not have

direct communication links with every participant; instead, the

dealer and the participants may form a general network, e.g.,

as in Fig. 1. The network is described by a graph G with

(n+1) nodes. These (n+1) nodes comprise the dealer and

the n participants. An edge represents a secure communication

link between its two end-points. We shall say a participant is

‘directly connected to the dealer’ if there exists an edge from

the dealer to that participant. We shall use the terms ‘edge’ or

‘link’ to refer to a communication link.

Under a general network, all communication between the

dealer and a participant who is not directly connected to it,

must pass through other participants in the network. This poses

the challenge of secret sharing over a network without leaking

any additional information to any participant.

Previous solutions: The current practice is to perform sep-

arate secure transmissions across the network [5] from the

dealer to each participant. Under this solution, the dealer first

encodes s into n shares {t�}n�=1 using Shamir’s secret sharing

scheme. To every node � directly connected to the dealer, the

dealer directly passes the share t�. To disseminate shares to

the remaining nodes, the dealer performs the following actions,

once separately for each remaining node �′ ∈ {1,...,n}. The

dealer applies Shamir’s secret sharing treating t�′ as a secret.

The resultant k shares are then passed to node �′ via k node-

disjoint paths in the graph. Node �′ can decode its desired

share t�′ , while the remaining nodes in the network do not

obtain any information about s or t�′ .

Such a solution incurs a high communication cost, since the

dealer needs to transmit shares across the network separately

to every participant. Moreover, the requirement of setting up k
node-disjoint paths to every participant requires knowledge of

the global topology, and also requires significant coordination

in the network. 1 Due to lack of a specific name, in the sequel,

we shall refer this solution simply as the “previous solution”.

In this paper, we consider the problem of efficient dissem-

ination of the shares of a secret to participants forming a

network. We provide an algorithm that performs this task over

a wide class of networks in a communication-efficient and

distributed manner. Our algorithm provides significant gains

over the previous solution, with a communication complexity

that is within a constant factor from the information-theoretic

lower bounds, that are also derived in this paper.

As a secure network coding problem: The problem of secret

share dissemination can also be cast as a specific instance of

1The communication efficiency of this solution can be improved if more
than k node-disjoint paths are available, by employing two-threshold secret
sharing over these node-disjoint paths. The analysis and comparisons per-
formed subsequently in Section IV consider this version of the solution.
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Fig. 1: A network formed by the dealer (D) and participants (1 to 6), as
considered in Example 1.

a secure network coding problem, by connecting sinks to each

of the
(
n
k

)
subsets of k participants. It requires secrecy from

an eavesdropper that can gain access to subsets of the nodes
(in particular, to any subset of (k− 1) participants). However,

to the best of our knowledge, only the setting where the

eavesdropper can access subsets of links is well understood in

the literature. [6], [7] consider the setting where a collection of

subsets of the links is specified, and an eavesdropper may gain

access to precisely one of these subsets. This work addresses

the problem of node-compromise by treating it as a case of

link-compromise by allowing the eavesdropper to gain access

to all links that are incident upon the compromised nodes.

However, this scheme requires the network to satisfy a certain

condition, which is almost always violated in our problem.

Moreover, the scheme is not explicit and requires the size of

the finite field to be exponential in n. Communication-efficient

algorithms to secure a network from an eavesdropper having

access to a bounded number of links are provided in [8], [9].

These algorithms communicate a message of size equal to the

difference between the largest message that can be sent in the

absence of secrecy requirements and the bound on number of

compromised links. In our problem, this difference is generally

0 or smaller (e.g., the difference is −2 in the network of

Fig. 1), thus making these algorithms inapplicable here.

The algorithms currently found in the network coding

literature, even for the setting where there are no secrecy

requirements, are either random (thus not guaranteed) [10],

or deterministic but centralized [11]. On the other hand,

our algorithm is both distributed and deterministic (i.e., is

successful with probability 1).

Illustrative example: The following toy example illustrates

the previous solution and our new algorithm.

Example 1: Consider the network depicted in Fig. 1. Let

n= 6 and k = 2, with the finite field F7 as the alphabet of

operation. Under Shamir’s scheme of encoding the secret s,

the share ti (1≤ i≤ 6) for participant i is

ti = s+ ir

where r is a value chosen by the dealer uniformly at random

from F7. While the dealer can directly pass shares t1 and

t2 to participants 1 and 2 respectively, the difficulty arises

in communicating shares to the remaining participants with

whom the dealer does not have direct communication links.

For instance, if the dealer tries to pass share t3 to 3 by passing

t3 along the path ‘D → 1 → 3’, then 1 gains access to two

shares, t1 and t3. Using these two shares, 1 can recover s,

thus violating the (k− 1)-collusion resistance requirement.

The solution previously proposed in the literature is to

perform separate secure transmissions from the dealer to each

participant [5]. In the example of Fig. 1, in order to pass the

share t3 to participant 3, the dealer chooses another random

value r3, passes (t3+ r3) along the path ‘D → 1→ 3’, and r3
along ‘D → 2 → 3’. Now, participant 3 can recover its share

t3, and no participant gains any additional information about

s or t3 in this process. In a similar manner, the dealer commu-

nicates ti (4≤ i≤ 6) to participant i by passing (ti+ ri) and

ri through k=2 node-disjoint paths. Although this solution

guarantees successful share dissemination, it is communication

inefficient, and requires knowledge of the global topology, as

well as considerable coordination in the network.
Observe that the solution described above transmits data

across several hops in the network in every step, which

is however, never used subsequently in the protocol. Thus,

in order to design efficient algorithms, one may wish to

propagate data in a manner that allows its subsequent reuse

downstream, thus reducing the overall communication in the

network, as typical of solutions based on network coding.

Under our algorithm, the dealer first draws two values r and

ra uniformly at random from F7. The dealer then passes

the two values (s+ r) and (r+ ra) to node 1, and the two

values (s+2r) and (r+2ra) to node 2. Now, node 1 passes

(s+ r) + j(r+ ra) to its neighbouring node j = 3, and this

expression can equivalently be written as (s+ jr) + (r+ jra).
Similarly, node 2 passes (s+2r) + j(r+2ra) (= (s+ jr) +
2(r+ jra)) to its neighbours j ∈ {3,4}. Node 3 thus receives

(s+3r) + (r+3ra) and (s+3r) + 2(r+3ra) from which it

recovers the two values (s+3r) and (r+3ra). Node 3 now

passes (s+3r) + j(r+3ra) (= (s+ jr) + 3(r+ jra)) to its

other neighbours j ∈ {4,5}. Node 4 thus receives (s+4r) +
2(r+4ra) and (s+4r) + 3(r+4ra) from nodes 2 and 3
respectively, from which it recovers (s+4r) and (r+4ra).
In general, in this network, every node i ∈ {1,...,6} recovers

(r+ ira) and (s+ ir), and can thus recover its requisite share

(s+ ir), along with a random counterpart (r+ ira) which is

used to disseminate shares further downstream.
One can see that the new algorithm presented in this paper

requires a communication of only 12 values, as opposed to 24
in the previous solution. Furthermore, this algorithm requires

knowledge of only the local topology, whereas the previous

solution requires the knowledge of the global topology to set-

up communication over node-disjoint paths.
Summary of results: We first present an algorithm that

enables a dealer to disseminate shares of a secret to n
participants in network G, such that the properties of

• k-secret-recovery (when G satisfies a condition, which we

term the k-propagating-dealer condition)

• (k− 1)-collusion-resistance (for any G)

are satisfied. The algorithm is completely distributed, and each

node needs to know only the identities of its neighbours. The

algorithm is explicit, works with any finite field of size n or

higher, and requires computations consisting only of encoding

and decoding one instance of a Reed-Solomon code at every

node. Thus, this algorithm allows for efficient generalization of

various cryptographic protocols, that previously assumed di-

rect communication links from the dealer to every participant,

to a large class of networks.
For any (n,k), and G with (n+1) nodes, we also derive

• Information-theoretic lower bounds on the total communi-

cation complexity under any algorithm.
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• Communication complexity under our algorithm

• Lower bounds on the communication complexity under the

previous solution.

Using these results, we establish that when the k-propagating

dealer property is satisfied, the communication complexity of

our algorithm is Θ(n), and is always within a constant factor

from the lower bounds. On the other hand, the communication

complexity of the previous solution grows super-linearly for a

large class of graphs, and is Θ(n2) in the worst case.

Additional results in the extended version [12]: Heuristic

methods, based on this algorithm, addressing the case when the

k-propagating-dealer condition is not satisfied are provided.

Extensions incorporating active adversaries, efficient addition

of new participants in the absence of trusted entities, and two-

threshold secret sharing are also presented. Bounds on the

amount of randomness required are derived: the amount of

randomness required under our algorithm is independent of n,

which is not the case with the previous solution.

Our algorithm is based on a variant of the Product-Matrix
codes [13] which were originally constructed for distributed

storage systems.

Organization of the paper: Section II describes the system

model. Section III presents the main algorithm. Section IV

presents an analysis of the communication-complexity of the

algorithm, lower bounds for the problem, and comparisons

with the performance of the previous solution. Finally, Sec-

tion V presents conclusions and discusses open problems.

II. SYSTEM MODEL

A. Secret Sharing in a Network

The dealer possesses a secret s that is drawn from some

alphabet A, and wishes to pass shares of this secret to n
participants. The dealer and the participants form a network,

denoted by graph G. The graph G has (n+1) nodes compris-

ing the dealer and the n participants, and an edge in the graph

denotes a secure and private communication link between

the two end-points.2 The problem is to design a protocol

which will allow the dealer to pass shares (of the secret)

to the n participants, meeting the requirements of (k− 1)-
collusion-resistance and k-secret-recovery. All the participants

are assumed to be honest-but-curious, i.e., they follow the

protocol correctly, but may store any accessible data to gain

information about the secret. 3 The edges in G can be directed

or undirected: a directed edge implies existence of only a

one way communication link and an undirected edge implies

direct communication links both ways. n and k are assumed

to satisfy n≥ k > 1, since n≤ k− 1 prohibits the secret from

ever being recovered, while k = 1 degenerates the problem to

the case wherein no security is required.

We shall now discuss a condition that the graph G must

necessarily satisfy for any algorithm to successfully perform

secret sharing on it.

Definition 1 (m-connected-dealer): A graph with (n+1)
nodes (the dealer and n participants) satisfies the m-

2Thus, at times, we will also refer to a participant as a node of the graph.
We will also use the terms ‘network’ and ‘graph’ interchangeably.

3An extension to handling active adversaries is presented in the extended
version [12] of this paper.

connected-dealer property for a positive integer m, if each

of the n participants in the graph either has an incoming edge

directly from the dealer or has at least m node-disjoint paths

from the dealer to itself.

Lemma 1 (Necessary condition): For any graph G, a nec-

essary condition for any algorithm to perform (n,k) secret

sharing is that G satisfies the k-connected-dealer property.

Proof: The proof is straightforward. Suppose G does not

satisfy the k-connected-dealer property. Then there exists some

node (say, node i) that is not directly connected to the dealer,

and has at most (k− 1) node-disjoint paths from the dealer

to itself. Since every path from the dealer to node i must

necessarily pass through at least one of these (k− 1) nodes,

they can together recover the entire share of participant i.
Putting in their own (k− 1) shares, these (k− 1) participants

can together recover s, thus violating the (k− 1) collusion

resistance requirement.

Thus no algorithm can operate successfully on all network

topologies, and must require the graph G to obey at least the

k-connected-dealer condition. In this regard, we remark that

the algorithm presented in this paper is robust to the network

topology, i.e., the (k− 1)-collusion-resistance property is sat-

isfied irrespective of the topology of the network.

Our algorithm successfully disseminates secret shares on a

large class of networks. This class is described below.

B. Class of Networks Considered

The algorithm presented in this paper requires the com-

munication network G to satisfy an additional condition, the

k-propagating-dealer condition, as discussed below.

Definition 2 (m-propagating-dealer): A graph with (n+
1) nodes (the dealer and n participants) satisfies the m-

propagating-dealer property for a positive integer m, if there

exists an ordering of the n participants in the graph such that

every node either has an incoming edge directly from the

dealer, or has incoming edges from at least m nodes preceding

it in the ordering.

As an illustration of this condition, consider the network of

Example 1 (Fig. 1). This network satisfies the 2-propagating-

dealer condition, with the ordering 1,2,3,4,5,6 (observe that

this is also the order in which the participants receive their

shares under our algorithm in Example 1). Examples of other

classes of graphs that satisfy this condition include layered net-

works, one-dimensional geometric graphs, backbone networks.

In each of these graphs, the k-propagating-dealer condition

is satisfied for any node as the dealer. In addition, any

directed acyclic graph (DAG) that satisfies the m-connected-

dealer condition automatically satisfies the m-propagating-

dealer condition (any topological ordering of the DAG suffices

as the requisite node-ordering).

Our algorithm successfully performs secret share dissemina-

tion to all participants if the graph satisfies the k-propagating-

dealer property. We note that while our algorithm requires

existence of some ordering of the nodes satisfying the k-

propagating-dealer property, the algorithm itself is completely

distributed and oblivious of this ordering.

Apart from the parameters n and k, an additional parameter

d is associated to our algorithm. We saw earlier that the k-
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connected-dealer condition is necessary for any secret sharing

algorithm, and our algorithm requires the k-propagating-dealer

condition to be satisfied. Now, assuming that these necessary

conditions have been met, one would intuitively expect the

efficiency of the algorithm to be higher if the graph has

a greater connectivity. The parameter d is used to capture

this intuition: our algorithm takes the parameter d (≥ k) as

input, and under the assumption that the graph satisfies the

d-propagating-dealer condition, achieves a greater communi-

cation efficiency. Note that in the scenario that one does not

have an estimate of d, one can execute the algorithm by simply

setting d to be equal to the secret sharing parameter k.

C. Notational Conventions

For any node j, the set of its neighbouring nodes is denoted

as N (j). In case of a directed graph, N (j) denotes the set of

nodes that have an incoming edge from node j. The dealer is

denoted by D. We say that a node j is directly connected to the

dealer if j ∈N (D). Transpose of a vector or matrix is denoted

by a superscript T . For any integer �≥ 1, [�] represents the

set {1,...,�}.
III. MAIN ALGORITHM

Consider a network G that obeys the d-propagating-dealer
condition for some parameter d (≥ k). Assume secret s
belongs to the alphabet F

d−k+1
q , for some q > n. Thus

we can equivalently denote the secret as a vector s=
[s1 s2 ··· sd−k+1]

T with each element of this vector belonging

to the finite field Fq .

A. Initial Setting up by the Dealer

The dealer first constructs an (n× d) Vandermonde matrix

Ψ, with the ith (1≤ i≤ n) row of Ψ being

ψT
i = [1 i i2 ··· id−1] . (1)

The vector ψi is termed the encoding vector of node i.
Next, the dealer constructs a (d× d) symmetric matrix M

comprising the secret s and a collection of random values as:

M =

⎡
⎣ sA ra

T sB
T

ra Rb RT
c

sB Rc 0

⎤
⎦ (2)

︸︷︷︸
1

︸ ︷︷ ︸
k−1

︸ ︷︷ ︸
d−k

where the depicted sub-matrices of M are

• sA = sd−k+1 is a scalar,

• sB = [s1 ···sd−k]
T is a vector of length (d− k),

• ra is a random vector of length (k− 1),
• Rb is a ((k− 1)× (k− 1)) symmetric matrix with its

k(k−1)
2

distinct entries populated by random values,

• Rc is a ((d− k)× (k− 1)) matrix with its (k− 1)(d− k)
entries populated by random values.

These random values are all picked independently and uni-

formly from Fq . Note that the total number of random values

R in matrix M is

R= (k− 1)+ k(k− 1)
2

+ (k− 1)(d− k) = (k− 1)d−
(
k− 1
2

)
.

The entire secret is contained in the components sA and sB
as sT = [s1 ···sd−k+1] = [sB

T sA]. Observe that the structure

of M as described in (2), along with the symmetry of matrix

Rb, makes the matrix M symmetric.

The share tj for participant j (1≤ j ≤ n) is a vector of

length (d− k+1):

tTj =ψ
T
j

⎡
⎣ sA sB

T

ra RT
c

sB 0

⎤
⎦ . (3)

We shall show subsequently in Theorem 3 that any k of these

shares suffice to recover the entire secret.

B. Communication across the Network

Algorithm 1 describes the communication protocol to se-

curely transmit the shares {tj}nj=1 to the n participants.

Algorithm 1 Communication Protocol

Dealer: For every j ∈N (D), compute and pass the d-length

vector ψT
j M to participant j.

Participant � ∈ N (D): Wait until receipt of data ψT
� M

from the dealer. Then, for every j ∈N (�), compute inner

product of the data ψT
� M with the encoding vector ψj of

participant j. Pass the resultant value ψT
� Mψj to participant

j.

Participant � /∈ N (D): Wait until receipt of one value each

from any d neighbours. Then, denote this set of d neigh-

bours as {i1,...,id}, and the values received from them as

{σ1,...,σd} respectively. Compute the vector

vT = [σ1 ···σd]
T [ψi1 ···ψid

]−1.

For every neighbour i ∈N (�) from whom you did not receive

data, pass the inner product vTψi to participant i. 4

C. Correctness of the Algorithm

The proofs of the following theorems are available in [12].
Theorem 2 (Successful share dissemination): Under the al-

gorithm presented, every participant � ∈ [n] can recover ψT
� M ,

and hence obtain its intended share (3).
Theorem 3 (k-secret-recovery): Any k shares suffice to re-

cover the secret.
Theorem 4 ((k− 1)-collusion-resistance): Any set of (k−

1) or fewer colluding participants can gain no information

about the secret. This holds for any graph, irrespective of

whether it satisfies the required conditions.
This algorithm is also robust to any run-time changes in the

network topology (e.g., removal or addition of new links).

IV. COMPLEXITY ANALYSIS AND LOWER BOUNDS

In this section we provide an analysis and comparison of

the communication complexity of our algorithm, the previous

solution, and lower bounds for any scheme. Let |N (D)| denote

the size of the set N (D). In the analysis, the parameters k and

d are treated as constants, however, most part of the analysis

considers finite n, k, and d, and hence holds even when these

parameters depend on n. All proofs are available in [12].
We define, without loss of generality, one unit of data to be

the size of the secret. We shall use the notation Γ(.) to denote

communication complexity. The following theorem provides a

comparison of the communication complexity of our algorithm

with lower bounds and with the previous solution.
Theorem 5: For any (n,k) and any G satisfying the k-

propagating-dealer condition, the communication complexity

2013 IEEE International Symposium on Information Theory

2407



of our algorithm is Θ(n), and is always within a constant

(multiplicative) factor of the lower bound. The previous so-

lution entails a super-linear communication-complexity for a

wide class of networks, and there exists a class of graphs for

which its communication complexity is Θ(n2).

These claims are made more precise via the following

results, which may also be of independent interest.

1) Our Algorithm

Theorem 6: For any (n,k), and any G with (n+1)
nodes satisfying the d-propagating-dealer condition for some

(known) d, our algorithm entails a communication complexity

Γour(G) = n
d

d− k+1
.

2) Information-theoretic Lower Bounds

The following theorem provides an information-theoretic

lower bound to the amount of download at any node in the

network under any scheme.

Theorem 7: For an (n,k) secret sharing problem on any

graph G with (n+1) nodes, any node � ∈ [n] must download

Γany(�) ≥

⎧⎪⎨
⎪⎩

deg(�)
deg(�)−k+1 if � /∈N (D) and deg(�)≥ k

1 if � ∈N (D)
∞ if � /∈N (D) and deg(�)< k

where deg(�) denotes the number of incoming edges at node

�. Furthermore, this bound is the best possible, given only the

identities of the neighbours of node �.

Corollary 8: For an (n,k) secret sharing problem on any

graph G with (n+1) nodes, the total communication com-

plexity is lower bounded by

Γany(G)≥ |N (D)|+
∑

i/∈N (D)

deg(i)

deg(i)− k+1
≥ n .

Thus the communication complexity of our algorithm is a

constant multiplicative factor away from the lower bound.

Corollary 9: For any (n,k) and any d-regular graph with

(n+1) nodes satisfying the d-propagating-dealer condition,

under our algorithm, the amount of data downloaded by

any node � /∈N (D) is the minimum possible. Furthermore,

the amount of data downloaded by any node � ∈N (D) is

independent of n.

Corollary 10: For any (n,k), and any d (k ≤ d < n), there

exists a class of graphs with (n+1) nodes such that each

graph in this class satisfies the d-propagating dealer property,

and the communication complexity for (n,k) secret sharing

on any graph G in this class is lower bounded by

Γany(G)≥ n
d

d− k+1
− (k− 1) d

d− k+1
.

Thus, the complexity of our algorithm is a constant additive

factor away from the lower bound for this class of graphs.

3) Previous Solution

Theorem 11: For any (n,k) and G, the communication

complexity of the previous solution is

Γprev(G) = |N (D)|+
∑

i/∈N (D)

min
w≥k

[
w

w− k+1
× �w(D→ i)

]

where �w(D→ i) is the average of the path lengths of the w
shortest node-disjoint paths from D to i (with �w(D→ i) =∞
if there do not exist w node-disjoint paths from D to i).

Corollary 12: For any sequence of graphs of increasing

size with the maximum outgoing degree being O((logn)
1
2−ε))

for some ε > 0, the previous solution requires a super-linear

communication complexity.

Corollary 13: For any (n,k) and any d (k ≤ d < n), there

exists a class of graphs with (n+1) nodes such that each

graph in this class satisfies the d-propagating dealer property,

and (n,k) secret sharing on any graph G in this class using

the previous solution requires a communication complexity

Γprev(G)≥ n(n+1)

4d
.

Thus, on a sequence of such classes of graphs, our algorithm

requires Θ(n) communication complexity, as compared to

Θ(n2) required under the previous solution.

V. CONCLUSIONS AND OPEN PROBLEMS

The problem of secret sharing in a network arises funda-

mentally in several problems for security and cryptography.

By means of an explicit algorithm and information theoretic

bounds, this paper provides upper and lower bounds on the

communication complexity required for this problem. How-

ever, obtaining the precise complexity still remains open. The

algorithm presented here requires the network to satisfy the k-

propagating dealer condition, and heuristics to address general

networks are presented in the extended version [12]. However,

the guarantees achieved by the algorithm in the general case

are not known. Finally, it remains to see if any of the ideas

from this specific case of secure network coding carry over to

more general network coding problems.

REFERENCES

[1] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in ACM
STOC, 1988.

[3] T. Pedersen, “A threshold cryptosystem without a trusted party,” in
Advances in Cryptology–EUROCRYPT, 1991, pp. 522–526.

[4] M. Storer, K. Greenan, E. Miller, and K. Voruganti, “Potshards: A
secure, recoverable, long-term archival storage system,” ACM Trans. on
Storage, 2009.

[5] D. Dolev, C. Dwork, O. Waarts, and M. Yung, “Perfectly secure message
transmission,” Journal of the ACM, vol. 40, no. 1, pp. 17–47, 1993.

[6] N. Cai and R. Yeung, “Secure network coding on a wiretap network,”
IEEE Trans. on Inf. Th., Jan. 2011.

[7] J. Feldman, T. Malkin, C. Stein, and R. Servedio, “On the capacity of
secure network coding,” in Allerton Conf., 2004.

[8] H. Yao, D. Silva, S. Jaggi, and M. Langberg, “Network codes resilient
to jamming and eavesdropping,” in NetCod, 2010.

[9] C. Ngai and R. Yeung, “Secure error-correcting (sec) network codes,”
in NetCod, 2009.

[10] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Th., Oct. 2006.

[11] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction,” IEEE Trans. Inf. Th., Jun. 2005.

[12] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “Secure network
coding for distributed secret sharing with low communication cost.”
[Online]. Available: arXiv:1207.0120

[13] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for the MSR and MBR points via a product-matrix construction,”
IEEE Trans. Inf. Th., Aug. 2011.

2013 IEEE International Symposium on Information Theory

2408



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


